

Winter Conference in Statistics 2013

Compressed Sensing

LECTURE #12
Nonparametric function learning

lions@epfl

Prof. Dr. Volkan Cevher

volkan.cevher@epfl.ch

LIONS/Laboratory for Information and Inference Systems

A fundamental problem:

given
$$(y_i, x_i)$$
: $\mathbb{R} \times \mathbb{R}^d$, $i = 1, ..., m$, learn a mapping $f: x \to y$

- some call it "regression"
- Oft-times

f <>

parametric form e.g., linear regression

learning the model = learning the parameters

$$f(x) = a^t x$$

A fundamental problem:

given
$$(y_i, x_i)$$
: $\mathbb{R} \times \mathbb{R}^d$, $i = 1, ..., m$, learn a mapping $f: x \to y$

- some call it "regression"
- Oft-times

f <>

parametric form e.g., linear regression

learning the model = learning the parameters

$$f(x) = a^t x$$

familiar challenge: *learning via dimensionality reduction*

A fundamental problem:

given
$$(y_i, x_i)$$
: $\mathbb{R} \times \mathbb{R}^d$, $i = 1, ..., m$, learn a mapping $f: x \to y$

- some call it "regression"
- Oft-times

f <>

learning a **low-dimensional** model

successful learning the parameters

$$f(x) = a^t x$$

parametric form

e.g., linear regression

familiar challenge: *learning via dimensionality reduction*

A fundamental problem:

```
given (y_i, x_i): \mathbb{R} \times \mathbb{R}^d, i = 1, \dots, m, learn a mapping f: x \to y
```

- some call it "regression"
- Oft-times f <> parametric form
 e.g., linear regression

low-dim models >> successful learning
sparse,
low-rank...

Any parametric form <> at best an approximation
 emerging alternative: non-parametric models

learn f from data!

A fundamental problem:

```
given (y_i, x_i): \mathbb{R} \times \mathbb{R}^d, i = 1, ..., m, learn a mapping f: x \to y
```

- some call it "regression"
- Oft-times
 f
 e.g., linear regression

low-dim models >> successful learning
sparse,
low-rank...

Any parametric form <> at best an approximation
 emerging alternative: non-parametric models

this lecture > learn low-dim f from data!

Nonparametric model learning

Two distinct camps:

1. Regression

Active learning (experimental design)

<> use given samples approximation of f

[Friedman and Stuetzle 1981; Li 1991, 1992; Lin and Zhang 2006; Xia 2008; Ravikumar et al., 2009; Raskutti et al., 2010]

design a sampling scheme approximation of f

[Cohen et al., 2010; Fornasier, Schnass, Vybiral, 2011; VC and Tyagi 2012; Tyagi and VC 2012]

maximization/optimization of f

[Srinivas, Krause, Kakade, Seeger, 2012]

Nonparametric model learning—our contributions

Two distinct camps:

1. Regression

<> use given samples approximation of f

> [Friedman and Stuetzle 1981; Li 1991, 1992; Lin and Zhang 2006; Xia 2008; Ravikumar et al., 2009; Raskutti et al., 2010]

Active learning (experimental design) <> design a sampling scheme approximation of f

[Cohen et al., 2010; Fornasier, Schnass, Vybiral, 2011; VC and Tyagi 2012; Tyagi and VC 2012]

maximization/optimization of f

[Srinivas, Krause, Kakade, Seeger, 2012]

Active function learning

A motivation by Albert Cohen

Numerical solution of parametric PDE's

$$\mathrm{PDE}(f,x) = 0 \longmapsto f(x)$$
: the (implicit) solution

$$x \in \mathbb{R}^d$$
$$f \in \Omega$$

query of the solution <> running an expensive simulation

Active function learning

A motivation by Albert Cohen

Numerical solution of parametric PDE's

$$x \in \mathbb{R}^d$$

$$\mathrm{PDE}(f,x) = 0 \longmapsto f(x) \colon \text{the (implicit) solution} \qquad f \in \Omega$$

query of the solution <> running an expensive simulation

learn an explicit approximation of f via multiple queries

Active function learning

A motivation by Albert Cohen

Numerical solution of parametric PDE's

$$x \in \mathbb{R}^d$$
 $\mathrm{PDE}(f,x) = 0 \longmapsto f(x)$: the (implicit) solution $f \in \Omega$

query of the solution <> running an expensive simulation

ability to choose the samples <> active learning

• Error characterization for smooth $f \in \mathcal{C}^s$

$$||f - R(f)||_{\infty} \le C||D^s f||_{\infty} h^s$$

• Error characterization for smooth $f \in \mathcal{C}^s$

$$||f - R(f)||_{\infty} \le C||D^s f||_{\infty} h^s$$

number of samples $N=\mathcal{O}(h^{-1}) <> \|f-R(f)\|_{\infty}=\mathcal{O}(N^{-s})$

CURSE!

