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• Oft-times   f <> parametric form 

 

      e.g., linear regression 
 
    low-dim models     >>      successful learning 
        sparse,  

                        low-rank…  
 

•  Any parametric form <> at best an approximation  
 
emerging alternative:  non-parametric models  

 
 this lecture   learn low-dim  f  from data! 

Function learning 



Nonparametric model learning 

Two distinct camps: 

1. Regression    <> use given samples 
 

     approximation of f 
 

 
 
 
 
 
 

2. Active learning  <> design a sampling scheme 
 

     approximation of f 
 

 
     maximization/optimization of f 

 

[Friedman and Stuetzle 1981; Li 1991, 1992; 
Lin and Zhang 2006; Xia 2008; Ravikumar et 
al., 2009; Raskutti et al., 2010] 

[Cohen et al., 2010; Fornasier, Schnass, Vybiral, 
2011; VC and Tyagi 2012; Tyagi and VC 2012] 

[Srinivas, Krause, Kakade, Seeger, 2012] 

(experimental design) 
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• A motivation by Albert Cohen 
 
Numerical solution of parametric PDE’s 
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Learning via interpolation 

• The nonlinear N-width 
 
 
 
 

 infimum is taken over all continuous maps (E,R) 
 
 
 
 
 
 
• Take home message 

 

 smoothness-only >>   intractability in sample complexity 
 

 need additional assumptions on the problem structure!!! 
[Traub et al., 1988; Devore, Howard, and Micchelli 1989; Nowak and Wosniakowski 2009] 

Curse-of-dimensionality  



• Objective:  approximate multi-ridge functions  
      via point queries 
 

 
 

 
 
 

 other names: multi-index models 
   partially linear single/multi index models 
   generalized additive model 
   sparse additive models… 

 
 
 

Learning multi-ridge functions 

Model 1: 

Model 2: 

[Friedman and Stuetzle 1981; Li 1991, 1992; Lin and Zhang 2006; Xia 
2008; Ravikumar et al., 2009; Raskutti et al., 2010; Cohen et al., 2010; 

Fornasier, Schnass, Vybiral, 2011; VC and Tyagi 2012; Tyagi and VC 2012] 
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a common approach in           
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 1. assume orthogonality  
 
 
 

2. note the differentiability of f  
 

  
 
 3. leverage samples to obtain the hessian via local K/N-N/S… 
 
 
 
    required: rank-k Hg 
 

[Friedman and Stuetzle 1981; Li 
1991, 1992; Fan and Gijbels 1996; 

Lin and Zhang 2006; Xia 2008] 

Key observation #2:  
k- principal components 
of Hf leads to A  

Key observation #1:  
gradients live in at most 
k-dim. subspaces 
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nonparametric regression 
(kernel, nearest neighbor, splines) 

 
• Recent trends  <> additive sparse models 
 
 
 
 
 
 

g belongs to reproducing kernel Hilbert space 
 
− encode smoothness via the kernel 

 
− leverage sparse greedy/convex optimization 

 
− establish consistency rates: 
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1991, 1992; Fan and Gijbels 1996; 

Lin and Zhang 2006; Xia 2008] 

[Stone 1985; Tibshirani and Hastie 
1990; Lin Zhang 2006;  Ravikumar 
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− establish consistency rates: 

[Friedman and Stuetzle 1981; Li 
1991, 1992; Fan and Gijbels 1996; 

Lin and Zhang 2006; Xia 2008] 
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difficulty of  
estimating  
the kernel 

difficulty of  
subset  

selection 



Prior work—Active learning camp   

• Progress thus far  <>   the sparse way 
 

highlights: 
 

1. Cohen, Daubechies, DeVore,  
Kerkyacharian, and Picard (2010)  
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1. Cohen, Daubechies, DeVore,  
Kerkyacharian, and Picard (2010) 
 
 
 
 
 

2. Fornassier, Schnass, and Vybiral (2011)  
 
 
 

 
 extends on the same local observation model in regression 

 
 

