) - j NF
= FOMDS NATIONAL SUISSE ;.‘_-':;erc

SCHWEIZERISCHER NATIONALFONDS -_'.I‘,_',‘._ﬁ-

FOMDO NAZIONALE SVIZZERO CerfAesy

MARIE CURIE ACTIONS Swiss NATIONAL SCIENCE FOUNDATION ECEAS

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Winter Conference in Statistics 2013

Compressed Sensing

LECTURE #12
Nonparametric function learning

lions@epfl Prof. Dr. Volkan Cevher
lons@ep volkan.cevher@epfl.ch

LIONS/Laboratory for Information and Inference Systems

Function learning

e A fundamental problem:

given (y;,x;): Rx R4 i=1,..

— some call it “regression”

e Oft-times f <>

learning the model

learning the parameters

parametric form

.,m, learn a mapping f:z—y

e.g., linear regression

Yy X
e
|~ e Fe

a

Function learning

e A fundamental problem:

given (y;,x;): Rx R4 i=1,..

— some call it “regression”

e Oft-times f <>

learning the model

learning the parameters

f(z) =a'z

.,m, learn a mapping f:z—y

parametric form

e.g., linear regression

Yy X
B L
|~ e Fe

a

familiar challenge: learning via dimensionality reduction

Function learning

e A fundamental problem:

given (y;,x;): Rx R4 i=1,..

— some call it “regression”

e Oft-times f <>

learning a
low-dimensional model

successful learning the
parameters

f(z) =a'z

.,m, learn a mapping f:z—y

parametric form

e.g., linear regression

Yy X
S Sl
p— | ..
E S

m = O(klog(d/k))

S={i:x; #0}

lello = |S| =k

EEE EEEEE EECEEEfS)

familiar challenge: learning via dimensionality reduction

Function learning

e A fundamental problem:
given (y;, x;): R x R i=1,...,m, learnamapping f:z —y
— some call it “regression”

e Oft-times f <> parametric form

e.g., linear regression

low-dim models >> successful learning

sparse,
low-rank...
e Any parametric form <> at best an approximation
emerging alternative: non-parametric models

learn f from data!

Function learning

e A fundamental problem:
given (y;, x;): R x R i=1,...,m, learnamapping f:z —y
— some call it “regression”

e Oft-times f <> parametric form

e.g., linear regression

low-dim models >> successful learning

sparse,
low-rank...
e Any parametric form <> at best an approximation
emerging alternative: non-parametric models

this lecture-=> learn low-dim f from datal

Nonparametric model learning

Two distinct camps:

1. Regression <> use given samples

approximation of f

[Friedman and Stuetzle 1981; Li 1991, 1992;
Lin and Zhang 2006; Xia 2008; Ravikumar et
al., 2009; Raskutti et al., 2010]

2. Active learning <> design a sampling scheme

approximation of f

[Cohen et al., 2010; Fornasier, Schnass, Vybiral,
2011; VC and Tyagi 2012; Tyagi and VC 2012]

maximization/optimization of f

[Srinivas, Krause, Kakade, Seeger, 2012]

Nonparametric model learning—our contributions

Two distinct camps:

1. Regression <> use given samples

approximation of f

[Friedman and Stuetzle 1981; Li 1991, 1992;
Lin and Zhang 2006; Xia 2008; Ravikumar et
al., 2009; Raskutti et al., 2010]

2. Active learning design a sampling scheme
(experimental design) approximation of f

[Cohen et al., 2010; Fornasier, Schnass, Vybiral,
2011; VC and Tyagi 2012; Tyagi and VC 2012]

maximization/optimization of f

[Srinivas, Krause, Kakade, Seeger, 2012]

Active function learning

e A motivation by Albert Cohen

Numerical solution of parametric PDE’s

r € R?
PDE(f,z) = 0 — f(z): the (implicit) solution J e

query of the solution <> running an expensive simulation

Active function learning

e A motivation by Albert Cohen

Numerical solution of parametric PDE’s

r € R?
PDE(f,z) = 0 — f(z): the (implicit) solution J e

query of the solution <> running an expensive simulation

learn an explicit approximation of f via multiple queries

Active function learning

e A motivation by Albert Cohen

Numerical solution of parametric PDE’s

r € R?
PDE(f,z) = 0 — f(z): the (implicit) solution J e

query of the solution <> running an expensive simulation

ability to choose the samples <> active learning

Learning via interpolation

/\/\

WARNING |

&

CHALLENGES
AHEAD

>
1 z€|0,1]

Learning via interpolation

" A \\/\\

>
0 1 z€|0,1]

Learning via interpolation

R(f): reconstruction via, e.g., linear interpolation

o
oL
e...._
~©. -
s >4
C-mmigp-”

>
0 1 z€|0,1]

e Error characterization for smooth f € C?

