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Approximate Inference for Continuous Variables

The World Is Not Discrete

Approximate Bayesian inference?
By far most activity for discrete variable models

Clean language of combinatorics on graphs. No numerical issues
Some relaxations are very fast (graph cuts)
Everything can be gridded, discretized, quantized in principle

Viewed at useful scales, many problems are continuous.
Quantization destroys structure useful for efficient computation.
Trajectory of projectile? Planetary motion? Natural image?
Continuous Discrete
Newton mechanics Quantum mechanics
Differential equations Discretized finite differences
Integrals Ever larger sums
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Approximate Inference for Continuous Variables

A Different World
Continuous inference needs more

Discrete inference
Boils down to size of sums,
hardness of graph (treewidth)
True marginals easy to
represent, “just” hard to
compute

Continuous inference
Distribution representation at
least as important as graph
Even local computations
(often) not exact (

∫
for

∑
)

Numerical errors have to be
controlled
No ground truth even for
smallish problems.
Local true marginals cannot
be represented exactly
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Approximate Inference for Continuous Variables

A Different World
Continuous inference: More flexibility, sometimes simpler

Discrete inference
Most approaches today:

Recursive hyper-tree
computations (smaller

∑
)

Tractable combinatorial
graph algorithms

Smoothness? Non-local
search directions? Global
correlations?

Continuous inference
Continuous optimization:
Host of different approaches
Global information from local
computations (gradient,
Hessian)
Global correlation information
over all variables (PCA)
Continuous scientific
computing well developed

Least squares estimation
Signal processing (Fourier
transforms, . . . )
PDEs
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Approximate Inference for Continuous Variables

Sparse Linear Model

Continuous variable inference:
Many different models for many different applications
Many (more or less) generic concepts
This lecture: Little time remaining . . .

Fortunately: One model
Surprisingly many applications (and growing)
Surprisingly many generic concepts can be demonstrated

Workhorse for much of remaining lectures:
Sparse linear model
Some important points we will skip

Multimodality of posteriors
Models with continuous and discrete variables
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The Sparse Linear Model

Sparsity

Statistics needs regularization: notions of simplicity
Linear functions are simple if their weights are small

How to implement sparsity?

Combinatorial search [:-(]
Super-Gaussian distributions [:-)]

We know sparsity for efficiency (SVMs, sparse
matrices, . . . )
Here: Sparsity captures signals better
(would be faster without)
We know sparse estimation (Lasso, basis pursuit, . . . )
Here: Bayesian inference with sparsity distributions
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The Sparse Linear Model

Sparse Linear Model

Linear Model

y = X u + ε, ε ∼ N(0, σ2I)
X Design matrix
u ∈ Rn Latent variables
y ∈ Rm Responses
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The Sparse Linear Model

Sparse Linear Model

Linear Model

y = X u + ε, ε ∼ N(0, σ2I)
X Design matrix
u ∈ Rn Latent variables
y ∈ Rm Responses

Gaussian Prior P(u)

Renders inference simple
Chosen often only for that
Does not enforce bT

j u ≈ 0
strongly
Does not allow any large bT

j u
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The Sparse Linear Model

Sparse Linear Model

Linear Model

y = X u + ε, ε ∼ N(0, σ2I)
X Design matrix
u ∈ Rn Latent variables
y ∈ Rm Responses

Whatever images are, they are not Gaussian!

Wavelet transform coefficients super-Gaussian Simoncelli, SPIE 99

Spatial smoothness: Image gradient super-Gaussian
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The Sparse Linear Model

Sparse Linear Model

Linear Model

y = X u + ε, ε ∼ N(0, σ2I)
X Design matrix
u ∈ Rn Latent variables
y ∈ Rm Responses

Laplace (Sparsity) Prior P(u)

s = Bu linear statistics
Allows few sj to be large
Forces most sj ≈ 0

P(sj) =
τ

2
e−τ |sj |, τ > 0
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The Sparse Linear Model

Sparse Linear Model
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The Sparse Linear Model

Gaussian Approximations

P(u |y ) = Z−1P(y |u)
∏

i
ti(si)

Bayesian integration over P(u |y ) intractable. Why?

Approximate P(u |y ) by Gaussian Q(u |y ;b,γ)
Bad idea: tj(sj) does not look like any Gaussian!

