Probabilistic Graphical Models

Lecture 7: Dynamic State Space Models

Volkan Cevher, Matthias Seeger
Ecole Polytechnique Fédérale de Lausanne

21/10/2011

Announcement

Please bring your Assignment 5 sheet along to next tutorial. Points were not recorded.

Outline

(1) Hidden Markov Models
(2) Linear Dynamical Systems
(3) General Filtering / Smoothing

Forward in Time

- Final lecture in part I: We'll do a big step ... in time

Forward in Time

- Final lecture in part I: We'll do a big step ... in time
- Why dynamic models?
- Number one reason for causal dependence: Succession in time
- Filtering, tracking, forward prediction, time series, sequential learning, ...

Forward in Time

- Final lecture in part I: We'll do a big step ... in time
- Why dynamic models?
- Number one reason for causal dependence: Succession in time
- Filtering, tracking, forward prediction, time series, sequential learning, ...
- What's special about dynamic models?

Only one direction (time arrow) \rightarrow Linear (in)dependence \rightarrow Markov chain \rightarrow Chains are (simple) trees \rightarrow Belief propagation!

Forward in Time

- Final lecture in part I: We'll do a big step ... in time
- Why dynamic models?
- Number one reason for causal dependence: Succession in time
- Filtering, tracking, forward prediction, time series, sequential learning, ...
- What's special about dynamic models?

Only one direction (time arrow) \rightarrow Linear (in)dependence \rightarrow Markov chain \rightarrow Chains are (simple) trees \rightarrow Belief propagation!

- Markov chain: Present separates between past and future

$$
\left(\boldsymbol{x}_{<i}\right) \perp\left(\boldsymbol{x}_{>i}\right) \mid \boldsymbol{x}_{i}
$$

Vocabulary

Hidden Markov Model
$P\left(\boldsymbol{y}_{j} \mid \boldsymbol{x}_{j}\right) \quad$ Observation likelihood $P\left(\boldsymbol{x}_{j} \mid \boldsymbol{x}_{j-1}\right)$ Transition kernel
$P\left(\boldsymbol{x}_{1}\right) \quad$ Initial state prior

Stationary Model: CPTs independent of j. Notation: $\boldsymbol{x}_{<j}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{j-1}\right)$

Vocabulary

Hidden Markov Model

$P\left(\boldsymbol{y}_{\boldsymbol{j}} \mid \boldsymbol{x}_{j}\right) \quad$ Observation likelihood $P\left(\boldsymbol{x}_{j} \mid \boldsymbol{x}_{j-1}\right)$ Transition kernel
$P\left(\boldsymbol{x}_{1}\right) \quad$ Initial state prior

Stationary Model: CPTs independent of j.
Notation: $\boldsymbol{x}_{<j}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{j-1}\right)$

- Filtering: $P\left(\boldsymbol{x}_{j} \mid \boldsymbol{y}_{\leq j}\right)$ (sequential prediction)
- Smoothing: $P\left(\boldsymbol{x}_{j} \mid \boldsymbol{y}_{1 \ldots J}\right)$ (inference given past and future)
- Learning: Fitting parameters of $P(\boldsymbol{y} \mid \boldsymbol{x}), P\left(\boldsymbol{x} \mid \boldsymbol{x}_{-1}\right)$:

EM, based on smoothing [EM comes from HMM research]

Filtering: Information Forward Propagation

- Formal: Message passing on factor graph F3

Filtering: Information Forward Propagation

- Formal: Message passing on factor graph

Filtering: Information Forward Propagation

- Formal: Message passing on factor graph

Filtering: Information Forward Propagation

- Formal: Message passing on factor graph
- Above formulae: Information forward propagation:
$\mu_{(j-2) \rightarrow(j-1)}\left(x_{j-1}\right)$:
Prior "from the past"

Filtering: Information Forward Propagation

- Formal: Message passing on factor graph
- Above formulae: Information forward propagation:
$\mu_{(j-2) \rightarrow(j-1)}\left(x_{j-1}\right)$:
Prior "from the past"

(1) Measurement: Prior \rightarrow posterior: $\propto \mu_{(j-2) \rightarrow(j-1)}\left(x_{j-1}\right) P\left(y_{j-1} \mid x_{j-1}\right)$

Filtering: Information Forward Propagation

- Formal: Message passing on factor graph
- Above formulae: Information forward propagation:
$\mu_{(j-2) \rightarrow(j-1)}\left(x_{j-1}\right)$:
Prior "from the past"