If = R()lleo < C|D*floch®

Learning via interpolation

R(f): reconstruction via, e.g., linear interpolation

>
0 1 z€|0,1]

e Error characterization for smooth f € C*®

If = R()lleo < C|D*floch®

number of samples N = O(h™ 1) <> ||f — R(f)“oo — O(N_S)

Learning via interpolation

Curse-of-dimensionality

A
R R
S) "
>
) 0 1 x; €10,1]
Df = o5t B=Bit 4 BB} €24

= Error characterization for smooth f € (C® and z € R

If = R()lleo < C|D*floch®

number of samples N = O(h™9%) <> ||f — R(f)||oc = (_’)(1@

Learning via interpolation

Curse-of-dimensionality

e The nonlinear N-width

E: encoder Q — RY
dN(Q) = infmax”f — R(E(f)) Hoo R: reconstructor RY — Q

E.R fefl (): compact set

Infimum is taken over all continuous maps (E,R)

Q =C*([0,1]%) = cN~=%/1 < dn(2) < CN—3/4

[Traub et al., 1988; Devore, Howard, and Micchelli 1989]

Learning via interpolation

Curse-of-dimensionality

e The nonlinear N-width

E: encoder © — RN

dN(Q) = infmax”f — R(E(f))Hoo R: reconstructor RY — Q

E.R fefl (): compact set

Infimum is taken over all continuous maps (E,R)

Q = C*(]0,1]%) = min{N : dn(Q) < €} > ¢ (1/e)¥*

[Traub et al., 1988; Devore, Howard, and Micchelli 1989]

Learning via interpolation

Curse-of-dimensionality

e The nonlinear N-width

E: encoder © — RN

dN(Q) = infma){”f — R(E(f)) Hoo R: reconstructor RY — Q

E.R fefl (): compact set

Infimum is taken over all continuous maps (E,R)
Q = C*(]0,1]%) = min{N : dn(Q) < €} > ¢ (1/e)¥*
Q =C>([0,1]%) = min{N : dn(Q) < 0.5} > 24/2

« Take home message
smoothness-only >> intractability in sample complexity

need additional assumptions on the problem structure!!!
[Traub et al., 1988; Devore, Howard, and Micchelli 1989; Nowak and Wosniakowski 2009]

Learning multi-ridge functions

e Objective:

Model 1:

Model 2:

other names:

via point queries

f(x) = g(Ax)

f(xla"'v‘rd) — Zf:lg’i(a;rx)

f:Bra(l+€) =R A =lay,..

Mmulti-index models

CHALLENGE ACCEPTED
S=ES0

—7

P

approximate multi-ridge functions

k <d

. aak]T

partially linear single/multi index models

generalized additive model
sparse additive models...

[Friedman and Stuetzle 1981; Li 1991, 1992; Lin and Zhang 2006; Xia
2008; Ravikumar et al., 2009; Raskutti et al., 2010; Cohen et al., 2010;
Fornasier, Schnass, Vybiral, 2011; VC and Tyagi 2012; Tyagi and VC 2012]

Prior Art

http://upload.wikimedia.org/wikipedia/en/c/c3/Dora_Maar_Au_Chat.jpg

Prior work—Regression camp

e |local smoothing <> first order low-rank model

a common approach in _ _

. . [Friedman and Stuetzle 1981; Li
nonparametric regression 1991, 1992; Fan and Gijbels 1996
(kernel, nearest neighbor, splines) Lin and Zhang 2006; Xia 2008]

Prior work—Regression camp
<> first order low-rank model

local smoothing

a common approach in
nonparametric regression
(kernel, nearest neighbor, splines)

f(x) = g(Ax)
1. assume orthogonality

AAT =1,

[Friedman and Stuetzle 1981; Li
1991, 1992; Fan and Gijbels 1996;
Lin and Zhang 2006; Xia 2008]

SVD of A

l_‘_\
f(x) = g(UEV'x) = g(V'x),
where g(y) = g(UXy)

Prior work—Regression camp

e |local smoothing <> first order low-rank model

a common approach in _ _
[Friedman and Stuetzle 1981; Li

nonparametric regression 1991, 1992; Fan and Gijbels 1996
(kernel, nearest neighbor, splines) Lin and Zhang 2006; Xia 2008]
SVD of A

f(x) = g(Ax) |

1 th lit

. assume orthogonality f(x) = g(USVTx) = §(VTx),
AAT =1, where g(y) = g(UXy)
2. note the differentiability of f Key observation #1-

gradients live in at most

Vf(x)=ATVg(Ax) k-dim. subspaces

Prior work—Regression camp | &
V=

e local smoothing <> first order low-rank model

a common approach in

[Friedman and Stuetzle 1981; Li

nonparametric regression 1991, 1992; Fan and Gijbels 1996;
(kernel, nearest neighbor, splines) Lin and Zhang 2006; Xia 2008]
SVD of A
f(x) = g(Ax)
_ ——
1. assume orthogonality f(x) = g(USVTx) = g(VTx)
AAT =1, where g(y) = g(UXy)
2. note the differentiability of f Key observation #1:
. gradients live in at most
Vf(x)=A"Vg(Ax) k-dim. subspaces

