
Probabilistic Graphical Models

Lecture 7: Dynamic State Space Models

Volkan Cevher, Matthias Seeger
Ecole Polytechnique Fédérale de Lausanne

21/10/2011

(EPFL) Graphical Models 21/10/2011 1 / 22



Announcement

Please bring your Assignment 5 sheet along to next tutorial.
Points were not recorded.
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1 Hidden Markov Models

2 Linear Dynamical Systems

3 General Filtering / Smoothing
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Hidden Markov Models

Forward in Time

Final lecture in part I: We’ll do a big step . . . in time

Why dynamic models?

Number one reason for causal dependence: Succession in time
Filtering, tracking, forward prediction, time series, sequential
learning, . . .

What’s special about dynamic models?
Only one direction (time arrow)→ Linear (in)dependence→
Markov chain→ Chains are (simple) trees→ Belief propagation!
Markov chain: Present separates between past and future

(x<i)⊥(x>i)|x i
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Hidden Markov Models

Vocabulary

Hidden Markov Model F2

P(y j |x j) Observation likelihood
P(x j |x j−1) Transition kernel
P(x1) Initial state prior

Stationary Model: CPTs independent of j .
Notation: x<j = (x1, . . . ,x j−1)

Filtering: P(x j |y≤j) (sequential prediction)
Smoothing: P(x j |y1...J) (inference given past and future)
Learning: Fitting parameters of P(y |x ), P(x ·|x ·−1):
EM, based on smoothing [EM comes from HMM research]
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Hidden Markov Models

Filtering: Information Forward Propagation

Formal: Message
passing on factor graph
F3

Above formulae:
Information forward
propagation:
µ(j−2)→(j−1)(xj−1):
Prior “from the past”
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Hidden Markov Models

Filtering: Information Forward Propagation
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Hidden Markov Models

Filtering: Information Forward Propagation

Formal: Message
passing on factor graph
Above formulae:
Information forward
propagation:
µ(j−2)→(j−1)(xj−1):
Prior “from the past”

1 Measurement: Prior→ posterior: ∝ µ(j−2)→(j−1)(xj−1)P(yj−1|xj−1)

2 Diffusion, information propagation (marginalization):
µ(j−1)→j(xj) ∝

∑
xj−1

(µ(j−2)→(j−1)(xj−1)P(yj−1|xj−1))P(xj |xj−1)

⇒ Know how to do (1), (2)? Can do BP! F3b
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Hidden Markov Models

Sum-Product Algorithm for HMMs

Backward messages: Exactly the same, just reverse time arrow
1 Measurement: Prior→ posterior: ∝ µj←(j+1)(xj)P(yj |xj)
2 Diffusion, information propagation (marginalization):
µ(j−1)←j(xj−1) ∝

∑
xj

P(xj |xj−1)(µj←(j+1)(xj)P(yj |xj)) F4

Forward / backward pass independent: can be run in parallel
Posterior marginals:

P(xj |y1...J) ∝ µ(j−1)→j(xj)P(yj |xj)µj←(j+1)(xj)
P(xj−1, xj |y1...J) ∝ µ(j−2)→(j−1)(xj−1)P(yj−1|xj−1)P(xj |xj−1)

P(yj |xj)µj←(j+1)(xj)
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Hidden Markov Models

HMMs in Practice
Enormously influential, both in practice and algorithm development

Speech recognition:
SR today: = HMMs with clever search tricks

EM came from there (Baum, Welch: Forward-backward algorithm)
Swiped field clean of anything else (rule-based, hand-coded,
linguistic, . . . ) in 1970s. Early work at CMU (Baker, Lowerre) and
IBM (Jelinek)
xj : Subphonemes. y j : Spectral features of acoustic waveform.
P(y |x): Gaussian mixture
One of the big success stories of statistical learning over other
“loftier” approaches
Today more industry than research: Big groups, big computers,
huge amounts of data
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Hidden Markov Models

HMMs in Practice
Enormously influential, both in practice and algorithm development

Bio-Informatics:
Introduced there early 90s by David Haussler (machine learning
theorist, turned famous computational biologist)

Before that: Dynamic programming sequence alignment (BLAST)
Most macromolecules of organic chemistry are chains (some
folded in complex ways):
xj ∈ {A,C,T ,G} (or triplets), xj ∈ {amino acids}
Sequence matching by pair HMMs (two y j chains, common xj )
Gene finding: HGP estimates about # human genes: HMMs
Protein categorization (homologues)
Together with tree models: Phylogenetics, evolutionary history of
species
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Hidden Markov Models

Further Remarks

How do I obtain argmax{x j} log P({y j}, {x j})?
For example: How to I decode words from acoustic waveform?
⇒ Max-product algorithm: Viterbi decoding

