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Function learning

e A fundamental problem:

given (y;,x;): Rx R4 i=1,..

— some call it “regression”

e Oft-times f <>

learning the model

learning the parameters

parametric form

.,m, learn a mapping f:z—y

e.g., linear regression
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e.g., linear regression

Yy X
B L
|~ e Fe

a

familiar challenge: learning via dimensionality reduction



Function learning

e A fundamental problem:

given (y;,x;): Rx R4 i=1,..

— some call it “regression”

e Oft-times f <>

learning a
low-dimensional model

successful learning the
parameters

f(z) =a'z

.,m, learn a mapping f:z—y

parametric form

e.g., linear regression

Yy X
S Sl
p— | ..
E S

m = O(klog(d/k))

S={i:x; #0}

lello = |S| =k

EEE EEEEE EECEEEfS)

familiar challenge: learning via dimensionality reduction



Function learning

e A fundamental problem:
given (y;, x;): R x R i=1,...,m, learnamapping f:z —y
— some call it “regression”

e Oft-times f <> parametric form

e.g., linear regression

low-dim models >> successful learning

sparse,
low-rank...
e Any parametric form <> at best an approximation
emerging alternative: non-parametric models

learn f from data!



Function learning

e A fundamental problem:
given (y;, x;): R x R i=1,...,m, learnamapping f:z —y
— some call it “regression”

e Oft-times f <> parametric form

e.g., linear regression

low-dim models >> successful learning

sparse,
low-rank...
e Any parametric form <> at best an approximation
emerging alternative: non-parametric models

this lecture-=> learn low-dim f from datal



Nonparametric model learning

Two distinct camps:

1. Regression <> use given samples

approximation of f

[Friedman and Stuetzle 1981; Li 1991, 1992;
Lin and Zhang 2006; Xia 2008; Ravikumar et
al., 2009; Raskutti et al., 2010]

2. Active learning <> design a sampling scheme

approximation of f

[Cohen et al., 2010; Fornasier, Schnass, Vybiral,
2011; VC and Tyagi 2012; Tyagi and VC 2012]

maximization/optimization of f

[Srinivas, Krause, Kakade, Seeger, 2012]



Nonparametric model learning—our contributions

Two distinct camps:

1. Regression <> use given samples

approximation of f

[Friedman and Stuetzle 1981; Li 1991, 1992;
Lin and Zhang 2006; Xia 2008; Ravikumar et
al., 2009; Raskutti et al., 2010]

2. Active learning design a sampling scheme
(experimental design) approximation of f

[Cohen et al., 2010; Fornasier, Schnass, Vybiral,
2011; VC and Tyagi 2012; Tyagi and VC 2012]

maximization/optimization of f

[Srinivas, Krause, Kakade, Seeger, 2012]



Active function learning

e A motivation by Albert Cohen

Numerical solution of parametric PDE’s

r € R?
PDE(f,z) = 0 — f(z): the (implicit) solution J e

query of the solution <> running an expensive simulation



Active function learning

e A motivation by Albert Cohen

Numerical solution of parametric PDE’s

r € R?
PDE(f,z) = 0 — f(z): the (implicit) solution J e

query of the solution <> running an expensive simulation

learn an explicit approximation of f via multiple queries



Active function learning

e A motivation by Albert Cohen

Numerical solution of parametric PDE’s

r € R?
PDE(f,z) = 0 — f(z): the (implicit) solution J e

query of the solution <> running an expensive simulation

ability to choose the samples <> active learning




Learning via interpolation
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Learning via interpolation

R(f): reconstruction via, e.g., linear interpolation
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e Error characterization for smooth f € C?