3. leverage samples to obtain the hessian via local K/N-N/S...

f T 79 Key observation #2:
H? = A" HA, k- principal components
of Hf leads to A

required: rank-k H9

1Y = E{[Vf(x) ~ (Vi) V() ~ BV)]}

Prior work—Regression camp | &
V=

e local smoothing <> first order low-rank model

a common approach in _ _

. . [Friedman and Stuetzle 1981; Li

nonparametric regression 1991, 1992; Fan and Gijbels 1996
(kernel, nearest neighbor, splines) Lin and Zhang 2006; Xia 2008]

e Recent trends <> additive sparse models

[Stone 1985; Tibshirani and Hastie
1990; Lin Zhang 2006; Ravikumar

f(mlv > . 7md) — § g; ('rj) et al., 2009: Raskutti et al., 2010:
j:j63,|3|§k Meier et al. 2007 ; Koltchinski and

Yuan, 2008, 2010]
k
f(xla .o ,.I'd) — Zi:l g’t(af?x)

— encode smoothness via the kernel
— leverage sparse greedy/convex optimization

— establish consistency rates: If = Fll, <O (k;52 4 ’“O_g(d)>

m

Prior work—Regression camp

e local smoothing <> first order low-rank model

a common approach in _ _

. . [Friedman and Stuetzle 1981; Li

nonparametric regression 1991, 1992; Fan and Gijbels 1996
(kernel, nearest neighbor, splines) Lin and Zhang 2006; Xia 2008]

e Recent trends <> additive sparse models

[Stone 1985; Tibshirani and Hastie

. _ . 1990; Lin Zhang 2006; Ravikumar
f(mlv SR 73:(1) — g; (.CE‘]) et al., 2009; Raskutti et al., 2010;
j:j63,|3|§kz Meier et al. 2007 ; Koltchinski and

Yuan, 2008, 2010]

g belongs to reproducing kernel Hilbert space

difficulty of | difficulty of
— encode smoothness via the kernel estimating subset
the kernel selection

— leverage sparse greedy/convex optimization | |

— establish consistency rates: If = Fll, <O (k;52 4 ’“O_g(d)>

m

Prior work—Active learning camp

e Progress thus far <> the sparse way
highlights:
1. Cohen, Daubechies, DeVore, f(X) — g(aTX)

Kerkyacharian, and Picard (2010)

g:10,1] - R is a C* function for s > 1

a>0,1Ta=1 ac wl, g <1 (i.e., compressible)

Prior work—Active learning camp

e Progress thus far <> the sparse way
highlights:
1. Cohen, Daubechies, DeVore, f(X) — g(aTX)

Kerkyacharian, and Picard (2010)

g:10,1] - R is a C* function for s > 1

a>0,1Ta=1 ac wl, g <1 (i.e., compressible)
Fornassier, Schnass, and Vybiral (2011) f(x) = g(Ax)
g:Bra(l+6é) - RisC® a; € wly,q<2 A=la,...,a"

extends on the same local observation model in regression
Taylor
series

fx+ep) = f(x) +e(d, V(X)) +eb(x,6,¢) <1
= (¢, ATVg(Ax)) = ¢ (f(x + €¢) — f(x)) — E(x,€,¢)

Prior work—Active learning camp (FSV’11)

e A sparse observation model f(x) = g(Ax)
= (¢:;, ATV g(AE)) = L (f(& +edij) — (&) — E(&, €, 05 ;)
Yoot B(x,6,.0) = 50TV (C(x,)0 €di g
C(x,0) € 6, x + NG €8T

with two ingredients

sampling centers X ={¢ € Sti=1,...,mx}
. . : T
sampling directions at each center ®; = [¢1;| ... |Pmas.il