  

(i.e., compressible)  

Taylor  
series 



• A sparse observation model 
 

  

 
 
 with two ingredients 
 

 sampling centers 
 

 sampling directions at each center 
 

 

     leads to 

 
 
  
  

Prior work—Active learning camp (FSV’11) 

approximately sparse 

curvature 
effect 



• A sparse observation model 
 

  
 
 
 

• Key contribution:   restricted “Hessian” property  
 
 
 
 

 recall  G needs to span a k-dim subspace for identifiability of A 
 
 
with a restricted study of radial functions 
 

• Analysis   <>            leverage compressive sensing results 
 
  
  

Prior work—Active learning camp (FSV’11) 

 µ: uniform 
measure 

approximately sparse 



• A sparse observation model 
 

  
 
 

• Analysis   <>    leverage compressive sensing results 
 

• Key contribution:  restricted Hessian property  
    for radial functions 
 

• Two major issues remains to be addressed over FSV’11 
 

1. validity of orthogonal sparse/compressible directions 
   need a basis independent model  
 
 

2. analysis of Hf for anything other than radial functions 
   need a new analysis tool 
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approximately sparse 



• Objective:  approximate multi-ridge functions  
      via point queries 
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A: compressible  
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Learning multi-ridge functions 

*cost of learning A 

cost of learning g 

*if f has k-restricted Hessian property… 

Model 1: 

Model 2: 

[Fornasier, Schnass, Vybiral, 2011] 

A: compressible  

only for radial basis functions 



 
Learning Multi-Ridge Functions 

…And, this is how you learn non-parametric basis independent 
models from point-queries via low-rank methods 



• Objective:  approximate multi-ridge functions  
      via point queries 
 

 
 

 
 

• Results: 
 

(Model 1&2):   
 

 
 
 

Learning multi-ridge functions 

*cost of learning A 

cost of learning g 

Model 1: 

Model 2: 

Our 1st contribution: 
a simple verifiable  
characterization of alpha 
for a broad set of functions 

A: compressible  

*with the L-Lipschitz property… 
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*cost of learning A 

cost of learning g 

*if f has k-restricted Hessian property… 

Model 1: 

Model 2: 

our 2nd contribution:  
extension to the general A 
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*cost of learning A 
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Model 1: 

Model 2: 

just kidding. 

? ? 

*with the L-Lipschitz property… 

our 2nd contribution:  
extension to the general A 



• Objective:  approximate multi-ridge functions  
      via point queries 
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Learning multi-ridge functions: the low-rank way 

*cost of learning A 

cost of learning g / gi’s 

Model 1: 

Model 2: 

*with the L-Lipschitz property… 

Given 1st and 2nd contribution: 
full characterization of Model 1 & 2  
with minimal assumptions 

in general 



• Objective:  approximate multi-ridge functions  
      via point queries 
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(Model 1&2):   

 
 

 
 

Learning multi-ridge functions 

*cost of learning A 

cost of learning g / gi’s 

Model 1: 

Model 2: 

Our 3th contribution: 
impact of iid noise f+Z 

*with the L-Lipschitz property… 



• A low-rank observation model 
 
 
along with two ingredients 
 
– sampling centers 

 
– sampling directions at each center 
 

 
leads to 

 
  

Non-sparse directions A 



 

 
• Stable recovery          <> measurements commensurate 

     with degrees of freedom 
 
– stable recovery: 

 
– measurements: 

 
 
  

 
 
  

Detour #2: low-rank recovery 



 

 
• Stable recovery          <> measurements commensurate 

     with degrees of freedom 
 
– stable recovery: 

 
– measurements: 

 
• Convex/non-convex decoders <> sampling/noise type 

 

– affine rank minimization 
 

– matrix completion 
 

– robust principal component analysis 
 
 
 
 

 
  

 
 
  

Detour #2: low-rank recovery 

[Recht et al. (2010); Meka et al. (2009); 
Candes and Recht (2009); Candes and Tao 
(2010); Lee and Bresler (2010); Waters et 
al. (2011); Kyrillidis and Cevher (2012)] 