If = R()lleo < C|D*floch®



Learning via interpolation

R(f): reconstruction via, e.g., linear interpolation

>
0 1 z€|0,1]

e Error characterization for smooth f € C*®

If = R()lleo < C|D*floch®

number of samples N = O(h™ 1) <> ||f — R(f)“oo — O(N_S)



Learning via interpolation

Curse-of-dimensionality

A
R R
S ) "
>
) 0 1 x; €10,1]
Df = o5t B=Bit 4 BB} €24

= Error characterization for smooth f € (C® and z € R

If = R()lleo < C|D*floch®

number of samples N = O(h™9%) <> ||f — R(f)||oc = (_’)(1@



Learning via interpolation

Curse-of-dimensionality

e The nonlinear N-width

E: encoder Q — RY
dN(Q) = infmax”f — R(E(f)) Hoo R: reconstructor RY — Q

E.R fefl (): compact set

Infimum is taken over all continuous maps (E,R)

Q =C*([0,1]%) = cN~=%/1 < dn(2) < CN—3/4

[Traub et al., 1988; Devore, Howard, and Micchelli 1989]



Learning via interpolation

Curse-of-dimensionality

e The nonlinear N-width

E: encoder © — RN

dN(Q) = infmax”f — R(E(f))Hoo R: reconstructor RY — Q

E.R fefl (): compact set

Infimum is taken over all continuous maps (E,R)

Q = C*(]0,1]%) = min{N : dn(Q) < €} > ¢ (1/e)¥*

[Traub et al., 1988; Devore, Howard, and Micchelli 1989]



Learning via interpolation

Curse-of-dimensionality

e The nonlinear N-width

E: encoder © — RN

dN(Q) = infma){”f — R(E(f)) Hoo R: reconstructor RY — Q

E.R fefl (): compact set

Infimum is taken over all continuous maps (E,R)
Q = C*(]0,1]%) = min{N : dn(Q) < €} > ¢ (1/e)¥*
Q =C>([0,1]%) = min{N : dn(Q) < 0.5} > 24/2

« Take home message
smoothness-only >> intractability in sample complexity

need additional assumptions on the problem structure!!!
[Traub et al., 1988; Devore, Howard, and Micchelli 1989; Nowak and Wosniakowski 2009]



Learning multi-ridge functions

e Objective:

Model 1:

Model 2:

other names:

via point queries

f(x) = g(Ax)

f(xla"'v‘rd) — Zf:lg’i(a;rx)

f:Bra(l+€) =R A =lay,..

Mmulti-index models

CHALLENGE ACCEPTED
S=ES0

—7

P

approximate multi-ridge functions

k <d

. aak]T

partially linear single/multi index models

generalized additive model
sparse additive models...

[Friedman and Stuetzle 1981; Li 1991, 1992; Lin and Zhang 2006; Xia
2008; Ravikumar et al., 2009; Raskutti et al., 2010; Cohen et al., 2010;
Fornasier, Schnass, Vybiral, 2011; VC and Tyagi 2012; Tyagi and VC 2012]



Prior Art
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Prior work—Regression camp

e |local smoothing <> first order low-rank model

a common approach in _ _

. . [Friedman and Stuetzle 1981; Li
nonparametric regression 1991, 1992; Fan and Gijbels 1996
(kernel, nearest neighbor, splines) Lin and Zhang 2006; Xia 2008]



Prior work—Regression camp
<> first order low-rank model

local smoothing

a common approach in
nonparametric regression
(kernel, nearest neighbor, splines)

f(x) = g(Ax)
1. assume orthogonality

AAT =1,

[Friedman and Stuetzle 1981; Li
1991, 1992; Fan and Gijbels 1996;
Lin and Zhang 2006; Xia 2008]

SVD of A

l_‘_\
f(x) = g(UEV'x) = g(V'x),
where g(y) = g(UXy)



Prior work—Regression camp

e |local smoothing <> first order low-rank model

a common approach in _ _
[Friedman and Stuetzle 1981; Li

nonparametric regression 1991, 1992; Fan and Gijbels 1996
(kernel, nearest neighbor, splines) Lin and Zhang 2006; Xia 2008]
SVD of A

f(x) = g(Ax) |

1 th lit

. assume orthogonality f(x) = g(USVTx) = §(VTx),
AAT =1, where g(y) = g(UXy)
2. note the differentiability of f Key observation #1-

gradients live in at most

Vf(x)=ATVg(Ax) k-dim. subspaces




Prior work—Regression camp | &
V=

e local smoothing <> first order low-rank model

a common approach in

[Friedman and Stuetzle 1981; Li

nonparametric regression 1991, 1992; Fan and Gijbels 1996;
(kernel, nearest neighbor, splines) Lin and Zhang 2006; Xia 2008]
SVD of A
f(x) = g(Ax)
_ ——
1. assume orthogonality f(x) = g(USVTx) = g(VTx)
AAT =1, where g(y) = g(UXy)
2. note the differentiability of f Key observation #1:
. gradients live in at most
Vf(x)=A"Vg(Ax) k-dim. subspaces