. — AT
leads to y = ®(X) + E(X,¢,P) ?{Z '_'A Gf
approximately sparse

g = S | Lt] G = [Vg(AG)| Vg(AL)| - V(A&)kxma

Prior work—Active learning camp (FSV’11)

f(x) = g(Ax)

e A sparse observation model

Xz' = ATGZ
y:(D(X)+E(X,€,q)) \ ']

approximately sparse

e Key contribution: restricted “Hessian” property
HT = [y VI(x)V ()T dpga-1 (x) u uniform

o1(H') > oo(HY) > ... > 0p(H') > a > 0 for some a

recall G needs to span a k-dim subspace for identifiability of A

G := [Vg(A&)|Vg(A&L)| - [VI(Almr) kxma

with a restricted study of radial functions f(X) — gO(HAX”Q)

e Analysis <> leverage compressive sensing results

Prior work—Active learning camp (FSV’11)

f(x) = g(Ax)

e A sparse observation model

XZ' = ATGZ
y:(D(X)+E(X,€,q)) \ ']

approximately sparse
e Analysis <> |everage compressive sensing results

e Key contribution: restricted Hessian property
for radial functions f(x) = go(||Ax||2)

e Two major issues remains to be addressed over FSV’'11

1. validity of orthogonal sparse/compressible directions
need a basis independent model

f(x) = g(A¥TUx) = g(AUx) one ¥ for all orthogonal directions?

2. analysis of Hf for anything other than radial functions
need a new analysis tool

HY = [, VI(x)Vf(x)Tduga-1 (x)

Learning multi-ridge functions

e Objective: approximate multi-ridge functions
via point queries
Model 1: f(x) = g(Ax) k<d
Model 2: f(l'la o ’g;d) — Zle g,é(a;rx)

f:Bpa(l+6) >R A=I[ay,... a7

e Results: w.l.o.g. g, g; € C?

A: compressible

4—q q
k 2—qd2—4q lo)
(Model 1): m:0<(1) /2y ke lg(k)>:>||f—f||Lm§5

£ a

[Fornasier, Schnass, Vybiral, 2011] *if g has k-restricted Hessian property...

Learning multi-ridge functions

e Objective: approximate multi-ridge functions
via point queries
Model 1: f(x) = g(Ax) k<d
Model 2: f(l'la o ’Q_’/'d) — Zle g,é(a;rx)

f:Bra(l+€ 2R A=lay,...,a"
= Results: m\ cost of learning g w.l.o.g. g,9; € C?
ﬁﬂ [A \ A: compressible
| 4=q _q R
(Model 1): m =0 ((l) o2y EedT IOg“f)) = |f = flloe <

€ (0%
\

*cost of learning A

[Fornasier, Schnass, Vybiral, 2011] *if f has k-restricted Hessian property...

Learning multi-ridge functions

e Objective: approximate multi-ridge functions
via point queries
Model 1: f(x) = g(Ax) k<d
Model 2: f(l'la o ’Q_’/'d) — Zle g,é(a;rx)

f:Bpa(l+6) >R A=I[ay,... a7

- Results: E\ cost of learning g w.lo.g. g,9; € C?
ﬁ;j —— A: compressible
| k 4—gqg 2 ~
(Model 1): """~ O ((%) S ST e 10%(@) = If = fll <€

\ J
I

only for radial basis functions *cost of learning A o= O 1)

d
f(x) = go([|Ax]|2) | | |
[Fornasier, Schnass, Vybiral, 2011] *if f has k-restricted Hessian property...

Learning Multi-Ridge Functions

...And, this is how you learn non-parametric basis independent
models from point-queries via low-rank methods

Learning multi-ridge functions

e Objective: approximate multi-ridge functions
via point queries

Model 1: f(X) = g(AX) k<d

Model 2: f(;z:l, e ,:Ed) = Zle gi(agx)

f:Bpa(l+6) >R A=I[ay,... a7

e Results: m\ cost of learning g w.lo.g. g,9; €C
ﬁ;j [. \ A: compressible

4-9 _9q -
(Model 1&2): m = O ((%)"“/2 L m“) = If = fllze < ¢
J

&
: : \
Our 1st contribution: Y
a simple verifiable *cost of learning A o = (—-)(l)
S d
characterization of alpha
for a broad set of functions *with the L-Lipschitz property...

Learning multi-ridge functions: the low-rank way

e Objective: approximate multi-ridge functions
via point queries
Model 1: f(x) = g(Ax) k<d
Model 2: f(l'la o ’g;d) — Zle g,é(a;rx)

f:Bpa(l+6) >R A=I[ay,... a7

- L 2
* Results: m\l cost of learning g w.lo.g. g,9, €C
|
gii [lk 2\
(Model 1): m=0((2)7" 4+ 280 s pd) = ||f = Fllo. <e
\ J
[
our 2"d contribution: *cost of learning A

extension to the general A
*if f has k-restricted Hessian property...

Learning multi-ridge functions: the low-rank way

e Objective: approximate multi-ridge functions
via point queries
Model 1: f(x) = g(Ax) k<d
Model 2: | f(ay,...,za) = 2, gi(alx)
f:Bra(l+€) >R A=Jay,...,a;]"
- Results: %‘Q cost o learning o' w.l.o.g. g,g; € C*

(Model 2): m = (9((1)1/2k+’“°g(’“>><kd)=>||f flo <e

\
|
extension to the general A

*with the L-Lipschitz property...