(1) Measurement: Prior \rightarrow posterior: $\propto \mu_{(j-2) \rightarrow(j-1)}\left(x_{j-1}\right) P\left(y_{j-1} \mid x_{j-1}\right)$
(2) Diffusion, information propagation (marginalization):

$$
\mu_{(j-1) \rightarrow j}\left(x_{j}\right) \propto \sum_{x_{j-1}}\left(\mu_{(j-2) \rightarrow(j-1)}\left(x_{j-1}\right) P\left(y_{j-1} \mid x_{j-1}\right)\right) P\left(x_{j} \mid x_{j-1}\right)
$$

\Rightarrow Know how to do (1), (2)? Can do BP!

Sum-Product Algorithm for HMMs

- Backward messages: Exactly the same, just reverse time arrow
(1) Measurement: Prior \rightarrow posterior: $\propto \mu_{j \leftarrow(j+1)}\left(x_{j}\right) P\left(y_{j} \mid x_{j}\right)$
(2) Diffusion, information propagation (marginalization):

$$
\mu_{(j-1) \leftarrow j}\left(x_{j-1}\right) \propto \sum_{x_{j}} P\left(x_{j} \mid x_{j-1}\right)\left(\mu_{j \leftarrow(j+1)}\left(x_{j}\right) P\left(y_{j} \mid x_{j}\right)\right)
$$

Sum-Product Algorithm for HMMs

- Backward messages: Exactly the same, just reverse time arrow
(1) Measurement: Prior \rightarrow posterior: $\propto \mu_{j \leftarrow(j+1)}\left(x_{j}\right) P\left(y_{j} \mid x_{j}\right)$
(2) Diffusion, information propagation (marginalization):

$$
\mu_{(j-1) \leftarrow j}\left(x_{j-1}\right) \propto \sum_{x_{j}} P\left(x_{j} \mid x_{j-1}\right)\left(\mu_{j \leftarrow(j+1)}\left(x_{j}\right) P\left(y_{j} \mid x_{j}\right)\right)
$$

- Forward / backward pass independent: can be run in parallel
- Posterior marginals:

$$
\begin{aligned}
P\left(x_{j} \mid \boldsymbol{y}_{1 \ldots j}\right) \propto & \mu_{(j-1) \rightarrow j}\left(x_{j}\right) P\left(y_{j} \mid x_{j}\right) \mu_{j \leftarrow(-1+1)}\left(x_{j}\right) \\
P\left(x_{j-1}, x_{j} \mid \boldsymbol{y}_{1 \ldots j}\right) \propto & \mu_{(j-2) \rightarrow(j-1)}\left(x_{j-1}\right) P\left(y_{j-1} \mid x_{j-1}\right) P\left(x_{j} \mid x_{j-1}\right) \\
& P\left(y_{j} \mid x_{j}\right) \mu_{j \leftarrow(j+1)}\left(x_{j}\right)
\end{aligned}
$$

HMMs in Practice

Enormously influential, both in practice and algorithm development
Speech recognition:
SR today: = HMMs with clever search tricks

- EM came from there (Baum, Welch: Forward-backward algorithm)
- Swiped field clean of anything else (rule-based, hand-coded, linguistic, ...) in 1970s. Early work at CMU (Baker, Lowerre) and IBM (Jelinek)
- x_{j} : Subphonemes. \boldsymbol{y}_{j} : Spectral features of acoustic waveform. $P(\boldsymbol{y} \mid x)$: Gaussian mixture
- One of the big success stories of statistical learning over other "loftier" approaches
- Today more industry than research: Big groups, big computers, huge amounts of data

HMMs in Practice

Enormously influential, both in practice and algorithm development
Bio-Informatics:
Introduced there early 90s by David Haussler (machine learning theorist, turned famous computational biologist)

- Before that: Dynamic programming sequence alignment (BLAST)
- Most macromolecules of organic chemistry are chains (some folded in complex ways):
$x_{j} \in\{A, C, T, G\}$ (or triplets), $x_{j} \in\{$ amino acids $\}$
- Sequence matching by pair HMMs (two \boldsymbol{y}_{j} chains, common x_{j})
- Gene finding: HGP estimates about \# human genes: HMMs
- Protein categorization (homologues)
- Together with tree models: Phylogenetics, evolutionary history of species

Further Remarks

- How do I obtain $\operatorname{argmax}_{\left\{\boldsymbol{x}_{j}\right\}} \log P\left(\left\{\boldsymbol{y}_{j}\right\},\left\{\boldsymbol{x}_{j}\right\}\right)$?