Replace tj(sj)→ ebi si−s2
i /(2γi ),

then adjust b, γ to fit joint posterior, not single tj(sj)!
⇒ Done by most algorithms: Good idea
Criterion to minimize? Divergence P(u |y )↔ Q(u |y )?
⇒ Closer look at sparsity potentials ti(si)
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The Sparse Linear Model

Selective Shrinkage and γ

P(u |y ) = Z−1P(y |u)
∏

i
ti(si) ≈ Q(u |y ) ∝ P(y |u)

∏
i
ebi si−s2

i /(2γi )

Uniform shrinkage ⇔ Gaussian prior
Selective shrinkage ⇔ Sparsity prior (super-Gaussian)

Q(u |y ) is Gaussian. Where is selective shrinkage?

The γj allow for selective shrinkage

γj small: |sj | constrained to be small
γj large: sj rather unconstrained

Variational inference relaxation:
Update γj to implement selective
shrinkage
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Sparsity Pontentials

Sparsity Priors
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Sparsity Pontentials

Sparsity Priors
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Sparsity Pontentials

Gaussian-Form Representations

P(u |y ) = Z−1P(y |u)
∏

i
ti(si) ≈ Q(u |y ) ∝ P(y |u)

∏
i
ebi si−s2

i /(2γi )

Statistically, it’s crucial that ti(si) are not Gaussian
Computationally, we can only deal with Gaussian inference

What to do when you’re stuck?
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F8
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Sparsity Pontentials

Gaussian Scale Mixtures

Mixture of Gaussians: Typically over means

P(X ) =
∑k

j=1
πkN(X |µk , σ

2)

ti(si) unimodal: Means are not the issue

What makes ti(si) non-Gaussian: Shape
More mass close to origin
More mass in tails (far from origin)
Less mass at moderate distances

⇒ Mass at different scales
Why not mix over the scales?
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Sparsity Pontentials

Gaussian Scale Mixtures

X = ρY , Y ∼ N(0,1), ρ ∼ P(ρ)I{ρ>0}

Many distributions you know are
scale mixtures

Gaussian [:-)].

Spike and slab

Exponential power (α ≤ 2)
Student’s t
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P(X ) = πN(X |0, ρ2
1) + (1− π)N(X |0, ρ2

2), ρ1 � ρ2
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Sparsity Pontentials

Gaussian Scale Mixtures
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P(X ) ∝ e−τ |X |
α
, α ∈ (0,2], τ > 0

(EPFL) Graphical Models 25/11/2011 15 / 25



Sparsity Pontentials
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Sparsity Pontentials

Gaussian Scale Mixtures
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Duality between P(X ) and P(ρ) West, Biom. 87

For the Laplace:

τ

2
e−τ |s| = E[N(s|0, γ)], γ ∼ (τ2/2)e−(τ

2/2)γ

=

∫
N(s|0, γ)P(γ)dγ [scale_mix_plot]
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Sparsity Pontentials

Super-Gaussian Potentials

P(u |y ) = Z−1P(y |u)
∏

i
ti(si) ≈ Q(u |y ) ∝ P(y |u)

∏
i
ebi si−s2

i /(2γi )

ti(si) is even: Let’s look at s2
i 7→ ti(si)

ti(si) is positive: Let’s look at s2
i 7→ 2 log ti(si) F11

What’s that for a Gaussian ti(si) = N(si |0, σ2
i )?
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Sparsity Pontentials

Super-Gaussian Potentials
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ti(si) is even: Let’s look at s2
i 7→ ti(si)

ti(si) is positive: Let’s look at s2
i 7→ 2 log ti(si)

What’s that for a Gaussian ti(si) = N(si |0, σ2
i )?

A linear (affine) function
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Sparsity Pontentials

Super-Gaussian Potentials

P(u |y ) =
P(y |u)× P(u)

P(y )

Sparsity potentials are super-Gaussian F12

s2 7→ 2 log t(s) convex
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Sparsity Pontentials

Convex (Legendre) Duality

Super-Gaussian:
t(s) even, s2 7→ log t(s) convex. Remember Jensen’s inequality?
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Sparsity Pontentials

Super-Gaussian Potentials

P(u |y ) =
P(y |u)× P(u)

P(y )

Sparsity potentials are super-Gaussian

s2
i 7→ 2 log ti(si) convex

Convex (Legendre) duality

2 log ti(si) = max
πi

(s2
i )πi − f ∗(πi)
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ti(si) = max
γi>0

e−s2
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Sparsity Pontentials

Super-Gaussian Potentials
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t(s) = t̂(s)eκs super-Gaussian iff
t̂(s) even function (for some κ; κ = 0 if t(s) itself even)
s2 7→ log t̂(s) convex, decreasing