Learning multi-ridge functions: the low-rank way

e Objective: approximate multi-ridge functions
via point queries
Model 1: f(X) = g(AX) k<d
Model 2: f(wla e vxd) — Zf:l g’i(azTX)
AR)(AR)T =1 _
(jusz:(kid)dingff f BRd(l + E) — R A=]Ja... aak]T
= Results: m\ cost of learning g;’s w.lo.g. g,9; € C°

' /|
ﬁ A
I | \

(Model 2): =0 ((2) "7+ H5E s kd) = |f ~ fllr.. <

\ J
|

our 2"d contribution: *cost of learning A
extension to the general A

*with the L-Lipschitz property...

Learning multi-ridge functions: the low-rank way

e Objective: approximate multi-ridge functions
via point queries

Model 1: f(X) = g(AX) k<d

Model 2: f(;z:l, e ,:Ed) = Zle gi(agx)

f:Bpa(l+6) >R A=I[ay,... a7

in general

-, 2
= Results: E\ cost of learning g 7/ g;’s W.I.O.g. g,39i € C

' i
g
| | \

(Model 1&2): m = O (1) 2+ K2 log(k)) = |1 ~ fllr. <

c —
\ J

|
*cost of learning A

Given 1st and 2"9 contribution:
full characterization of Model 1 & 2

with minimal assumptions *with the L-Lipschitz property...

Learning multi-ridge functions

e Objective: approximate multi-ridge functions
via point queries
Model 1: f(x) = g(Ax) k<d
Model 2: | f(zy,...,2q) = Sor_, gi(aTx)

f:Bpa(l+6) >R A=I[ay,... a7

%:\ cost of learning g /7 g;’s
| A
J

e Results: w.l.o.g. g, g; € C?

(Model 182): m — o((g) k/2+k2d45log()) = If = flls <e
]

\

|

th I I -
Our 3™ contribution: *cost of learning A

iImpact of iid noise f+Z
*with the L-Lipschitz property...

Non-sparse directions A

e A low-rank observation model

(¢, ATVg(Ax)) = ¢ (f(x +€8) — f(x)) — E(x,€,¢)

along with two ingredients

— sampling centers X ={& € Si=t.5=1,... , My }
— sampling directions at each center ;= [p14] .. |dms.i]"
leads to y =®(X)+ E(X,¢,P)
@ _ f(&itedi)—f(&)]
X = |a7 kX mx yi_zj 1[— 3_

—n X k G = [Vg(A£1)|Vg(A£2)| e Vg(Ang)]kme

Detour #2: low-rank recovery

y = O(X) + E(X, ¢, ®) o : Réxmx _y Rmo

e Stable recovery <> measurements commensurate
with degrees of freedom

— stable recovery: | X — i”p < C1]|X = Xg|lgp + Co||[E||p

— measurements: me = O (k(d4+mx — k))

A~

X = A(y, ®): decoder

Xy =arg min || X—Z|g
Z:rank(Z)<k

Detour #2: low-rank recovery

y = &(X) + E(X, ¢, ®)

Stable recovery <>
— stable recovery: | X —
— measurements:

Convex/non-convex decoders
— affine rank minimization

— matrix completion

. RAX o~
O R4Mx - R™MP -

Matrix ALPS

http://lions.epfl.ch/MALPS
measurements commensurate
with degrees of freedom

X|p < C1lIX = Xi e + Ca Ellr
mge = O (k(d+mxy — k))

<> sampling/noise type

— robust principal component analysis

Detour #2: low-rank recovery

G : RImx _y R

Matrix ALPS

http://lions.epfl.ch/MALPS
e Stable recovery <= measurements commensurate

with degrees of freedom

y = &(X) + E(X, ¢, ®)

Matrix restricted isometry property (RIP):

(1 — k) < [X[< (14 Krg), VX :rank(X) < k

X1

[Plan 2011]

— affine rank minimization
— matrix completion

— robust principal component analysis

Active sampling for RIP

] “ . low rank
X = |a7 k X mxy
y = ©(X) + E(X, ¢, @)
—'n X k
e Recall the two ingredients d : R¥xmx _, RMe
— sampling centers X={,esS"i=1,...,mx}
— sampling directions at each center D = P15 |<bmq>,j]T
e Matrix RIP <> uniform sampling on the sphere

& — {qsm» ¢ Bpa (\/d/mq)) (61,711 = £ —A=with probability 1/2}

= 0 < K, < kK < 1 with probability

N

1_2€—m®Q(R)+T(d+mx+1)U(FE)’ where Q(f‘i) — ﬁ (HQ _ %3) and ’U,(HJ) — log (36ﬁ)

Here it is... our low-rank approach

Algorithm 1 Estimating f(x) = g(Ax)
1: Choose mge and my and construct the sets X and ®.