3. leverage samples to obtain the hessian via local K/N-N/S...

f T 79 Key observation #2:
H? = A" HA, k- principal components
of Hf leads to A

required: rank-k H9

1Y = E{[Vf(x) ~ (Vi) V() ~ BV )]}



Prior work—Regression camp | &
V=

e local smoothing <> first order low-rank model

a common approach in _ _

. . [Friedman and Stuetzle 1981; Li

nonparametric regression 1991, 1992; Fan and Gijbels 1996
(kernel, nearest neighbor, splines) Lin and Zhang 2006; Xia 2008]

e Recent trends <> additive sparse models

[Stone 1985; Tibshirani and Hastie
1990; Lin Zhang 2006; Ravikumar

f(mlv > . 7md) — § g; ('rj) et al., 2009: Raskutti et al., 2010:
j:j63,|3|§k Meier et al. 2007 ; Koltchinski and

Yuan, 2008, 2010]
k
f(xla .o ,.I'd) — Zi:l g’t(af?x)

— encode smoothness via the kernel
— leverage sparse greedy/convex optimization

— establish consistency rates: If = Fll, <O (k;52 4 ’“O_g(d)>

m



Prior work—Regression camp

e local smoothing <> first order low-rank model

a common approach in _ _

. . [Friedman and Stuetzle 1981; Li

nonparametric regression 1991, 1992; Fan and Gijbels 1996
(kernel, nearest neighbor, splines) Lin and Zhang 2006; Xia 2008]

e Recent trends <> additive sparse models

[Stone 1985; Tibshirani and Hastie

. _ . 1990; Lin Zhang 2006; Ravikumar
f(mlv SR 73:(1) — g; (.CE‘]) et al., 2009; Raskutti et al., 2010;
j:j63,|3|§kz Meier et al. 2007 ; Koltchinski and

Yuan, 2008, 2010]

g belongs to reproducing kernel Hilbert space

difficulty of | difficulty of
— encode smoothness via the kernel estimating subset
the kernel selection

— leverage sparse greedy/convex optimization | |

— establish consistency rates: If = Fll, <O (k;52 4 ’“O_g(d)>

m



Prior work—Active learning camp

e Progress thus far <> the sparse way
highlights:
1. Cohen, Daubechies, DeVore, f(X) — g(aTX)

Kerkyacharian, and Picard (2010)

g:10,1] - R is a C* function for s > 1

a>0,1Ta=1 ac wl, g <1 (i.e., compressible)



Prior work—Active learning camp

e Progress thus far <> the sparse way
highlights:
1. Cohen, Daubechies, DeVore, f(X) — g(aTX)

Kerkyacharian, and Picard (2010)

g:10,1] - R is a C* function for s > 1

a>0,1Ta=1 ac wl, g <1 (i.e., compressible)
Fornassier, Schnass, and Vybiral (2011) f(x) = g(Ax)
g:Bra(l+6é) - RisC® a; € wly,q<2 A=la,...,a"

extends on the same local observation model in regression
Taylor
series

fx+ep) = f(x) +e(d, V(X)) +eb(x,6,¢) <1
= (¢, ATVg(Ax)) = ¢ (f(x + €¢) — f(x)) — E(x,€,¢)




Prior work—Active learning camp (FSV’11)

e A sparse observation model f(x) = g(Ax)
= (¢:;, ATV g(AE)) = L (f(& +edij) — (&) — E(&, €, 05 ;)
Yoot B(x,6,.0) = 50TV (C(x, )0 €di g
C(x,0) € 6, x + NG €8T

with two ingredients

sampling centers X ={¢ € Sti=1,...,mx}
. . : T
sampling directions at each center ®; = [¢1;| ... |Pmas.il