Bernoulli (logistic) t(s) = (1 + e−yτs)−1, y ∈ {±1}?
All scale mixtures are super-Gaussian Palmer et.al., NIPS 2005

Some closure properties: {ti(si)} super-Gaussian, αi > 0∏
i ti(si)

αi super-Gaussian∑
i αi ti(si) super-Gaussian
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F4b

Some closure properties: {ti(si)} super-Gaussian, αi > 0∏
i ti(si)

αi super-Gaussian∑
i αi ti(si) super-Gaussian F15b
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Super-Gaussian Bounding

Super-Gaussian Bounding

P(u |y ) =
P(y |u)× P(u)

P(y )

Sparsity potentials are super-Gaussian

ti(si) = max
γi>0

e−s2
i /(2γi )−hi (γi )/2,

h(γ) :=
∑

i
hi(γi)
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Super-Gaussian Bounding

Super-Gaussian Bounding

P(u |y ) =
P(y |u)× P(u)

P(y )

Exact representation F16

log Z

= log
∫

P(y |u)max
γ

e−(s
TΓ−1s+h(γ))/2 du

ti(si) =

max
γi>0

e−s2
i /(2γi )−hi (γi )/2
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P(y )

Lower bound

log Z

= log
∫

P(y |u)max
γ
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∫

P(y |u)e−(s
TΓ−1s+h(γ))/2 du

ti(si) =

max
γi>0

e−s2
i /(2γi )−hi (γi )/2

(EPFL) Graphical Models 25/11/2011 21 / 25



Super-Gaussian Bounding

Super-Gaussian Bounding

P(u |y ) =
P(y |u)× P(u)

P(y )

Lower bound

log Z

≥ max
γ

log
∫

P(y |u)e−(s
TΓ−1s+h(γ))/2 du

= max
γ

log ZQ(γ)− h(γ)/2

Gaussian approximation

Q(u |y ) = ZQ
−1P(y |u)e−sTΓ−1s/2, s = Bu

ti(si) =

max
γi>0

e−s2
i /(2γi )−hi (γi )/2
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Super-Gaussian Bounding

Super-Gaussian Bounding

P(u |y ) =
P(y |u)× P(u)

P(y )

Variational problem: Q(u |y ) ≈ P(u |y )

minγ {φ(γ) = −2 log ZQ + h(γ)}

Gaussian approximation

Q(u |y ) = Z−1
Q P(y |u)e−sTΓ−1s/2, s = Bu ,

ZQ =

∫
P(y |u)e−sTΓ−1s/2 du

ti(si) =

max
γi>0

e−s2
i /(2γi )−hi (γi )/2
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Super-Gaussian Bounding

Super-Gaussian Bounding

P(u |y ) =
P(y |u)× P(u)

P(y )

What did we do?
Start with tight single potential bounds: ti(si) = maxγi>0 . . .
⇒ Auxiliary variables γ � 0

Plug into target function log Z . Interchange
∫
. . . du ↔ maxγ

⇒ Global lower bound on log Z (not tight)
Lower bounds are log partition functions of Gaussians Q(u |y )
⇒ Approximation family Q = {Q(u |y )}
Divergence Q(u |y )↔ P(u |y )? Maximize lower bound!
⇒ Divergence φ(γ) = −2 log ZQ + h(γ)
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Super-Gaussian Bounding

Coordinate Descent Algorithm

Simple algorithm: Update single variables γj

repeat
for j ∈ {1, . . . ,q} do

Update γj , based on marginal Q(sj |y ) Exercise sheet

Gaussian propagation of pseudo-evidence change
end for
Refresh representation

until convergence

Representation of Q(u |y ): Backbone for Gaussian propagation
Moderate size problems: Cholesky representation
Large scale problems?
This algorithm is too slow (not scalable)
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Super-Gaussian Bounding

MAP Estimation and Variational Inference
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Super-Gaussian Bounding

Wrap-Up

Continuous-variable approximate inference: A different game
Sparse linear model:
Combinatorial properties with continuous variables
Gaussian distributions (possibly graph-structured):
Major backbone for continuous-variable inference
Gaussian-form representations:

Scale mixtures
Super-Gaussian potentials

Super-Gaussian bounding:
From local potential bounds to global log partition function bound
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