Learning with inner (Viterbi) maximization usually used in SR:
Faster than EM (beam search, pruning)

Simple modifications give nonstationary transition kernels
(e.g., for non-geometric duration time)
Not hard to do hierarchical / multi-scale HMMs: Nodes expand
into HMMs themselves (of potentially different length)
HMMs for large state spaces: Model structure within x j itself

Factorial HMM [next lecture]

Common theme: On some level: Markov chain (usually latent).
Belief propagation

Message sizes independent of sequence length
Running time linear in sequence length
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Linear Dynamical Systems

Dynamical Systems

The world is not discrete. Problems involving motion,
co-ocurrence: Differential equations, continuous variables
Reasoning about uncertainty in such problems:
Dynamical state space models

State: Finite set variables, containing all information to move on
(separate past from future). Can include derivatives as well
(location, orientation, velocity, angular velocity, acceleration,
torque, . . . ). Usually (partly) latent
Reason about distribution over state, conditioned on past
observations (filtering) or all observations (smoothing). Propagate
such state distributions (belief states)
Use this inference for higher order tasks

Learning about environment, world model, sensor accuracy
Planning behaviour, interaction which modifies environment

⇒Whatever you do: Inference is at the bottom
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Linear Dynamical Systems

Linear Dynamical System

Example: Moving robot localization F8

Local conditional probabilities: Linear-Gaussian

x t = Atx t−1 + Gtε1,t , ε1,t ∼ N(0, I) Transition prior
y t = C tx t + ε2,t , ε2,t ∼ N(0,Ψt) Observation likelihood

εk ,t independent of others.
Stationary LDS: A, G , C , Ψ independent of t
Inference in such a model? Combine what you know:

HMM for discrete latent states
Factor analysis for linear-Gaussian model, independent states
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Linear Dynamical Systems

Behind the Equations

Behind the equation mess in engineering textbooks, there is a
simple idea. What you need to remember:

Above formulae: That idea, and the generic primitives it requires
Below formulae: Numerically uncritical way of implementation

Simple idea:

All distributions / messages in this model: Gaussian.
You need to maintain / pass:

Moment parameters (mean, covariance), or
Natural parameters

Belief propagation primitives: Measurement (prior→ posterior),
information propagation (marginalization)

Below formulae: Get these primitives right

Use linear algebra to get them in the right form
Use numerically trusted solutions for elementary steps
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Linear Dynamical Systems

Kalman Filtering

Filtering with moment parameters:

N(x t−1|µt−1|t−1,Σt−1|t−1)
info. prop.−→ N(x t |µt |t−1,Σt |t−1)

measurement−→ N(x t |µt |t ,Σt |t)

Information propagation: x t = Atx t−1 + Gtε1,t

Measurement: “Prior” N(x t |µt |t−1,Σt |t−1).
Likelihood N(y t |C tx t ,Ψt). Posterior?
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Kalman Filtering

Filtering with moment parameters:

N(x t−1|µt−1|t−1,Σt−1|t−1)
info. prop.−→ N(x t |µt |t−1,Σt |t−1)

measurement−→ N(x t |µt |t ,Σt |t)

Information propagation: x t = Atx t−1 + Gtε1,t

µt |t−1 = Atµt−1|t−1, Σt |t−1 = AtΣt−1|t−1AT
t + GtGT

t

Measurement: “Prior” N(x t |µt |t−1,Σt |t−1).
Likelihood N(y t |C tx t ,Ψt). Posterior?

Σt |t = Cov[(x t y t)]/Cov[y t ] = Σt |t−1 −Σt |t−1CT
t E−1

t C tΣt |t−1

µt |t = E[x t ] + Cov[x t ,y t ]Cov[y t ]
−1(y t − E[y t ])

= µt |t−1 +Σt |t−1CT
t E−1

t︸ ︷︷ ︸
Kalman gain

(y t − C tµt |t−1), E t = Ψt + C tΣt |t−1CT
t
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Linear Dynamical Systems

Remarks

Kalman gain matrix:

K t = Σt |t−1CT
t (Ψt + C tΣt |t−1CT

t )
−1

{
= Cov[x t ,y t ]Cov[y t ]

−1
}

Residual error y t − E[y t |y<t ]→ correction mean estimate.
Can also write: Σt |t = (I − K tC t)Σt |t−1

Recall: In the moment parameterization:
Information propagation Simple
Measurement Difficult (needs matrix factorization)
In the natural parameterization, these roles are reversed
Information filter: Propagate natural parameters r t |t , St |t instead of
moment parameters [St |t = Σ−1

t |t , r t |t = Σ−1
t |t µt |t ]
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Linear Dynamical Systems