Curse-of-dimensionality

• Error characterization for smooth $f \in \mathcal{C}^s$ and $x \in \mathbb{R}^d$

$$||f - R(f)||_{\infty} \le C||D^s f||_{\infty} h^s$$

number of samples $N = \mathcal{O}(h^{-d}) \iff \|f - R(f)\|_{\infty} = \mathcal{O}(N^{-s/d})$

Curse-of-dimensionality

The nonlinear N-width

$$d_N(\Omega) := \inf_{E,R} \max_{f \in \Omega} \lVert f - R(E(f)) \rVert_{\infty} \quad \begin{array}{l} E: \text{ encoder } \Omega \to \mathbb{R}^N \\ R: \text{ reconstructor } \mathbb{R}^N \to \Omega \\ \Omega: \text{ compact set} \end{array}$$

infimum is taken over all continuous maps (E,R)

$$\Omega = \mathcal{C}^s([0,1]^d) \Rightarrow cN^{-s/d} \leq d_N(\Omega) \leq CN^{-s/d}$$

Curse-of-dimensionality

The nonlinear N-width

$$d_N(\Omega) := \inf_{E,R} \max_{f \in \Omega} \lVert f - R(E(f)) \rVert_{\infty} \quad \begin{array}{l} E: \text{ encoder } \Omega \to \mathbb{R}^N \\ R: \text{ reconstructor } \mathbb{R}^N \to \Omega \\ \Omega: \text{ compact set} \end{array}$$

infimum is taken over all continuous maps (E,R)

$$\Omega = \mathcal{C}^s([0,1]^d) \Rightarrow \min\{N : d_N(\Omega) \le \epsilon\} \ge c (1/\epsilon)^{d/s}$$

Curse-of-dimensionality

The nonlinear N-width

$$d_N(\Omega) := \inf_{E,R} \max_{f \in \Omega} \lVert f - R(E(f)) \rVert_{\infty} \quad \begin{array}{l} E: \text{ encoder } \Omega \to \mathbb{R}^N \\ R: \text{ reconstructor } \mathbb{R}^N \to \Omega \\ \Omega: \text{ compact set} \end{array}$$

infimum is taken over all continuous maps (E,R)

$$\Omega = \mathcal{C}^s([0,1]^d) \Rightarrow \min\{N : d_N(\Omega) \le \epsilon\} \ge c (1/\epsilon)^{d/s}$$

$$\Omega = \mathcal{C}^{\infty}([0,1]^d) \Rightarrow \min\{N : d_N(\Omega) \le 0.5\} \ge c2^{d/2}$$

Take home message

smoothness-only >> intractability in sample complexity need additional assumptions on the problem structure!!!

[Traub et al., 1988; Devore, Howard, and Micchelli 1989; Nowak and Wosniakowski 2009]

Objective:

approximate multi-ridge functions via point queries

Model 1:
$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x}) \qquad k < d$$
 Model 2:
$$f(x_1, \dots, x_d) = \sum_{i=1}^k g_i(\mathbf{a}_i^T \mathbf{x})$$

$$f: B_{\mathbb{R}^d}(1+\bar{\epsilon}) \to \mathbb{R} \quad \mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]^T$$

other names: multi-index models partially linear single/multi index models generalized additive model sparse additive models...

[Friedman and Stuetzle 1981; Li 1991, 1992; Lin and Zhang 2006; Xia 2008; Ravikumar et al., 2009; Raskutti et al., 2010; Cohen et al., 2010; Fornasier, Schnass, Vybiral, 2011; VC and Tyagi 2012; Tyagi and VC 2012]

Prior Art

local smoothing <> a common approach in nonparametric regression

(kernel, nearest neighbor, splines)

first order low-rank model

[Friedman and Stuetzle 1981; Li 1991, 1992; Fan and Gijbels 1996; Lin and Zhang 2006; Xia 2008]

<>

local smoothing

a common approach in nonparametric regression (kernel, nearest neighbor, splines)

$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$$

1. assume orthogonality

$$\mathbf{A}\mathbf{A}^T = \mathbf{I}_k$$

first order low-rank model

<>

local smoothing

a common approach in nonparametric regression (kernel, nearest neighbor, splines)

$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$$

1. assume orthogonality

$$\mathbf{A}\mathbf{A}^T = \mathbf{I}_k$$

2. note the differentiability of *f*

$$\nabla f(\mathbf{x}) = \mathbf{A}^T \nabla g(\mathbf{A}\mathbf{x})$$

first order low-rank model

[Friedman and Stuetzle 1981; Li 1991, 1992; Fan and Gijbels 1996; Lin and Zhang 2006; Xia 2008]