For example: How to I decode words from acoustic waveform?
\Rightarrow Max-product algorithm: Viterbi decoding

- Learning with inner (Viterbi) maximization usually used in SR: Faster than EM (beam search, pruning)

Further Remarks

- How do I obtain $\operatorname{argmax}_{\left\{\boldsymbol{x}_{j}\right\}} \log P\left(\left\{\boldsymbol{y}_{j}\right\},\left\{\boldsymbol{x}_{j}\right\}\right)$?

For example: How to I decode words from acoustic waveform?
\Rightarrow Max-product algorithm: Viterbi decoding

- Learning with inner (Viterbi) maximization usually used in SR: Faster than EM (beam search, pruning)
- Simple modifications give nonstationary transition kernels (e.g., for non-geometric duration time)

Further Remarks

- How do I obtain $\operatorname{argmax}_{\left\{\boldsymbol{x}_{j}\right\}} \log P\left(\left\{\boldsymbol{y}_{j}\right\},\left\{\boldsymbol{x}_{j}\right\}\right)$?

For example: How to I decode words from acoustic waveform?
\Rightarrow Max-product algorithm: Viterbi decoding

- Learning with inner (Viterbi) maximization usually used in SR: Faster than EM (beam search, pruning)
- Simple modifications give nonstationary transition kernels (e.g., for non-geometric duration time)
- Not hard to do hierarchical / multi-scale HMMs: Nodes expand into HMMs themselves (of potentially different length)

Further Remarks

- How do I obtain $\operatorname{argmax}_{\left\{\boldsymbol{x}_{j}\right\}} \log P\left(\left\{\boldsymbol{y}_{j}\right\},\left\{\boldsymbol{x}_{j}\right\}\right)$?

For example: How to I decode words from acoustic waveform?
\Rightarrow Max-product algorithm: Viterbi decoding

- Learning with inner (Viterbi) maximization usually used in SR: Faster than EM (beam search, pruning)
- Simple modifications give nonstationary transition kernels (e.g., for non-geometric duration time)
- Not hard to do hierarchical / multi-scale HMMs: Nodes expand into HMMs themselves (of potentially different length)
- HMMs for large state spaces: Model structure within \boldsymbol{x}_{j} itself
- Factorial HMM [next lecture]

Further Remarks

- How do I obtain $\operatorname{argmax}_{\left\{\boldsymbol{x}_{j}\right\}} \log P\left(\left\{\boldsymbol{y}_{j}\right\},\left\{\boldsymbol{x}_{j}\right\}\right)$?

For example: How to I decode words from acoustic waveform?
\Rightarrow Max-product algorithm: Viterbi decoding

- Learning with inner (Viterbi) maximization usually used in SR:

Faster than EM (beam search, pruning)

- Simple modifications give nonstationary transition kernels (e.g., for non-geometric duration time)
- Not hard to do hierarchical / multi-scale HMMs: Nodes expand into HMMs themselves (of potentially different length)
- HMMs for large state spaces: Model structure within \boldsymbol{x}_{j} itself
- Factorial HMM [next lecture]
- Common theme: On some level: Markov chain (usually latent). Belief propagation
- Message sizes independent of sequence length
- Running time linear in sequence length

Dynamical Systems

- The world is not discrete. Problems involving motion, co-ocurrence: Differential equations, continuous variables
- Reasoning about uncertainty in such problems: Dynamical state space models

Dynamical Systems

- The world is not discrete. Problems involving motion, co-ocurrence: Differential equations, continuous variables
- Reasoning about uncertainty in such problems: Dynamical state space models
- State: Finite set variables, containing all information to move on (separate past from future). Can include derivatives as well (location, orientation, velocity, angular velocity, acceleration, torque, ...). Usually (partly) latent
- Reason about distribution over state, conditioned on past observations (filtering) or all observations (smoothing). Propagate such state distributions (belief states)

Dynamical Systems

- The world is not discrete. Problems involving motion, co-ocurrence: Differential equations, continuous variables
- Reasoning about uncertainty in such problems: Dynamical state space models
- State: Finite set variables, containing all information to move on (separate past from future). Can include derivatives as well (location, orientation, velocity, angular velocity, acceleration, torque, ...). Usually (partly) latent
- Reason about distribution over state, conditioned on past observations (filtering) or all observations (smoothing). Propagate such state distributions (belief states)
- Use this inference for higher order tasks
- Learning about environment, world model, sensor accuracy
- Planning behaviour, interaction which modifies environment
\Rightarrow Whatever you do: Inference is at the bottom