. — AT
leads to y = ®(X) + E(X,¢,P) ?{Z '_'A Gf
approximately sparse

g = S | Lt ] G = [Vg(AG)| Vg(AL)| - V(A& )kxma




Prior work—Active learning camp (FSV’11)

f(x) = g(Ax)

e A sparse observation model

Xz' = ATGZ
y:(D(X)+E(X,€,q)) \ ' ]

approximately sparse

e Key contribution: restricted “Hessian” property
HT = [y VI(x)V ()T dpga-1 (x) u uniform

o1(H') > oo(HY) > ... > 0p(H') > a > 0 for some a

recall G needs to span a k-dim subspace for identifiability of A

G := [Vg(A&)|Vg(A&L)| - [VI(Almr ) kxma

with a restricted study of radial functions f(X) — gO(HAX”Q)

e Analysis <> leverage compressive sensing results



Prior work—Active learning camp (FSV’11)

f(x) = g(Ax)

e A sparse observation model

XZ' = ATGZ
y:(D(X)+E(X,€,q)) \ ' ]

approximately sparse
e Analysis <> |everage compressive sensing results

e Key contribution: restricted Hessian property
for radial functions  f(x) = go(||Ax||2)

e Two major issues remains to be addressed over FSV’'11

1. validity of orthogonal sparse/compressible directions
need a basis independent model

f(x) = g(A¥TUx) = g(AUx) one ¥ for all orthogonal directions?

2. analysis of Hf for anything other than radial functions
need a new analysis tool

HY = [, VI(x)Vf(x)Tduga-1 (x)



Learning multi-ridge functions

e Objective: approximate multi-ridge functions
via point queries
Model 1: f(x) = g(Ax) k<d
Model 2: f(l'la o ’g;d) — Zle g,é(a;rx)

f:Bpa(l+6) >R A=I[ay,... a7

e Results: w.l.o.g. g, g; € C?

A: compressible

4—q q
k 2—qd2—4q lo )
(Model 1): m:0<(1) /2y ke lg(k)>:>||f—f||Lm§5

£ a

[Fornasier, Schnass, Vybiral, 2011] *if g has k-restricted Hessian property...



Learning multi-ridge functions

e Objective: approximate multi-ridge functions
via point queries
Model 1: f(x) = g(Ax) k<d
Model 2: f(l'la o ’Q_’/'d) — Zle g,é(a;rx)

f:Bra(l+€ 2R A=lay,...,a"
= Results: m\ cost of learning g w.l.o.g. g,9; € C?
ﬁﬂ [ A \ A: compressible
| 4=q _q R
(Model 1): m =0 ((l) o2y EedT IOg“f)) = |f = flloe <

€ (0%
\

*cost of learning A

[Fornasier, Schnass, Vybiral, 2011] *if f has k-restricted Hessian property...



Learning multi-ridge functions

e Objective: approximate multi-ridge functions
via point queries
Model 1: f(x) = g(Ax) k<d
Model 2: f(l'la o ’Q_’/'d) — Zle g,é(a;rx)

f:Bpa(l+6) >R A=I[ay,... a7

- Results: E\ cost of learning g w.lo.g. g,9; € C?
ﬁ;j —— A: compressible
| k 4—gqg 2 ~
(Model 1): """~ O ((%) S ST e 10%(@) = If = fll <€

\ J
I

only for radial basis functions *cost of learning A o= O 1)

d
f(x) = go([|Ax]|2) | | |
[Fornasier, Schnass, Vybiral, 2011] *if f has k-restricted Hessian property...




Learning Multi-Ridge Functions

...And, this is how you learn non-parametric basis independent
models from point-queries via low-rank methods



Learning multi-ridge functions

e Objective: approximate multi-ridge functions
via point queries

Model 1: f(X) = g(AX) k<d

Model 2: f(;z:l, e ,:Ed) = Zle gi(agx)

f:Bpa(l+6) >R A=I[ay,... a7

e Results: m\ cost of learning g w.lo.g. g,9; €C
ﬁ;j [ . \ A: compressible

4-9 _9q -
(Model 1&2): m = O ((%)"“/2 L m“) = If = fllze < ¢
J

&
: : \
Our 1st contribution: Y
a simple verifiable *cost of learning A o = (—-)(l)
S d
characterization of alpha
for a broad set of functions *with the L-Lipschitz property...