SVD of \mathbf{A}

$$f(\mathbf{x}) = g(\mathbf{U}\Sigma\mathbf{V}^T\mathbf{x}) = \bar{g}(\mathbf{V}^T\mathbf{x}),$$

where $\bar{g}(\mathbf{y}) = g(\mathbf{U}\Sigma\mathbf{y})$

<u>Key observation #1:</u> gradients live in at most k-dim. subspaces

local smoothing <> first order low-rank model

a common approach in nonparametric regression (kernel, nearest neighbor, splines)

$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$$

1. assume orthogonality

$$\mathbf{A}\mathbf{A}^T = \mathbf{I}_k$$

2. note the differentiability of *f*

$$\nabla f(\mathbf{x}) = \mathbf{A}^T \nabla g(\mathbf{A}\mathbf{x})$$

[Friedman and Stuetzle 1981; Li 1991, 1992; Fan and Gijbels 1996; Lin and Zhang 2006; Xia 2008] SVD of A

$$f(\mathbf{x}) = g(\mathbf{U}\Sigma\mathbf{V}^T\mathbf{x}) = \bar{g}(\mathbf{V}^T\mathbf{x}),$$

where $\bar{g}(\mathbf{y}) = g(\mathbf{U}\Sigma\mathbf{y})$

Key observation #1: gradients live in at most k-dim. subspaces

3. leverage samples to obtain the hessian via local K/N-N/S...

$$H^f := \mathbf{A}^T H^g \mathbf{A}$$

required: rank-k Hg

$$H^f := E\left\{ \left[\nabla f(\mathbf{x}) - E(\nabla f(\mathbf{x})) \right] \left[\nabla f(\mathbf{x}) - E(\nabla f(\mathbf{x})) \right]^T \right\}$$

Key observation #2: k- principal components of **H**^f leads to **A**

local smoothing <>
 <>
 a common approach in
 nonparametric regression
 (kernel, nearest neighbor, splines)

first order low-rank model

[Friedman and Stuetzle 1981; Li 1991, 1992; Fan and Gijbels 1996; Lin and Zhang 2006; Xia 2008]

Recent trends

additive sparse models

$$f(x_1, \dots, x_d) = \sum_{j: j \in \mathcal{S}, |S| \le k} g_j(x_j)$$

[Stone 1985; Tibshirani and Hastie 1990; Lin Zhang 2006; Ravikumar et al., 2009; Raskutti et al., 2010; Meier et al. 2007; Koltchinski and Yuan, 2008, 2010]

$$f(x_1,\ldots,x_d) = \sum_{i=1}^k g_i(\mathbf{a}_i^T\mathbf{x})$$

- encode smoothness via the kernel
- leverage sparse greedy/convex optimization
- establish consistency rates:

$$||f - \widehat{f}||_{L_2} \le \mathcal{O}\left(k\delta^2 + \frac{k\log(d)}{m}\right)$$

local smoothing <>
 a common approach in nonparametric regression (kernel, nearest neighbor, splines)

first order low-rank model

[Friedman and Stuetzle 1981; Li 1991, 1992; Fan and Gijbels 1996; Lin and Zhang 2006; Xia 2008]

Recent trends

additive sparse models

$$f(x_1, \dots, x_d) = \sum_{j: j \in \mathcal{S}, |S| < k} g_j(x_j)$$

[Stone 1985; Tibshirani and Hastie 1990; Lin Zhang 2006; Ravikumar et al., 2009; Raskutti et al., 2010; Meier et al. 2007; Koltchinski and Yuan, 2008, 2010]

g belongs to reproducing kernel Hilbert space

encode smoothness via the kernel

difficulty of estimating the kernel

difficulty of subset selection

leverage sparse greedy/convex optimization

establish consistency rates:

$$||f - \widehat{f}||_{L_2} \le \mathcal{O}\left(k\delta^2 + \frac{k\log(d)}{m}\right)$$

Prior work—Active learning camp

Progress thus far the sparse way <>

highlights:

1. Cohen, Daubechies, DeVore, Kerkyacharian, and Picard (2010)

$$f(\mathbf{x}) = g(\mathbf{a}^T \mathbf{x})$$

 $g:[0,1]\to\mathbb{R}$ is a \mathcal{C}^s function for s>1

$$\mathbf{a} \succeq 0, \mathbf{1}^T \mathbf{a} = 1 \quad \mathbf{a} \in w\ell_q$$

$$\mathbf{a} \in w\ell_q$$

(i.e., compressible)

Prior work—Active learning camp

- Progress thus far the sparse way <> highlights:
 - 1. Cohen, Daubechies, DeVore, Kerkyacharian, and Picard (2010)

$$f(\mathbf{x}) = g(\mathbf{a}^T \mathbf{x})$$

$$g:[0,1]\to\mathbb{R}$$
 is a \mathcal{C}^s function for $s>1$

$$\mathbf{a} \succeq 0, \mathbf{1}^T \mathbf{a} = 1 \quad \mathbf{a} \in w \ell_a$$