Linear Dynamical System

- Example: Moving robot localization

Linear Dynamical System

- Example: Moving robot localization
- Local conditional probabilities: Linear-Gaussian

$$
\begin{array}{lll}
\boldsymbol{x}_{t}=\boldsymbol{A}_{t} \boldsymbol{x}_{t-1}+\boldsymbol{G}_{t} \varepsilon_{1, t}, \quad \varepsilon_{1, t} \sim N(\mathbf{0}, \boldsymbol{I}) & \text { Transition prior } \\
\boldsymbol{y}_{t}=\boldsymbol{C}_{t} \boldsymbol{x}_{t}+\varepsilon_{2, t}, \quad \varepsilon_{2, t} \sim N\left(\mathbf{0}, \mathbf{\Psi}_{t}\right) & \text { Observation likelihood }
\end{array}
$$

$\varepsilon_{k, t}$ independent of others.
Stationary LDS: $\boldsymbol{A}, \boldsymbol{G}, \boldsymbol{C}, \boldsymbol{\Psi}$ independent of t

Linear Dynamical System

- Example: Moving robot localization
- Local conditional probabilities: Linear-Gaussian

$$
\begin{array}{lll}
\boldsymbol{x}_{t}=\boldsymbol{A}_{t} \boldsymbol{x}_{t-1}+\boldsymbol{G}_{t} \varepsilon_{1, t}, & \varepsilon_{1, t} \sim N(\mathbf{0}, \boldsymbol{I}) & \text { Transition prior } \\
\boldsymbol{y}_{t}=\boldsymbol{C}_{t} \boldsymbol{x}_{t}+\varepsilon_{2, t}, & \varepsilon_{2, t} \sim N\left(\mathbf{0}, \boldsymbol{\Psi}_{t}\right) & \text { Observation likelihood }
\end{array}
$$

$\varepsilon_{k, t}$ independent of others.
Stationary LDS: A, G, C, Ψ independent of t

- Inference in such a model? Combine what you know:
- HMM for discrete latent states
- Factor analysis for linear-Gaussian model, independent states

Behind the Equations

- Behind the equation mess in engineering textbooks, there is a simple idea. What you need to remember:
- Above formulae: That idea, and the generic primitives it requires
- Below formulae: Numerically uncritical way of implementation

Behind the Equations

- Behind the equation mess in engineering textbooks, there is a simple idea. What you need to remember:
- Above formulae: That idea, and the generic primitives it requires
- Below formulae: Numerically uncritical way of implementation
- Simple idea:
- All distributions / messages in this model: Gaussian.

You need to maintain / pass:

- Moment parameters (mean, covariance), or
- Natural parameters
- Belief propagation primitives: Measurement (prior \rightarrow posterior), information propagation (marginalization)

Behind the Equations

- Behind the equation mess in engineering textbooks, there is a simple idea. What you need to remember:
- Above formulae: That idea, and the generic primitives it requires
- Below formulae: Numerically uncritical way of implementation
- Simple idea:
- All distributions / messages in this model: Gaussian.

You need to maintain / pass:

- Moment parameters (mean, covariance), or
- Natural parameters
- Belief propagation primitives: Measurement (prior \rightarrow posterior), information propagation (marginalization)
- Below formulae: Get these primitives right
- Use linear algebra to get them in the right form
- Use numerically trusted solutions for elementary steps

Kalman Filtering

Filtering with moment parameters:

$$
N\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{\mu}_{t-1 \mid t-1}, \boldsymbol{\Sigma}_{t-1 \mid t-1}\right) \xrightarrow{\text { info. prop. }} N\left(\boldsymbol{x}_{t} \mid \boldsymbol{\mu}_{t \mid t-1}, \boldsymbol{\Sigma}_{t \mid t-1}\right)
$$

measurement

$$
N\left(\boldsymbol{x}_{t} \mid \boldsymbol{\mu}_{t \mid t}, \boldsymbol{\Sigma}_{t \mid t}\right)
$$

- Information propagation: $\boldsymbol{x}_{t}=\boldsymbol{A}_{t} \boldsymbol{x}_{t-1}+\boldsymbol{G}_{t} \varepsilon_{1, t}$