Learning multi-ridge functions: the low-rank way

e Objective: approximate multi-ridge functions
via point queries
Model 1: f(x) = g(Ax) k<d
Model 2: f(l'la o ’g;d) — Zle g,é(a;rx)

f:Bpa(l+6) >R A=I[ay,... a7

- L 2
* Results: m\l cost of learning g w.lo.g. g,9, €C
|
gii [ lk 2\
(Model 1): m=0((2)7" 4+ 280 s pd) = ||f = Fllo. <e
\ J
[
our 2"d contribution: *cost of learning A

extension to the general A
*if f has k-restricted Hessian property...



Learning multi-ridge functions: the low-rank way

e Objective: approximate multi-ridge functions
via point queries
Model 1: f(x) = g(Ax) k<d
Model 2: | f(ay,...,za) = 2, gi(alx)
f:Bra(l+€) >R A=Jay,...,a;]"
- Results: %‘Q cost o learning o' w.l.o.g. g,g; € C*

(Model 2):  m = (9((1)1/2k+’“°g(’“>><kd)=>||f flo <e

\
|
extension to the general A

*with the L-Lipschitz property...



Learning multi-ridge functions: the low-rank way

e Objective: approximate multi-ridge functions
via point queries
Model 1: f(X) = g(AX) k<d
Model 2: f(wla e vxd) — Zf:l g’i(azTX)
AR)(AR)T =1 _
(jusz:(kid)dingff f BRd(l + E) — R A=]Ja... aak]T
= Results: m\ cost of learning g;’s w.lo.g. g,9; € C°

' /|
ﬁ A
I | \

(Model 2): =0 ((2) "7+ H5E s kd) = |f ~ fllr.. <

\ J
|

our 2"d contribution: *cost of learning A
extension to the general A

*with the L-Lipschitz property...



Learning multi-ridge functions: the low-rank way

e Objective: approximate multi-ridge functions
via point queries

Model 1: f(X) = g(AX) k<d

Model 2: f(;z:l, e ,:Ed) = Zle gi(agx)

f:Bpa(l+6) >R A=I[ay,... a7

in general

-, 2
= Results: E\ cost of learning g 7/ g;’s W.I.O.g. g,39i € C

' i
g
| | \

(Model 1&2): m = O (1) 2+ K2 log(k)) = |1 ~ fllr. <

c —
\ J

|
*cost of learning A

Given 1st and 2"9 contribution:
full characterization of Model 1 & 2

with minimal assumptions *with the L-Lipschitz property...



Learning multi-ridge functions

e Objective: approximate multi-ridge functions
via point queries
Model 1: f(x) = g(Ax) k<d
Model 2: | f(zy,...,2q) = Sor_, gi(aTx)

f:Bpa(l+6) >R A=I[ay,... a7

%:\ cost of learning g /7 g;’s
| A
J

e Results: w.l.o.g. g, g; € C?

(Model 182): m — o((g) k/2+k2d45log( )) = If = flls <e
]

\

|

th I I -
Our 3™ contribution: *cost of learning A

iImpact of iid noise f+Z
*with the L-Lipschitz property...



Non-sparse directions A

e A low-rank observation model

(¢, ATVg(Ax)) = ¢ (f(x +€8) — f(x)) — E(x,€,¢)

along with two ingredients

— sampling centers X ={& € Si=t.5=1,... , My }
— sampling directions at each center ;= [p14] .. |dms.i]"
leads to y =®(X)+ E(X,¢,P)
@ _ f(&itedi)—f(&)]
X = |a7 kX mx yi_zj 1[ — 3_

—n X k G = [Vg(A£1)|Vg(A£2)| e Vg(Ang)]kme



Detour #2: low-rank recovery

y = O(X) + E(X, ¢, ®) o : Réxmx _y Rmo

e Stable recovery <> measurements commensurate
with degrees of freedom

— stable recovery: | X — i”p < C1]|X = Xg|lgp + Co||[E||p

— measurements: me = O (k(d4+mx — k))