(i.e., compressible)

Fornassier, Schnass, and Vybiral (2011)

$$f(\mathbf{x}) = g(A\mathbf{x})$$

$$g: B_{\mathbb{R}^d}(1+\bar{\epsilon}) \to \mathbb{R} \text{ is } \mathcal{C}^s \qquad \mathbf{a}_i \in w\ell_q, q < 2 \qquad \mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]^T$$

$$\mathbf{a}_i \in w\ell_q, q < 2$$

$$\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]^T$$

 $\epsilon \ll 1$

extends on the same *local observation model* in regression

$$f(\mathbf{x} + \epsilon \phi) = f(\mathbf{x}) + \epsilon \langle \phi, \nabla f(\mathbf{x}) \rangle + \epsilon E(\mathbf{x}, \epsilon, \phi)$$

$$\Rightarrow \langle \phi, A^T \nabla g(A\mathbf{x}) \rangle = \frac{1}{\epsilon} \left(f(\mathbf{x} + \epsilon \phi) - f(\mathbf{x}) \right) - E(\mathbf{x}, \epsilon, \phi)$$

Prior work—Active learning camp (FSV'11)

• A *sparse* observation model

$$f(\mathbf{x}) = g(A\mathbf{x})$$

$$\Rightarrow \left\langle \phi_{i,j}, A^T \nabla g(A\xi_j) \right\rangle = \frac{1}{\epsilon} \left(f(\xi_j + \epsilon \phi_{i,j}) - f(\xi_j) \right) - E(\xi_j, \epsilon, \phi_{i,j})$$

curvature effect $E(\mathbf{x}, \epsilon, \phi) = \frac{\epsilon}{2} \phi^T \nabla^2 f(\zeta(\mathbf{x}, \phi)) \phi$ $\zeta(\mathbf{x}, \phi) \in [\mathbf{x}, \mathbf{x} + \epsilon \phi]$

with two ingredients

sampling centers

$$\mathcal{X} = \{ \xi_j \in \mathbb{S}^{d-1}; j = 1, \dots, m_{\mathcal{X}} \}$$

sampling directions at each center $\Phi_j = \left[\phi_{1,j} \mid \dots \mid \phi_{m_{\Phi},j}\right]^T$

leads to

$$\mathbf{y} = \Phi(\mathbf{X}) + E(\mathcal{X}, \epsilon, \mathbf{\Phi})$$

$$\mathbf{X}_i := \mathbf{A}^T \mathbf{G}_i$$

approximately sparse

$$y_i = \sum_{j=1}^{m_{\mathcal{X}}} \left[\frac{f(\xi_j + \epsilon \phi_{i,j}) - f(\xi_j)}{\epsilon} \right] \quad \mathbf{G} := \left[\nabla g(\mathbf{A}\xi_1) | \nabla g(\mathbf{A}\xi_2) | \cdots | \nabla g(\mathbf{A}\xi_{m_{\mathcal{X}}}) \right]_{k \times m_{\mathcal{X}}}$$

Prior work—Active learning camp (FSV'11)

A sparse observation model

$$f(\mathbf{x}) = g(A\mathbf{x})$$

 $\mathbf{y} = \Phi(\mathbf{X}) + E(\mathcal{X}, \epsilon, \mathbf{\Phi})$

$$\mathbf{X}_i := \mathbf{A}^T \mathbf{G}_i$$
 approximately sparse

Key contribution:

restricted "Hessian" property

$$H^f := \int_{\mathbb{S}^{d-1}} \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^T d\mu_{\mathbb{S}^{d-1}}(\mathbf{x})$$

μ: uniform measure

$$\sigma_1(H^f) \ge \sigma_2(H^f) \ge \ldots \ge \sigma_k(H^f) \ge \alpha > 0$$
 for some α

recall

G needs to span a k-dim subspace for identifiability of **A**

$$\mathbf{G} := [\nabla g(\mathbf{A}\xi_1)|\nabla g(\mathbf{A}\xi_2)|\cdots|\nabla g(\mathbf{A}\xi_{m_{\mathcal{X}}})]_{k\times m_{\mathcal{X}}}$$

with a restricted study of radial functions $f(\mathbf{x}) = g_0(\|A\mathbf{x}\|_2)$

Analysis <> leverage compressive sensing results

Prior work—Active learning camp (FSV'11)

A sparse observation model

$$f(\mathbf{x}) = g(A\mathbf{x})$$

$$\mathbf{y} = \Phi(\mathbf{X}) + E(\mathcal{X}, \epsilon, \mathbf{\Phi})$$

 $\mathbf{X}_i := \mathbf{A}^T \mathbf{G}_i$ approximately sparse

- Analysis <> leverage compressive sensing results
- Key contribution: restricted Hessian property for radial functions $f(\mathbf{x}) = g_0(\|A\mathbf{x}\|_2)$
- Two major issues remains to be addressed over FSV'11
 - validity of orthogonal sparse/compressible directions need a basis independent model

$$f(\mathbf{x}) = g(\mathbf{A}\Psi^T\Psi\mathbf{x}) = g(A\Psi\mathbf{x})$$
 one Ψ for all orthogonal directions?