Kalman Filtering

Filtering with moment parameters:

$$
N\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{\mu}_{t-1 \mid t-1}, \boldsymbol{\Sigma}_{t-1 \mid t-1}\right) \xrightarrow{\text { info. prop. }} N\left(\boldsymbol{x}_{t} \mid \boldsymbol{\mu}_{t \mid t-1}, \boldsymbol{\Sigma}_{t \mid t-1}\right)
$$

measurement

$$
N\left(\boldsymbol{x}_{t} \mid \boldsymbol{\mu}_{t \mid t}, \boldsymbol{\Sigma}_{t \mid t}\right)
$$

- Information propagation: $\boldsymbol{x}_{t}=\boldsymbol{A}_{t} \boldsymbol{x}_{t-1}+\boldsymbol{G}_{t} \varepsilon_{1, t}$

$$
\boldsymbol{\mu}_{t \mid t-1}=\boldsymbol{A}_{t} \boldsymbol{\mu}_{t-1 \mid t-1}, \quad \boldsymbol{\Sigma}_{t \mid t-1}=\boldsymbol{A}_{t} \boldsymbol{\Sigma}_{t-1 \mid t-1} \boldsymbol{A}_{t}^{T}+\boldsymbol{G}_{t} \boldsymbol{G}_{t}^{T}
$$

- Measurement: "Prior" $N\left(\boldsymbol{x}_{t} \mid \boldsymbol{\mu}_{t \mid t-1}, \boldsymbol{\Sigma}_{t \mid t-1}\right)$.

Likelihood $N\left(\boldsymbol{y}_{t} \mid \boldsymbol{C}_{t} \boldsymbol{x}_{t}, \boldsymbol{\Psi}_{t}\right)$. Posterior?

Kalman Filtering

Filtering with moment parameters:

$$
N\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{\mu}_{t-1 \mid t-1}, \boldsymbol{\Sigma}_{t-1 \mid t-1}\right) \xrightarrow{\text { info. prop. }} N\left(\boldsymbol{x}_{t} \mid \boldsymbol{\mu}_{t \mid t-1}, \boldsymbol{\Sigma}_{t \mid t-1}\right)
$$

measurement

$$
N\left(\boldsymbol{x}_{t} \mid \boldsymbol{\mu}_{t \mid t}, \boldsymbol{\Sigma}_{t \mid t}\right)
$$

- Information propagation: $\boldsymbol{x}_{t}=\boldsymbol{A}_{t} \boldsymbol{x}_{t-1}+\boldsymbol{G}_{t} \varepsilon_{1, t}$

$$
\boldsymbol{\mu}_{t \mid t-1}=\boldsymbol{A}_{t} \boldsymbol{\mu}_{t-1 \mid t-1}, \quad \boldsymbol{\Sigma}_{t \mid t-1}=\boldsymbol{A}_{t} \boldsymbol{\Sigma}_{t-1 \mid t-1} \boldsymbol{A}_{t}^{T}+\boldsymbol{G}_{t} \boldsymbol{G}_{t}^{T}
$$

- Measurement: "Prior" $N\left(\boldsymbol{x}_{t} \mid \boldsymbol{\mu}_{t \mid t-1}, \boldsymbol{\Sigma}_{t \mid t-1}\right)$. Likelihood $N\left(\boldsymbol{y}_{t} \mid \boldsymbol{C}_{t} \boldsymbol{x}_{t}, \boldsymbol{\Psi}_{t}\right)$. Posterior?

$$
\begin{aligned}
\boldsymbol{\Sigma}_{t \mid t} & =\operatorname{Cov}\left[\left(\boldsymbol{x}_{t} \boldsymbol{y}_{t}\right)\right] / \operatorname{Cov}\left[\boldsymbol{y}_{t}\right]=\boldsymbol{\Sigma}_{t \mid t-1}-\boldsymbol{\Sigma}_{t \mid t-1} \boldsymbol{C}_{t}^{T} \boldsymbol{E}_{t}^{-1} \boldsymbol{C}_{t} \boldsymbol{\Sigma}_{t \mid t-1} \\
\boldsymbol{\mu}_{t \mid t} & =\mathrm{E}\left[\boldsymbol{x}_{t}\right]+\operatorname{Cov}\left[\boldsymbol{x}_{t}, \boldsymbol{y}_{t}\right] \operatorname{Cov}\left[\boldsymbol{y}_{t}\right]^{-1}\left(\boldsymbol{y}_{t}-\mathrm{E}\left[\boldsymbol{y}_{t}\right]\right) \\
& =\boldsymbol{\mu}_{t \mid t-1}+\underbrace{\boldsymbol{\Sigma}_{t \mid t-1} \boldsymbol{C}_{t}^{T} \boldsymbol{E}_{t}^{-1}}_{\text {Kalman gain }}\left(\boldsymbol{y}_{t}-\boldsymbol{C}_{t} \boldsymbol{\mu}_{t \mid t-1}\right), \quad \boldsymbol{E}_{t}=\boldsymbol{\Psi}_{t}+\boldsymbol{C}_{t} \boldsymbol{\Sigma}_{t \mid t-1} \boldsymbol{C}_{t}^{T}
\end{aligned}
$$