In Practice

“Below the formulae”: What’s he talking about?
⇒ In practice, neither of them work (on real problems)

In theory, Σt |t or St |t stay positive definite. In practice they don’t!
Root of problem: Information propagation / measurement simple
linear in different parameterizations. Conversion (matrix inversion)
prone to numerical errors

First improvement: Propagate matrix factorization:
Kalman square root filter Σt |t = F t |tF T

t |t . Propagate F t |t
Information square root filter Σ−1

t |t = F t |tF T
t |t . Propagate F t |t

Further improvements: Formulate as weighted least squares
problem. Use stable LS method from numerical mathematics

[Paige, Saunders: Least Squares Estimation of Discrete Linear Dynamic Systems Using Orthogonal
Transformations (1977)]
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Linear Dynamical Systems

Smoothing

All approaches use filtering for forward pass
Rauch-Tung-Striebel (RTS) smoother: Backward pass computes
marginals E[x t |D], Cov[x t |D] directly, D = {y t}. Idea:

P(x t |D) =

∫
P(x t |x t+1,D)P(x t+1|D)dx t+1

!
=

∫
P(x t |x t+1,y≤t)P(x t+1|D)dx t+1 [x t⊥y>t |x t+1]

Work out moments of P(x t |x t+1,y≤t) from filtering variables.
Average x t+1 over P(x t+1|D). Details: In your exercises

Two-filter smoothing: Analogous to forward-backward BP

Run backward filter (in parallel to forward filter)
Combine results by Gaussian product formula. Do not count
observation twice!
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Linear Dynamical Systems

Learning

Recall last lecture: Most difficult part of learning is inference
EM algorithm: E step is smoothing. M step: Like in factor analysis
Gradient-based optimization: Average gradients of log-potentials
over marginal posterior (smoothing)
Formulae even worse, but we are not impressed

Above formulae: Decomposition:
Marginal inference (smoothing)
Gradient accumulation, given marginals
Parameter updates

Below formulae: Use stable filtering / smoothing implementation.
Gradient accumulation typically harmless
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Linear Dynamical Systems

Conditional Random Fields

Undirected sequence model. Different properties through global
normalization (HMM: local normalization)
Markov random field with tree graph
Heavily used in text / language modelling (labeling, named entity
recognition)
Training with complete data (all x t given): Iterative, but convex
optimization (for log-linear potentials). Can be done very efficiently
(Quasi Newton optimization; approximate Newton optimization
with Hessian-vector product)
Traning with incomplete data: EM outer loop required
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General Filtering / Smoothing

General State Space Models

We’ve had state space models

All discrete:
Multinomial family
All linear-Gaussian:
Gaussian family

What about other situations?
Nonlinear dynamical system: Transition / observation mapping
nonlinear. Noise dependent on current state
Switching state space model: State consists of continuous and
discrete variables

⇒ Graph is still a chain. Efficient inference by BP?

Problem: Only multinomial, Gaussian families

Closed under conditioning and marginalization
Fixed-size parameterization

⇒ Inference for general state space models: NP hard
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General Filtering / Smoothing

Approximate Filtering

Dynamic programming requires fixed-size message representations
⇒ Blow-up has to be countered by approximations

Approximate transition / observation potentials locally
Extended Kalman filter: Linearize transition / observation mapping
by Taylor expansion at µt−1|t−1 / µt|t−1 resp. Use exact propagation
with approximated potentials

Use exact local propagation, project resulting message back into
representation family. Projection done optimally by matching
family moments (mean, covariance for Gaussian). Variants:

Assumed density filter
Unscented filter (cheap quadrature by exact monomials)

EKF cheap and cheerful. ADF works better in general, but needs
quadrature to approximate moments. Projection more general:

EKF can be seen as special backprojection as well
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General Filtering / Smoothing

What about Smoothing?

Approximate filters: One-shot approach, local approximations
never re-visited. But: Approximate inference is iterative
Correct learning requires marginals given all data (also future)
⇒ Smoothing

Options:

Apply filter approximation technique to smoother
(e.g., two-filter smoother)⇒ not iterative
Better: Use principled approximate inference framework
[expectation propagation, part II]

General warning: Numerically even more difficult than inference in
fixed LDS⇒ Attention to numerical details essential
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General Filtering / Smoothing

Wrap-Up

Hidden Markov model (discrete states): Non-Markovian behaviour
from Markovian ingredients
Linear dynamical system: Simple idea, messy equations. Does
not work without numerically careful implementation
Conditional random field: Alternative to HMM for large text /
language problems
Filtering / smoothing for general state space models:
Approximation by (moment matching) backprojection
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