A~

X = A(y, ®): decoder

Xy =arg min || X—Z|g
Z:rank(Z)<k



Detour #2: low-rank recovery

y = &(X) + E(X, ¢, ®)

Stable recovery <>
— stable recovery: | X —
— measurements:

Convex/non-convex decoders
— affine rank minimization

— matrix completion

. RAX o~
O R4Mx - R™MP -

Matrix ALPS

http://lions.epfl.ch/MALPS
measurements commensurate
with degrees of freedom

X|p < C1lIX = Xi e + Ca Ellr
mge = O (k(d+mxy — k))

<> sampling/noise type

— robust principal component analysis



Detour #2: low-rank recovery

G : RImx _y R

Matrix ALPS

http://lions.epfl.ch/MALPS
e Stable recovery <= measurements commensurate

with degrees of freedom

y = &(X) + E(X, ¢, ®)

Matrix restricted isometry property (RIP):

(1 — k) < [ X[ < (14 Krg), VX :rank(X) < k

X1

[Plan 2011]

— affine rank minimization
— matrix completion

— robust principal component analysis



Active sampling for RIP

] “ . low rank
X = |a7 k X mxy
y = ©(X) + E(X, ¢, @)
—'n X k
e Recall the two ingredients d : R¥xmx _, RMe
— sampling centers X={,esS"i=1,...,mx}
— sampling directions at each center D = P15 |<bmq>,j]T
e Matrix RIP <> uniform sampling on the sphere

& — {qsm» ¢ Bpa (\/d/mq)) (61,711 = £ —A=with probability 1/2}

= 0 < K, < kK < 1 with probability

N

1_2€—m®Q(R)+T(d+mx+1)U(FE)’ where Q(f‘i) — ﬁ (HQ _ %3) and ’U,(HJ) — log (36ﬁ )



Here it is... our low-rank approach

Algorithm 1 Estimating f(x) = g(Ax)
1: Choose mge and my and construct the sets X and ®.

S [f(éfrecm) f(&;)]

2: Choose € and construct y using y; =

3: Obtain X via a stable low-rank recovery algorithm.

P

4: Compute SVD( ) = UXVT and set AT = U(k), corresponding to k
largest singular values. R
5. Obtain f (X) .= §(Ax) via quasi interpolants where §(y) := f(ATy).

e achieve/balance three objectives simultaneously

1. guarantee RIP on @ with mae

2. ensure rank(G)=k with my

3. contain E’s impact  with €

y = ®(X) + E(X, e, ®)
X :=ATG



Here it is... our low-rank approach

Algorithm 1 Estimating f(x) = g(Ax)

1: Choose mg¢ and may and construct the sets X and ®.
Z : |:f(£3+€<b% G)— f(fg)]
j=

2: Choose € and construct y using y; =

3: Obtain X via a stable low-rank recovery algorithm.

P

4: Compute SVD( ) = UXVT and set AT = U(k), corresponding to k
largest singular values. R
5: Obtain f(x) := ¢(Ax) via quasi interpolants where g(y) = f(Aly).

1. guarantee RIP <> by construction

2. ensure rank(G)=k <> Dby Lipschitz assumption « = O(

rank-1 + diagonal / interval matrices

3. contain E’s impact <> by controlling curvature €¢=0 (W

— collateral damage: additive noise amplification by ¢+

solution: resample the same points
[VC and Tyagi 2012; Tyagi and VC, 2012] d3/2te_times



L-Lipschitz property

e New objective: approximate A via point queries of f
f:Bra(l4+€) >R A=]Jay,...,a;]"

e New analysis tool:

L-Lipschitz 2"d order derivative
recall H' := [, , Vf(x)Vf(x)Tdpugi-1(x) op(H') > a >0

0% g
ayigyj

0% ¢
(.‘Yl)—w(.‘)’z)

ly1—y2ll,x
2

<L

2V

Lipschitz constant
L =maxi<ij<k Li;



Proposition: k-th restricted singular value

e New objective: approximate A via point queries of f
f:Bra(l4+€) >R A=]Jay,...,a;]"

e New analysis tool: L-Lipschitz 2"9 order derivative
recall H' := [, , Vf(x)Vf(x)Tdpugi-1(x) op(H') > a >0

0%g (y1)— 0%g (y2) Lipschitz constant 1
. yj\lyl—yzuyi - < Lij | L=maxigij<k Li —a=06 (3)
I3

(Model 1):  f(x) = g(Ax)
+ V?¢(0) is full rank.