Remarks

- Kalman gain matrix:

$$
\boldsymbol{K}_{t}=\boldsymbol{\Sigma}_{t \mid t-1} \boldsymbol{C}_{t}^{T}\left(\boldsymbol{\Psi}_{t}+\boldsymbol{C}_{t} \boldsymbol{\Sigma}_{t \mid t-1} \boldsymbol{C}_{t}^{T}\right)^{-1}\left\{=\operatorname{Cov}\left[\boldsymbol{x}_{t}, \boldsymbol{y}_{t}\right] \operatorname{Cov}\left[\boldsymbol{y}_{t}\right]^{-1}\right\}
$$

Residual error $\boldsymbol{y}_{t}-\mathrm{E}\left[\boldsymbol{y}_{t} \mid \boldsymbol{y}_{<t}\right] \rightarrow$ correction mean estimate.
Can also write: $\boldsymbol{\Sigma}_{t \mid t}=\left(\boldsymbol{I}-\boldsymbol{K}_{t} \boldsymbol{C}_{t}\right) \boldsymbol{\Sigma}_{t \mid t-1}$

Remarks

- Kalman gain matrix:

$$
\boldsymbol{K}_{t}=\boldsymbol{\Sigma}_{t \mid t-1} \boldsymbol{C}_{t}^{T}\left(\boldsymbol{\Psi}_{t}+\boldsymbol{C}_{t} \boldsymbol{\Sigma}_{t \mid t-1} \boldsymbol{C}_{t}^{T}\right)^{-1}\left\{=\operatorname{Cov}\left[\boldsymbol{x}_{t}, \boldsymbol{y}_{t}\right] \operatorname{Cov}\left[\boldsymbol{y}_{t}\right]^{-1}\right\}
$$

Residual error $\boldsymbol{y}_{t}-\mathrm{E}\left[\boldsymbol{y}_{t} \mid \boldsymbol{y}_{<t}\right] \rightarrow$ correction mean estimate.
Can also write: $\boldsymbol{\Sigma}_{t \mid t}=\left(\boldsymbol{I}-\boldsymbol{K}_{t} \boldsymbol{C}_{t}\right) \boldsymbol{\Sigma}_{t \mid t-1}$

- Recall: In the moment parameterization:

Information propagation Simple Measurement

Difficult (needs matrix factorization)
In the natural parameterization, these roles are reversed

- Information filter: Propagate natural parameters $\boldsymbol{r}_{t \mid t}, \boldsymbol{S}_{t \mid t}$ instead of moment parameters $\left[\boldsymbol{S}_{t \mid t}=\boldsymbol{\Sigma}_{t \mid t}^{-1}, \boldsymbol{r}_{t \mid t}=\boldsymbol{\Sigma}_{t \mid t}^{-1} \boldsymbol{\mu}_{t \mid t}\right]$

In Practice

"Below the formulae": What's he talking about?
\Rightarrow In practice, neither of them work (on real problems)

- In theory, $\boldsymbol{\Sigma}_{t \mid t}$ or $\boldsymbol{S}_{t \mid t}$ stay positive definite. In practice they don't!
- Root of problem: Information propagation / measurement simple linear in different parameterizations. Conversion (matrix inversion) prone to numerical errors

In Practice

"Below the formulae": What's he talking about?
\Rightarrow In practice, neither of them work (on real problems)

- In theory, $\boldsymbol{\Sigma}_{t \mid t}$ or $\boldsymbol{S}_{t \mid t}$ stay positive definite. In practice they don't!
- Root of problem: Information propagation / measurement simple linear in different parameterizations. Conversion (matrix inversion) prone to numerical errors
- First improvement: Propagate matrix factorization:

Kalman square root filter $\quad \boldsymbol{\Sigma}_{t \mid t}=\boldsymbol{F}_{t \mid t} \boldsymbol{F}_{t \mid t}^{T}$. Propagate $\boldsymbol{F}_{t \mid t}$ Information square root filter $\boldsymbol{\Sigma}_{t \mid t}^{-1}=\boldsymbol{F}_{t \mid t} \boldsymbol{F}_{t \mid t}^{T}$. Propagate $\boldsymbol{F}_{t \mid t}$

- Further improvements: Formulate as weighted least squares problem. Use stable LS method from numerical mathematics
[Paige, Saunders: Least Squares Estimation of Discrete Linear Dynamic Systems Using Orthogonal Transformations (1977)]

Smoothing

- All approaches use filtering for forward pass
- Rauch-Tung-Striebel (RTS) smoother: Backward pass computes marginals $\mathrm{E}\left[\boldsymbol{x}_{t} \mid D\right], \operatorname{Cov}\left[\boldsymbol{x}_{t} \mid D\right]$ directly, $D=\left\{\boldsymbol{y}_{t}\right\}$. Idea:

$$
\begin{aligned}
P\left(\boldsymbol{x}_{t} \mid D\right) & =\int P\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t+1}, D\right) P\left(\boldsymbol{x}_{t+1} \mid D\right) d \boldsymbol{x}_{t+1} \\
& \stackrel{!}{=} \int P\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t+1}, \boldsymbol{y}_{\leq t}\right) P\left(\boldsymbol{x}_{t+1} \mid D\right) d \boldsymbol{x}_{t+1} \quad\left[\boldsymbol{x}_{t} \perp \boldsymbol{y}_{>t} \mid \boldsymbol{x}_{t+1}\right]
\end{aligned}
$$

Work out moments of $P\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t+1}, \boldsymbol{y}_{\leq t}\right)$ from filtering variables. Average \boldsymbol{x}_{t+1} over $P\left(\boldsymbol{x}_{t+1} \mid D\right)$. Details: In your exercises

Smoothing

- All approaches use filtering for forward pass
- Rauch-Tung-Striebel (RTS) smoother: Backward pass computes marginals $\mathrm{E}\left[\boldsymbol{x}_{t} \mid D\right], \operatorname{Cov}\left[\boldsymbol{x}_{t} \mid D\right]$ directly, $D=\left\{\boldsymbol{y}_{t}\right\}$. Idea:

$$
\begin{aligned}
P\left(\boldsymbol{x}_{t} \mid D\right) & =\int P\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t+1}, D\right) P\left(\boldsymbol{x}_{t+1} \mid D\right) d \boldsymbol{x}_{t+1} \\
& \stackrel{!}{=} \int P\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t+1}, \boldsymbol{y}_{\leq t}\right) P\left(\boldsymbol{x}_{t+1} \mid D\right) d \boldsymbol{x}_{t+1} \quad\left[\boldsymbol{x}_{t} \perp \boldsymbol{y}_{>t} \mid \boldsymbol{x}_{t+1}\right]
\end{aligned}
$$

Work out moments of $P\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t+1}, \boldsymbol{y}_{\leq t}\right)$ from filtering variables. Average \boldsymbol{x}_{t+1} over $P\left(\boldsymbol{x}_{t+1} \mid D\right)$. Details: In your exercises

- Two-filter smoothing: Analogous to forward-backward BP
- Run backward filter (in parallel to forward filter)
- Combine results by Gaussian product formula. Do not count observation twice!

Learning

- Recall last lecture: Most difficult part of learning is inference
- EM algorithm: E step is smoothing. M step: Like in factor analysis
- Gradient-based optimization: Average gradients of log-potentials over marginal posterior (smoothing)
- Formulae even worse, but we are not impressed
- Above formulae: Decomposition:
- Marginal inference (smoothing)
- Gradient accumulation, given marginals
- Parameter updates
- Below formulae: Use stable filtering / smoothing implementation. Gradient accumulation typically harmless

Conditional Random Fields

- Undirected sequence model. Different properties through global normalization (HMM: local normalization)
- Markov random field with tree graph
- Heavily used in text / language modelling (labeling, named entity recognition)
- Training with complete data (all \boldsymbol{x}_{t} given): Iterative, but convex optimization (for log-linear potentials). Can be done very efficiently (Quasi Newton optimization; approximate Newton optimization with Hessian-vector product)
- Traning with incomplete data: EM outer loop required