S [f(éfrecm) f(&;)]

2: Choose € and construct y using y; =

3: Obtain X via a stable low-rank recovery algorithm.

P

4: Compute SVD() = UXVT and set AT = U(k), corresponding to k
largest singular values. R
5. Obtain f (X) .= §(Ax) via quasi interpolants where §(y) := f(ATy).

e achieve/balance three objectives simultaneously

1. guarantee RIP on @ with mae

2. ensure rank(G)=k with my

3. contain E’s impact with €

y = ®(X) + E(X, e, ®)
X :=ATG

Here it is... our low-rank approach

Algorithm 1 Estimating f(x) = g(Ax)

1: Choose mg¢ and may and construct the sets X and ®.
Z : |:f(£3+€<b% G)— f(fg)]
j=

2: Choose € and construct y using y; =

3: Obtain X via a stable low-rank recovery algorithm.

P

4: Compute SVD() = UXVT and set AT = U(k), corresponding to k
largest singular values. R
5: Obtain f(x) := ¢(Ax) via quasi interpolants where g(y) = f(Aly).

1. guarantee RIP <> by construction

2. ensure rank(G)=k <> Dby Lipschitz assumption « = O(

rank-1 + diagonal / interval matrices

3. contain E’s impact <> by controlling curvature €¢=0 (W

— collateral damage: additive noise amplification by ¢+

solution: resample the same points
[VC and Tyagi 2012; Tyagi and VC, 2012] d3/2te_times

L-Lipschitz property

e New objective: approximate A via point queries of f
f:Bra(l4+€) >R A=]Jay,...,a;]"

e New analysis tool:

L-Lipschitz 2"d order derivative
recall H' := [, , Vf(x)Vf(x)Tdpugi-1(x) op(H') > a >0

0% g
ayigyj

0% ¢
(.‘Yl)—w(.‘)’z)

ly1—y2ll,x
2

<L

2V

Lipschitz constant
L =maxi<ij<k Li;

Proposition: k-th restricted singular value

e New objective: approximate A via point queries of f
f:Bra(l4+€) >R A=]Jay,...,a;]"

e New analysis tool: L-Lipschitz 2"9 order derivative
recall H' := [, , Vf(x)Vf(x)Tdpugi-1(x) op(H') > a >0

0%g (y1)— 0%g (y2) Lipschitz constant 1
. yj\lyl—yzuyi - < Lij | L=maxigij<k Li —a=06 (3)
I3

(Model 1): f(x) = g(Ax)
+ V?¢(0) is full rank.

(Model 2): f(x) = Zle gi(alx) or f(x) = alx+ Zsz gi(alx)

+ V2g;(0) #0,Vi =2,...,d

Theorem: sample complexity

Algorithm 1 Estimating f(x) = g(Ax)

1:
2:

Choose mg¢ and mxy and construct the sets X and ®.

Choose € and construct y using y; =

Zg 1 [f(&;-l—etbu) f(ﬁg)]

3: Obtain X via a stable low-rank recovery algorithm.

P

4: Compute SVD() = UXVT and set AT = U(k), corresponding to k
largest singular values. R
. Obtain f(x) := g(Ax) via quasi interpolants where g(y) := f(Aly).

Theorem 1 [Sample complezity of Algorithm 1] Let § € RT, p < 1, and
k<V2—1 be fized constants. Choose

2kC3 1
2 Og(k/pl);

o log(2/ps) + 4k(d + mx + 1)u(k)
- q(r)

my >

me , and

1/2
B ; ({mpmse)"
= OokP2d(8 + 202V2k) \ (1 + K)Comx
Then, given m = mxy(me + 1) samples, our function estimator f in step 5 of
Algorithm 1 obeys H f— J?HL < 0 with probability at least 1 — p1 — po.

Theorem: sample complexity

Algorithm 1 Estimating f(x) = g(Ax)

1: Choose mg¢ and may and construct the sets X and ®.
Z : |:f(£3+€<b% G)— f(fg)]
j=

2: Choose € and construct y using y; =

3: Obtain X via a stable low-rank recovery algorithm.

P

4: Compute SVD() = UXVT and set AT = U(k), corresponding to k

largest singular values. R
5: Obtain f(x) := ¢(Ax) via quasi interpolants where g(y) = f(Aly).

Theorem 1 [Sample complezity of Algorithm 1] Let § € RT, p < 1, and

k<V2—1 be fized constants. Choose

2
my 2 2kC22 log(k/p1), my = O (kl(;gk)
e > log(2/ps2) + 4kq((dﬁ—)|— mxy + 1)’0‘;(;‘%‘,)} nd ma = O(k(d+ mx))
)
t b (fipmaa)| =o()
~ CLkS2d(5 + 205,V 2k) \ (1 + K)Comx

Then, given m = mxy(me + 1) samples, our function estimator]? in step 5 of

Algorithm 1 obeys H f— J?HL < 0 with probability at least 1 — p1 — po.