(Model 2): f(x) = Zle gi(alx) or f(x) = alx+ Zsz gi(alx)

+ V2g;(0) #0,Vi =2,...,d



Theorem: sample complexity

Algorithm 1 Estimating f(x) = g(Ax)

1:
2:

Choose mg¢ and mxy and construct the sets X and ®.

Choose € and construct y using y; =

Zg 1 [f(&;-l—etbu) f(ﬁg)]

3: Obtain X via a stable low-rank recovery algorithm.

P

4: Compute SVD( ) = UXVT and set AT = U(k), corresponding to k
largest singular values. R
. Obtain f(x) := g(Ax) via quasi interpolants where g(y) := f(Aly).

Theorem 1 [Sample complezity of Algorithm 1] Let § € RT, p < 1, and
k<V2—1 be fized constants. Choose

2kC3 1
2 Og(k/pl);

o log(2/ps) + 4k(d + mx + 1)u(k)
- q(r)

my >

me , and

1/2
B ; ({mpmse )"
= OokP2d(8 + 202V2k) \ (1 + K)Comx
Then, given m = mxy(me + 1) samples, our function estimator f in step 5 of
Algorithm 1 obeys H f— J?HL < 0 with probability at least 1 — p1 — po.
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2
my 2 2kC22 log(k/p1), my = O (kl(;gk)
e > log(2/ps2) + 4kq((dﬁ—)|— mxy + 1)’0‘;(;‘%‘,)} nd ma = O(k(d+ mx))
)
t b (fipmaa )| =o()
~ CLkS2d(5 + 205,V 2k) \ (1 + K)Comx

Then, given m = mxy(me + 1) samples, our function estimator ]? in step 5 of

Algorithm 1 obeys H f— J?HL < 0 with probability at least 1 — p1 — po.



Theorem: proof ingredients

e Matrix Danzig selector as running example

X ps = argmingy | M|, s.t. [|®* (y — B(M))|| < A
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O
= Matrix Danzig selector as running example = O(k( d-|—m;g
O

X ps = argmingy | M|, s.t. [|®* (y — B(M))|| < A =

e Tuning parameters

Cgedm;(k . "
NS . Moreover, it holds that || ®*(g)|| <

2
A= Coedmyk (14 k)2, with probability at least 1 — 2e~med(R)+(d+matijux)

2\/?’?’6(1)

Proposition 1 We have ||¢||,




Theorem: proof ingredients

e Matrix Danzig selector as running example me = O

R ps = argminy M. st. |8 w-a0n)[ <A | <=0(

e Tuning parameters

e Recovery guarantees on X

Corollary 1 Denoting ipg to be the solution of the matrix Danzig selector,
if ng)g is the best rank-k approzimation to Xpg in the sense of |||, and if
Kap < Kk < V2 — 1, then we have

~ 2 2,5 22 2
(k) 2  CplCIk%e*d"m
|x - XY < aCokr? = LAECEmE (1 4 ),

with probability at least 1 — 2e~ M@ () +4k(d+ma+1u(k)




Theorem: proof ingredients

1
- (k ogk‘)
(87
e Matrix Danzig selector as running example me = O(k(d+my))

R ps = argminy [M]. st & (-2 <A | <=0

e Tuning parameters
e Recovery guarantees on X

e Translation of guarantees on X to guarantees on A

Lemma 1 Forafired0 < p<1l,my > 1, me < mydife <

1 ( (1 - p)maa )1’2
Cok?d(VEk+v2) \(1 +£K)Comx )~

then with probability at least 1—k exp {— ‘";gggz }—2 exp{—maeq(k) +4k(d +mx + Du(k)}
we have

a4, 2
F

1/2
k/‘ . 272
(v/(A—p)ymxya—r)2 ’

215 2 52 2
where T2 = CoCs kmz)d Mx (1 + k) is the error bound derived in Corollary 1.