Conditional Random Fields

- Undirected sequence model. Different properties through global normalization (HMM: local normalization)
- Markov random field with tree graph
- Heavily used in text / language modelling (labeling, named entity recognition)
- Training with complete data (all \boldsymbol{x}_{t} given): Iterative, but convex optimization (for log-linear potentials). Can be done very efficiently (Quasi Newton optimization; approximate Newton optimization with Hessian-vector product)
- Traning with incomplete data: EM outer loop required

Conditional Random Fields

- Undirected sequence model. Different properties through global normalization (HMM: local normalization)
- Markov random field with tree graph
- Heavily used in text / language modelling (labeling, named entity recognition)
- Training with complete data (all \boldsymbol{x}_{t} given): Iterative, but convex optimization (for log-linear potentials). Can be done very efficiently (Quasi Newton optimization; approximate Newton optimization with Hessian-vector product)
- Traning with incomplete data: EM outer loop required

General State Space Models

- We've had state space models
- All discrete: Multinomial family
- All linear-Gaussian: Gaussian family

- What about other situations?
- Nonlinear dynamical system: Transition / observation mapping nonlinear. Noise dependent on current state
- Switching state space model: State consists of continuous and discrete variables
\Rightarrow Graph is still a chain. Efficient inference by BP?

General State Space Models

- We've had state space models
- All discrete:

Multinomial family

- All linear-Gaussian: Gaussian family

- What about other situations?
- Nonlinear dynamical system: Transition / observation mapping nonlinear. Noise dependent on current state
- Switching state space model: State consists of continuous and discrete variables
\Rightarrow Graph is still a chain. Efficient inference by BP?
- Problem: Only multinomial, Gaussian families
- Closed under conditioning and marginalization
- Fixed-size parameterization
\Rightarrow Inference for general state space models: NP hard

Approximate Filtering

Dynamic programming requires fixed-size message representations
\Rightarrow Blow-up has to be countered by approximations

- Approximate transition / observation potentials locally
- Extended Kalman filter: Linearize transition / observation mapping by Taylor expansion at $\boldsymbol{\mu}_{t-1 \mid t-1} / \boldsymbol{\mu}_{t \mid t-1}$ resp. Use exact propagation with approximated potentials

Approximate Filtering

Dynamic programming requires fixed-size message representations
\Rightarrow Blow-up has to be countered by approximations

- Approximate transition / observation potentials locally
- Extended Kalman filter: Linearize transition / observation mapping by Taylor expansion at $\boldsymbol{\mu}_{t-1 \mid t-1} / \boldsymbol{\mu}_{t \mid t-1}$ resp. Use exact propagation with approximated potentials
- Use exact local propagation, project resulting message back into representation family. Projection done optimally by matching family moments (mean, covariance for Gaussian). Variants:
- Assumed density filter
- Unscented filter (cheap quadrature by exact monomials)

Approximate Filtering

Dynamic programming requires fixed-size message representations
\Rightarrow Blow-up has to be countered by approximations

- Approximate transition / observation potentials locally
- Extended Kalman filter: Linearize transition / observation mapping by Taylor expansion at $\boldsymbol{\mu}_{t-1 \mid t-1} / \boldsymbol{\mu}_{t \mid t-1}$ resp. Use exact propagation with approximated potentials
- Use exact local propagation, project resulting message back into representation family. Projection done optimally by matching family moments (mean, covariance for Gaussian). Variants:
- Assumed density filter
- Unscented filter (cheap quadrature by exact monomials)
- EKF cheap and cheerful. ADF works better in general, but needs quadrature to approximate moments. Projection more general:
- EKF can be seen as special backprojection as well

What about Smoothing?

- Approximate filters: One-shot approach, local approximations never re-visited. But: Approximate inference is iterative
- Correct learning requires marginals given all data (also future) \Rightarrow Smoothing

What about Smoothing?

- Approximate filters: One-shot approach, local approximations never re-visited. But: Approximate inference is iterative
- Correct learning requires marginals given all data (also future) \Rightarrow Smoothing
- Options:
- Apply filter approximation technique to smoother (e.g., two-filter smoother) \Rightarrow not iterative
- Better: Use principled approximate inference framework [expectation propagation, part II]
- General warning: Numerically even more difficult than inference in fixed LDS \Rightarrow Attention to numerical details essential

Wrap-Up

- Hidden Markov model (discrete states): Non-Markovian behaviour from Markovian ingredients
- Linear dynamical system: Simple idea, messy equations. Does not work without numerically careful implementation
- Conditional random field: Alternative to HMM for large text / language problems
- Filtering / smoothing for general state space models: Approximation by (moment matching) backprojection