2. analysis of *H*^f for anything other than radial functions need a new analysis tool

$$H^f := \int_{\mathbb{S}^{d-1}} \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^T d\mu_{\mathbb{S}^{d-1}}(\mathbf{x})$$

Objective:

approximate multi-ridge functions via point queries

$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$$

k < d

$$f(x_1, \dots, x_d) = \sum_{i=1}^k g_i(\mathbf{a}_i^T \mathbf{x})$$

$$f: B_{\mathbb{R}^d}(1+\bar{\epsilon}) \to \mathbb{R} \quad \mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]^T$$

• Results:

w.l.o.g.
$$g, g_i \in \mathcal{C}^2$$

A: compressible

(Model 1):
$$m = \mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^{k/2} + \frac{k^{\frac{4-q}{2-q}}d^{\frac{q}{2-q}}\log(k)}{\alpha}\right) \Rightarrow \|f - \widehat{f}\|_{L_{\infty}} \leq \varepsilon$$

*if q has k-restricted Hessian property...

Objective:

approximate multi-ridge functions via point queries

$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$$

k < d

$$f(x_1, \dots, x_d) = \sum_{i=1}^k g_i(\mathbf{a}_i^T \mathbf{x})$$

$$f: B_{\mathbb{R}^d}(1+\overline{\epsilon}) \to \mathbb{R} \quad \mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]^T$$

• Results:

cost of learning g

w.l.o.g.
$$g, g_i \in \mathcal{C}^2$$

A: compressible

(Model 1):
$$m = \mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^{k/2} + \frac{k^{\frac{4-q}{2-q}}d^{\frac{q}{2-q}}\log(k)}{\alpha}\right) \Rightarrow \|f - \widehat{f}\|_{L_{\infty}} \leq \varepsilon$$

*cost of learning A

*if f has k-restricted Hessian property...

[Fornasier, Schnass, Vybiral, 2011]

Objective:

approximate multi-ridge functions via point queries

$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$$

k < d

$$f(x_1, \dots, x_d) = \sum_{i=1}^k g_i(\mathbf{a}_i^T \mathbf{x})$$

$$f: B_{\mathbb{R}^d}(1+\overline{\epsilon}) \to \mathbb{R} \quad \mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]^T$$

• Results:

cost of learning g

w.l.o.g. $g, g_i \in \mathcal{C}^2$

A: compressible

(Model 1):
$$m = \mathcal{O}$$

$$m = \mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^{k/2} + k^{\frac{4-q}{2-q}} d^{\frac{2}{2-q}} \log(k)\right) \Rightarrow \|f - \widehat{f}\|_{L_{\infty}} \le \varepsilon$$

only for radial basis functions

$$f(\mathbf{x}) = g_0(\|A\mathbf{x}\|_2)$$

*cost of learning A

$$\alpha = \Theta(\frac{1}{d})$$

*if f has k-restricted Hessian property...

Learning Multi-Ridge Functions

...And, this is how you learn non-parametric basis independent models from point-queries via low-rank methods

Learning multi-ridge functions

approximate multi-ridge functions Objective: via point queries

Model 1:
$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$$

Model 2:
$$f(x_1,\ldots,x_d) = \sum_{i=1}^k g_i(\mathbf{a}_i^T\mathbf{x})$$

$$f: B_{\mathbb{R}^d}(1+\overline{\epsilon}) \to \mathbb{R} \quad \mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]^T$$

Results:

cost of learning g

w.l.o.g. $g, g_i \in \mathcal{C}^2$

k < d

A: compressible

(Model 1&2):
$$m = \mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^{-k/2} + \frac{k^{\frac{4-q}{2-q}}d^{\frac{q}{2-q}}\log(k)}{\alpha}\right) \Rightarrow \|f - \widehat{f}\|_{L_{\infty}} \leq \varepsilon$$

Our 1st contribution:

a simple verifiable characterization of alpha for a broad set of functions

 $\alpha = \Theta(\frac{1}{3})$ *cost of learning A

Objective:

approximate multi-ridge functions via point queries

$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$$

k < d

$$f(x_1, \dots, x_d) = \sum_{i=1}^k g_i(\mathbf{a}_i^T \mathbf{x})$$

$$f: B_{\mathbb{R}^d}(1+\bar{\epsilon}) \to \mathbb{R} \quad \mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]^T$$

· Results:

cost of learning g

w.l.o.g. $g, g_i \in \mathcal{C}^2$

$$m = \mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^{-k/2} + \frac{k\log(k)}{\alpha} \times kd\right) \Rightarrow \|f - \widehat{f}\|_{L_{\infty}} \leq \varepsilon$$

our 2nd contribution:

extension to the general A

*cost of learning A

*if f has k-restricted Hessian property...