This is precisely where the restricted Hessian property is used...



Theorem: proof ingredients

1
- (k: ogk‘)
8%
e Matrix Danzig selector as running example me = O(k(d+my))

R ps = argminy [M]. st & (y s <A | <=0

e Tuning parameters
e Recovery guarantees on X
e Translation of guarantees on X to guarantees on A

e Translation of guarantees on A to guarantees on f
First observe that: f(x) = f(ATAx) = g(AATAx).
= | £(x) = F(x)| = |g(Ax) - g(AATAx)| < CoVE||(A — AATA)x
Now it is easy to verify that:

o~ o~ |2 —~ o~ o~y o~ -~
HA _ AATAHF — Tr((AT — ATAAT)(A — AATA)) = k — HAAT

s

< CoVk||A — AATA|| x]l, -
P!

2

v .



Impact of noisy queries

Algorithm 1 Estimating f(x) = g(Ax)

1: Choose mg¢ and may and construct the sets X and ®.
Z : |:f(£3+€<b% G)— f(fg)]
j=

2: Choose € and construct y using y; =

3: Obtain X via a stable low-rank recovery algorithm.

P

4: Compute SVD( ) = UXVT and set AT = U(k), corresponding to k
largest singular values. R
5: Obtain f(x) := ¢(Ax) via quasi interpolants where g(y) = f(Aly).

- Assume evaluation of f yields  f(x) + Z, where Z ~ N(0, 0?)
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Impact of noisy queries

Algorithm 1 Estimating f(x) = g(Ax)

1:
2:

3:
4:

Choose mg¢ and mxy and construct the sets X and ®.
Z : |:f(53+€‘?b% G)— f(fg)]
j=

Choose € and construct y using y; =

Obtain X via a stable low-rank recovery algorithm.

P

Compute SVD( ) = UXVT and set AT = U®, corresponding to k
largest singular values.

. Obtain f(x) := g(Ax) via quasi interpolants where g(y) = f(ATy).

- Assume evaluation of f yields  f(x) + Z, where Z ~ N(0, 0?)

tuning parameter changes:

2
|P* (e +2)|| < 222/2(1 + fa:)m;gmcp—l—czgf/n%—zk (14+k)12, (v > 24/Iog 12).

= m = O(‘/_)m;g(mcp + 1)

We resample the same data points O(¢!)-times and average.



Learning a logistic function LEARNS|LOGISTIC

f(x) = g(a’x), where g(y) = 1=

b
Y=
p ﬂ,‘\

a = [g@"%)[ dusis = |9 (0) = (1/16) TRACTABLY!

4500
Co = SUP|51<2 |9(6) (3!)| =1
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e Declare success if my = 20

3500 -
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Learning sum of Gaussian functions o

R

k |

f(x) =g9(Ax+Db) = Zi:l Qi(az‘TX + b;) ‘
: |

d = 100 9i(y) = ——— exp —@ 5 |

e =103 ames ( i ) | BUT WHEN | DO, | PREFER J
may = 100 | | | | E . Gnusmus

6000 1

e Declare success if
5000 +

~ 2
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F

4000 +
E 3000t
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Stability example with the quadratic

f(x) = g(Ax) = [Ax— b . _s
F(x) = f(x) + oN(0,1) S
o= 0.01

e Declare success if 2000}

~ 2 1800+

LHAAT > 0.99
k P 1600 |
1400 +
‘IEUEI-
— (’)(d) E 1000}
BOO ¢

b; ~U(SF) 600 |
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theory: = iy

200+

0

30 45 60 75 90 105 120
dimension (d)



Conclusions

e Main focus

e Active setting

e New tools

<=

<=

lions@epfl

estimation of low-dim subspace
for dimensionality reduction

learning/optimizing f for later

model building, cluster analysis,
variable selection...

polynomial time samples/scheme

a new link between old low-rank
models with new low-rank algorithms

L-Lipschitz 2"d order derivative
matrix ALPS for low-rank recov.
beyond linear models

system calibration, PDE models,
matrix compression...
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