Matrix ALPS 
http://lions.epfl.ch/MALPS 
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Matrix restricted isometry property (RIP): 

[Plan 2011] 
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• Recall the two ingredients  

 

– sampling centers 
 

– sampling directions at each center 
 

• Matrix RIP               <>           uniform sampling on the sphere 
 

 
  

 
 
  

Active sampling for RIP 

[Candes and Plan (2010)] 

: low rank 



 
 
 
 
 
 
 
 

 
• achieve/balance three objectives simultaneously 

 

1. guarantee RIP on Φ  with 
 

2. ensure rank(G)=k  with 
 

3. contain E’s impact  with 
  

 
 
  

Here it is… our low-rank approach  



 
 
 
 
 
 
 
 

 
1. guarantee RIP            <> by construction  

 

2. ensure rank(G)=k      <> by Lipschitz assumption 
      

 rank-1 + diagonal / interval matrices 
 

3. contain E’s impact      <> by controlling curvature 
 

– collateral damage:  additive noise amplification by  
 

 solution: resample the same points 

Here it is… our low-rank approach  

[VC and Tyagi 2012; Tyagi and VC, 2012] 



• New objective:  approximate A via point queries of f 
 
 

• New analysis tool:  L-Lipschitz 2nd order derivative 
 

 
 
 
 

L-Lipschitz property 

recall 



• New objective:  approximate A via point queries of f 
 
 

• New analysis tool:  L-Lipschitz 2nd order derivative 
 

 
 
 
 
(Model 1): 
 

        
 

(Model 2):  

Proposition: k-th restricted singular value 

recall 
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Theorem: proof ingredients 

• Matrix Danzig selector as running example 
 

 

[Candes and Plan (2010)] 
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Theorem: proof ingredients 

• Matrix Danzig selector as running example 
 
 
 

• Tuning parameters 
 

• Recovery guarantees on X 

[Theorem 2.4 from Candes and Plan (2010)] 



 
 
 
 
 
 
 
 

 
  

 
 
  

Theorem: proof ingredients 

• Matrix Danzig selector as running example 
 
 
 

• Tuning parameters 
 

• Recovery guarantees on X 
 

• Translation of guarantees on X to guarantees on A 
 
 

This is precisely where the restricted Hessian property is used… 



 
 
 
 
 
 
 
 

 
  

 
 
  

Theorem: proof ingredients 

• Matrix Danzig selector as running example 
 
 
 

• Tuning parameters 
 

• Recovery guarantees on X 
 

• Translation of guarantees on X to guarantees on A 
 

• Translation of guarantees on A to guarantees on f 
 
 
 



 
 
 
 
 
 
 
 

  
• Assume evaluation of f yields 

 
  

Impact of noisy queries 



 
 
 
 
 
 
 
 

  
• Assume evaluation of f yields 

 

tuning parameter changes: 

Impact of noisy queries 



 
 
 
 
 
 
 
 

  
• Assume evaluation of f yields 

 

tuning parameter changes: 

Impact of noisy queries 



Learning a logistic function 

 
 
 
 
 
 
 
 

• Declare success if  
 

 



 
 
 
 
 
 
 
 

• Declare success if  
 

 

Learning sum of Gaussian functions 



 
 
 
 
 
 

• Declare success if  
 

 

Stability example with the quadratic 



• Main focus <> estimation of low-dim subspace 
    for dimensionality reduction 

 

    learning/optimizing f for later 
     model building, cluster analysis,  

    variable selection… 
 

• Active setting  polynomial time samples/scheme 
    a new link between old low-rank  
    models with new low-rank algorithms 
 

• New tools <> L-Lipschitz 2nd order derivative 
    matrix ALPS for low-rank recov. 
 

     beyond linear models 
     system calibration, PDE models, 

    matrix compression… 
 
 

Conclusions lions@epfl 
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