Objective:

approximate multi-ridge functions via point queries

$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$$

k < d

$$f(x_1, \dots, x_d) = \sum_{i=1}^k g_i(\mathbf{a}_i^T \mathbf{x})$$

$$f: B_{\mathbb{R}^d}(1+\overline{\epsilon}) \to \mathbb{R} \quad \mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]^T$$

Results:

cost of learning g_i's

w.l.o.g. $g, g_i \in \mathcal{C}^2$

(Model 2):
$$m = \mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^{-1/2}k + \frac{k\log(k)}{\alpha} \times kd\right) \Rightarrow \|f - \widehat{f}\|_{L_{\infty}} \leq \varepsilon$$

our 2nd contribution:

extension to the general A

*cost of learning A

Objective:

approximate multi-ridge functions via point queries

Model 1:
$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x}) \qquad k < d$$
 Model 2:
$$f(x_1, \dots, x_d) = \sum_{i=1}^k g_i(\mathbf{a}_i^T\mathbf{x})$$

$$\begin{array}{ll} (\mathbf{A}R)(\mathbf{A}R)^T = \mathbf{I}_k \\ \text{just kidding.} \end{array} f: B_{\mathbb{R}^d}(1+\bar{\epsilon}) \to \mathbb{R} \quad \mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]^T \end{array}$$

· Results:

cost of learning g_i's

w.l.o.g.
$$g, g_i \in \mathcal{C}^2$$

(Model 2):
$$m = \mathcal{O}\left(\frac{2}{\varepsilon}\right)^{k/2} + \frac{k\log(k)}{\alpha} \times kd \Rightarrow \|f - \widehat{f}\|_{L_{\infty}} \le \varepsilon$$

our 2nd contribution: extension to the general A

*cost of learning A

Objective:

approximate multi-ridge functions via point queries

$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$$

k < d

$$f(x_1, \dots, x_d) = \sum_{i=1}^k g_i(\mathbf{a}_i^T \mathbf{x})$$

in general

$$f: B_{\mathbb{R}^d}(1+\overline{\epsilon}) \to \mathbb{R} \quad \mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]^T$$

Results:

w.l.o.g. $g, g_i \in \mathcal{C}^2$ cost of learning g / g_i 's

(Model 1&2):
$$m = \mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^{-k/2} + k^2 d^2 \log(k)\right) \Rightarrow \|f - \widehat{f}\|_{L_{\infty}} \le \varepsilon$$

Given 1st and 2nd contribution: full characterization of Model 1 & 2 with minimal assumptions

*cost of learning 🗛

Learning multi-ridge functions

Objective:

approximate multi-ridge functions via point queries

Model 1:

$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$$

k < d

Model 2:

$$f(x_1, \dots, x_d) = \sum_{i=1}^k g_i(\mathbf{a}_i^T \mathbf{x})$$

$$f: B_{\mathbb{R}^d}(1+\overline{\epsilon}) \to \mathbb{R} \quad \mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]^T$$

Results:

cost of learning
$$oldsymbol{g}$$
 / $oldsymbol{g}_i$'s $\mbox{w.l.o.g.}$ $g,g_i\in\mathcal{C}^2$

(Model 1&2):
$$m = \mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^{-k/2} + k^2 d^{4.5}\log(k)\right) \Rightarrow \|f - \widehat{f}\|_{L_\infty} \leq \varepsilon$$

Our 3th contribution: impact of iid noise f+Z

*cost of learning A

Non-sparse directions A

A low-rank observation model

$$\langle \phi, A^T \nabla g(A\mathbf{x}) \rangle = \frac{1}{\epsilon} \left(f(\mathbf{x} + \epsilon \phi) - f(\mathbf{x}) \right) - E(\mathbf{x}, \epsilon, \phi)$$

along with two ingredients

sampling centers

$$\mathcal{X} = \{ \xi_j \in \mathbb{S}^{d-1}; j = 1, \dots, m_{\mathcal{X}} \}$$

sampling directions at each center

$$\Phi_j = \left[\phi_{1,j} \middle| \dots \middle| \phi_{m_{\Phi},j} \right]^T$$

leads to

$$\mathbf{y} = \Phi(\mathbf{X}) + E(\mathcal{X}, \epsilon, \mathbf{\Phi})$$

$$\mathbf{X} := egin{bmatrix} \mathbf{G} \ k imes m_{\mathcal{X}} \end{bmatrix} y_i = \sum_{j=1}^{m_{\mathcal{X}}} \left[rac{f(\xi_j + \epsilon \phi_{i,j}) - f(\xi_j)}{\epsilon}
ight]$$

$$\mathbf{G} := [\nabla g(\mathbf{A}\xi_1)|\nabla g(\mathbf{A}\xi_2)|\cdots|\nabla g(\mathbf{A}\xi_{m_{\mathcal{X}}})]_{k\times m_{\mathcal{X}}}$$