Theorem: proof ingredients

e Matrix Danzig selector as running example

X ps = argmingy | M|, s.t. [|®* (y — B(M))|| < A

Theorem: proof ingredients

O
= Matrix Danzig selector as running example = O(k(d-|—m;g
O

X ps = argmingy | M|, s.t. [|®* (y — B(M))|| < A =

e Tuning parameters

Cgedm;(k . "
NS . Moreover, it holds that || ®*(g)|| <

2
A= Coedmyk (14 k)2, with probability at least 1 — 2e~med(R)+(d+matijux)

2\/?’?’6(1)

Proposition 1 We have ||¢||,

Theorem: proof ingredients

e Matrix Danzig selector as running example me = O

R ps = argminy M. st. |8 w-a0n)[<A | <=0(

e Tuning parameters

e Recovery guarantees on X

Corollary 1 Denoting ipg to be the solution of the matrix Danzig selector,
if ng)g is the best rank-k approzimation to Xpg in the sense of |||, and if
Kap < Kk < V2 — 1, then we have

~ 2 2,5 22 2
(k) 2 CplCIk%e*d"m
|x - XY < aCokr? = LAECEmE (1 4),

with probability at least 1 — 2e~ M@ () +4k(d+ma+1u(k)

Theorem: proof ingredients

1
- (k ogk‘)
(87
e Matrix Danzig selector as running example me = O(k(d+my))

R ps = argminy [M]. st & (-2 <A | <=0

e Tuning parameters
e Recovery guarantees on X

e Translation of guarantees on X to guarantees on A

Lemma 1 Forafired0 < p<1l,my > 1, me < mydife <

1 ((1 - p)maa)1’2
Cok?d(VEk+v2) \(1 +£K)Comx)~

then with probability at least 1—k exp {— ‘";gggz }—2 exp{—maeq(k) +4k(d +mx + Du(k)}
we have

a4, 2
F

1/2
k/‘ . 272
(v/(A—p)ymxya—r)2 ’

215 2 52 2
where T2 = CoCs kmz)d Mx (1 + k) is the error bound derived in Corollary 1.

This is precisely where the restricted Hessian property is used...

Theorem: proof ingredients

1
- (k: ogk‘)
8%
e Matrix Danzig selector as running example me = O(k(d+my))

R ps = argminy [M]. st & (y s <A | <=0

e Tuning parameters
e Recovery guarantees on X
e Translation of guarantees on X to guarantees on A

e Translation of guarantees on A to guarantees on f
First observe that: f(x) = f(ATAx) = g(AATAx).
= | £(x) = F(x)| = |g(Ax) - g(AATAx)| < CoVE||(A — AATA)x
Now it is easy to verify that:

o~ o~ |2 —~ o~ o~y o~ -~
HA _ AATAHF — Tr((AT — ATAAT)(A — AATA)) = k — HAAT

s

< CoVk||A — AATA|| x]l, -
P!

2

v .

Impact of noisy queries

Algorithm 1 Estimating f(x) = g(Ax)

1: Choose mg¢ and may and construct the sets X and ®.
Z : |:f(£3+€<b% G)— f(fg)]
j=

2: Choose € and construct y using y; =

3: Obtain X via a stable low-rank recovery algorithm.

P

4: Compute SVD() = UXVT and set AT = U(k), corresponding to k
largest singular values. R
5: Obtain f(x) := ¢(Ax) via quasi interpolants where g(y) = f(Aly).

- Assume evaluation of f yields f(x) + Z, where Z ~ N(0, 0?)

Impact of noisy queries

Algorithm 1 Estimating f(x) = g(Ax)

1:
2:
3:
4:

Choose mg¢ and mxy and construct the sets X and ®.
Z : |:f(£3+€<b% G)— f(fg)]
j=

Choose € and construct y using y; =

Obtain X via a stable low-rank recovery algorithm.

P

Compute SVD() = UXVT and set AT = U®, corresponding to k
largest singular values.

. Obtain f(x) := g(Ax) via quasi interpolants where g(y) = f(ATy).

- Assume evaluation of f yields f(x) + Z, where Z ~ N(0, 0?)

tuning parameter changes:

2
|P* (e +2)|| < 222/2(1 + fa:)m;gmcp—l—CZQEf/TgZ—’;k (14+k)12, (v > 24/Iog12).

Impact of noisy queries

Algorithm 1 Estimating f(x) = g(Ax)

1:
2:

3:
4:

Choose mg¢ and mxy and construct the sets X and ®.
Z : |:f(53+€‘?b% G)— f(fg)]
j=

Choose € and construct y using y; =

Obtain X via a stable low-rank recovery algorithm.