Detour #2: low-rank recovery

$$\mathbf{y} = \Phi(\mathbf{X}) + E(\mathcal{X}, \epsilon, \mathbf{\Phi})$$

$$\Phi: \mathbb{R}^{d \times m_{\mathcal{X}}} \to \mathbb{R}^{m_{\Phi}}$$

Stable recovery

<> measurements commensurate with degrees of freedom

– stable recovery:

$$\|\mathbf{X} - \widehat{\mathbf{X}}\|_{\mathrm{F}} \le C_1 \|\mathbf{X} - \mathbf{X}_k\|_{\mathrm{F}} + C_2 \|E\|_{\mathrm{F}}$$

– measurements:

$$m_{\Phi} = \mathcal{O}\left(k(d + m_{\mathcal{X}} - k)\right)$$

$$\hat{\mathbf{X}} = \Delta(\mathbf{y}, \Phi)$$
: decoder

$$\mathbf{X}_k = \arg\min_{\mathbf{Z}: \operatorname{rank}(\mathbf{Z}) \le k} \|\mathbf{X} - \mathbf{Z}\|_{\mathrm{F}}$$

Detour #2: low-rank recovery

$$\mathbf{y} = \Phi(\mathbf{X}) + E(\mathcal{X}, \epsilon, \mathbf{\Phi})$$

Stable recovery

$$\Phi: \mathbb{R}^{d \times m_{\mathcal{X}}} \to \mathbb{R}^{m_{\Phi}}$$

Matrix ALPS

http://lions.epfl.ch/MALPS
measurements commensurate
with degrees of freedom

- stable recovery:
$$\|\mathbf{X} - \widehat{\mathbf{X}}\|_{\mathrm{F}} \le C_1 \|\mathbf{X} - \mathbf{X}_k\|_{\mathrm{F}} + C_2 \|E\|_{\mathrm{F}}$$

– measurements:

$$m_{\Phi} = \mathcal{O}\left(k(d + m_{\mathcal{X}} - k)\right)$$

Convex/non-convex decoders <> sampling/noise type

<>

- affine rank minimization
- matrix completion

- robust principal component analysis

[Recht et al. (2010); Meka et al. (2009); Candes and Recht (2009); Candes and Tao (2010); Lee and Bresler (2010); Waters et al. (2011); Kyrillidis and Cevher (2012)]

Detour #2: low-rank recovery

$$\mathbf{y} = \Phi(\mathbf{X}) + E(\mathcal{X}, \epsilon, \mathbf{\Phi})$$

Stable recovery <>

Matrix ALPS

http://lions.epfl.ch/MALPS
measurements commensurate
with degrees of freedom

Matrix restricted isometry property (RIP):

$$(1 - \kappa_k) \le \frac{\|\Phi \mathbf{X}\|_{\mathrm{F}}^2}{\|\mathbf{X}\|_{\mathrm{F}}^2} \le (1 + \kappa_k), \ \forall \mathbf{X} : \mathrm{rank}(\mathbf{X}) \le k$$

[Plan 2011]

- affine rank minimization
- matrix completion
- robust principal component analysis

[Recht et al. (2010); Meka et al. (2009); Candes and Recht (2009); Candes and Tao (2010); Lee and Bresler (2010); Waters et al. (2011); Kyrillidis and Cevher (2012)]

Active sampling for RIP

$$\mathbf{y} = \Phi(\mathbf{X}) + E(\mathcal{X}, \epsilon, \mathbf{\Phi})$$

$$\mathbf{X} := \begin{bmatrix} \mathbf{G} & : \text{low rank} \\ \mathbf{A}^T & k \times m_{\mathcal{X}} \end{bmatrix}$$

- Recall the two ingredients $\Phi: \mathbb{R}^{d \times m_{\mathcal{X}}} \to \mathbb{R}^{m_{\Phi}}$
 - sampling centers $\mathcal{X} = \{\xi_j \in \mathbb{S}^{d-1}; j=1,\ldots,m_{\mathcal{X}}\}$
 - sampling directions at each center $\Phi_j = \left[\phi_{1,j} \mid \ldots \mid \phi_{m_\Phi,j} \right]^T$
- Matrix RIP <> uniform sampling on the sphere

$$\mathbf{\Phi} = \left\{ \phi_{i,j} \in B_{\mathbb{R}^d} \left(\sqrt{d/m_{\Phi}} \right) : [\phi_{i,j}]_l = \pm \frac{1}{\sqrt{m_{\Phi}}} \text{with probability } 1/2 \right\}$$