P

Compute SVD() = UXVT and set AT = U®, corresponding to k
largest singular values.

. Obtain f(x) := g(Ax) via quasi interpolants where g(y) = f(ATy).

- Assume evaluation of f yields f(x) + Z, where Z ~ N(0, 0?)

tuning parameter changes:

2
|P* (e +2)|| < 222/2(1 + fa:)m;gmcp—l—czgf/n%—zk (14+k)12, (v > 24/Iog 12).

= m = O(‘/_)m;g(mcp + 1)

We resample the same data points O(¢!)-times and average.

Learning a logistic function LEARNS|LOGISTIC

f(x) = g(a’x), where g(y) = 1=

b
Y=
p ﬂ,‘\

a = [g@"%)[dusis = |9 (0) = (1/16) TRACTABLY!

4500
Co = SUP|51<2 |9(6) (3!)| =1

4000 -

e Declare success if my = 20

3500 -

(&, a)| > 0.99 3000

4 2500 -

S

2000+
theory: mge = O(d) 1500/
practice: mge = 1.45d 1000l
500+

D.-"‘

200 600 1000 1400 1800 2200 2600 3000
dimension (d)

Learning sum of Gaussian functions o

R

k |

f(x) =g9(Ax+Db) = Zi:l Qi(az‘TX + b;) ‘
: |

d = 100 9i(y) = ——— exp —@ 5 |

e =103 ames (i) | BUT WHEN | DO, | PREFER J
may = 100 | | | | E . Gnusmus

6000 1

e Declare success if
5000 +

~ 2
HIAAT| > 0.99
F

4000 +
E 3000t

o~ U[0.1,0.5]
b@‘ ~ U(OZSk_l) 2000 -

theory: me = O(d) ']

8 12 16 20 24 28 32
Number of linear parameters (k)

Stability example with the quadratic

f(x) = g(Ax) = [Ax— b . _s
F(x) = f(x) + oN(0,1) S
o= 0.01

e Declare success if 2000}

~ 2 1800+

LHAAT > 0.99
k P 1600 |
1400 +
‘IEUEI-
— (’)(d) E 1000}
BOO ¢

b; ~U(SF) 600 |

400 +

theory: = iy

200+

0

30 45 60 75 90 105 120
dimension (d)

Conclusions

e Main focus

e Active setting

e New tools

<=

<=

lions@epfl

estimation of low-dim subspace
for dimensionality reduction

learning/optimizing f for later

model building, cluster analysis,
variable selection...

polynomial time samples/scheme

a new link between old low-rank
models with new low-rank algorithms

L-Lipschitz 2"d order derivative
matrix ALPS for low-rank recov.
beyond linear models

system calibration, PDE models,
matrix compression...

	Compressed Sensing
	Function learning
	Function learning
	Function learning
	Function learning
	Function learning
	Nonparametric model learning
	Nonparametric model learning—our contributions
	Active function learning
	Active function learning
	Active function learning
	Learning via interpolation
	Learning via interpolation
	Learning via interpolation
	Learning via interpolation
	Learning via interpolation
	Learning via interpolation
	Learning via interpolation
	Learning via interpolation
	Learning multi-ridge functions
	Slide Number 21
	Prior work—Regression camp
	Prior work—Regression camp
	Prior work—Regression camp
	Prior work—Regression camp
	Prior work—Regression camp
	Prior work—Regression camp
	Prior work—Active learning camp
	Prior work—Active learning camp
	Prior work—Active learning camp (FSV’11)
	Prior work—Active learning camp (FSV’11)
	Prior work—Active learning camp (FSV’11)
	Learning multi-ridge functions
	Learning multi-ridge functions
	Learning multi-ridge functions
	Slide Number 36
	Learning multi-ridge functions
	Learning multi-ridge functions: the low-rank way
	Learning multi-ridge functions: the low-rank way
	Learning multi-ridge functions: the low-rank way
	Learning multi-ridge functions: the low-rank way
	Learning multi-ridge functions
	Non-sparse directions A
	Detour #2: low-rank recovery
	Detour #2: low-rank recovery
	Detour #2: low-rank recovery
	Active sampling for RIP
	Here it is… our low-rank approach
	Here it is… our low-rank approach
	L-Lipschitz property
	Proposition: k-th restricted singular value
	Theorem: sample complexity
	Theorem: sample complexity
	Theorem: proof ingredients
	Theorem: proof ingredients
	Theorem: proof ingredients
	Theorem: proof ingredients
	Theorem: proof ingredients
	Impact of noisy queries
	Impact of noisy queries
	Impact of noisy queries
	Learning a logistic function
	Learning sum of Gaussian functions
	Stability example with the quadratic
	Conclusions