 $\Rightarrow 0 < \kappa_r < \kappa < 1$ with probability

$$1-2e^{-m_{\Phi}q(\kappa)+r(d+m_{\chi}+1)u(\kappa)}$$
, where $q(\kappa)=\frac{1}{144}\left(\kappa^2-\frac{\kappa^3}{9}\right)$ and $u(\kappa)=\log\left(\frac{36\sqrt{2}}{\kappa}\right)$

Here it is... our low-rank approach

Algorithm 1 Estimating $f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$

- 1: Choose m_{Φ} and $m_{\mathcal{X}}$ and construct the sets \mathcal{X} and Φ .
- 2: Choose ϵ and construct \mathbf{y} using $y_i = \sum_{j=1}^{m_{\mathcal{X}}} \left[\frac{f(\xi_j + \epsilon \phi_{i,j}) f(\xi_j)}{\epsilon} \right]$.
- 3: Obtain $\hat{\mathbf{X}}$ via a stable low-rank recovery algorithm.
- 4: Compute $SVD(\widehat{\mathbf{X}}) = \widehat{\mathbf{U}}\widehat{\Sigma}\widehat{\mathbf{V}}^T$ and set $\widehat{\mathbf{A}}^T = \widehat{\mathbf{U}}^{(k)}$, corresponding to k largest singular values.
- 5: Obtain $\widehat{f}(\mathbf{x}) := \widehat{g}(\widehat{\mathbf{A}}\mathbf{x})$ via quasi interpolants where $\widehat{g}(\mathbf{y}) := f(\widehat{\mathbf{A}}^T\mathbf{y})$.

achieve/balance three objectives simultaneously

- 1. guarantee RIP on Φ with m_{Φ}
- 2. ensure rank(G)=k with m_{χ}
- 3. contain E's impact with ϵ

$$\mathbf{y} = \Phi(\mathbf{X}) + E(\mathcal{X}, \epsilon, \mathbf{\Phi})$$

 $\mathbf{X} := \mathbf{A}^T \mathbf{G}$

Here it is... our low-rank approach

Algorithm 1 Estimating $f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$

- 1: Choose m_{Φ} and $m_{\mathcal{X}}$ and construct the sets \mathcal{X} and Φ .
- 2: Choose ϵ and construct \mathbf{y} using $y_i = \sum_{j=1}^{m_{\mathcal{X}}} \left| \frac{f(\xi_j + \epsilon \phi_{i,j}) f(\xi_j)}{\epsilon} \right|$.
- 3: Obtain **X** via a stable low-rank recovery algorithm. 4: Compute $SVD(\widehat{\mathbf{X}}) = \widehat{\mathbf{U}}\widehat{\Sigma}\widehat{\mathbf{V}}^T$ and set $\widehat{\mathbf{A}}^T = \widehat{\mathbf{U}}^{(k)}$, corresponding to k
 - largest singular values.
- 5: Obtain $\widehat{f}(\mathbf{x}) := \widehat{g}(\widehat{\mathbf{A}}\mathbf{x})$ via quasi interpolants where $\widehat{g}(\mathbf{y}) := f(\widehat{\mathbf{A}}^T\mathbf{y})$.
 - 1. guarantee RIP by construction <>
 - by Lipschitz assumption $\alpha = \Theta(\frac{1}{d})$ 2. ensure rank(G)=k <>
 - rank-1 + diagonal / interval matrices by controlling curvature $\epsilon = \mathcal{O}\left(\frac{\alpha}{\sqrt{d^{0.5}}}\right)$ 3. contain **E**'s impact <>
 - additive noise amplification by ϵ^{-1} collateral damage: **solution:** resample the **same** points

[VC and Tyagi 2012; Tyagi and VC, 2012]

 $d^{3/2+\varepsilon}$ -times

L-Lipschitz property

New objective: approximate A via point queries of f

$$f: B_{\mathbb{R}^d}(1+\overline{\epsilon}) \to \mathbb{R} \quad \mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]^T$$

New analysis tool: L-Lipschitz 2nd order derivative

recall
$$H^f := \int_{\mathbb{S}^{d-1}} \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^T d\mu_{\mathbb{S}^{d-1}}(\mathbf{x}) \ \sigma_k(H^f) \ge \alpha > 0$$

$$\frac{\left|\frac{\partial^2 g}{\partial y_i \partial y_j}(\mathbf{y}_1) - \frac{\partial^2 g}{\partial y_i \partial y_j}(\mathbf{y}_2)\right|}{\|\mathbf{y}_1 - \mathbf{y}_2\|_{l_2^k}} \le L_{i,j} \quad \text{Lipschitz constant} \quad L = \max_{1 \le i, j \le k} L_{i,j}$$

Proposition: k-th restricted singular value

New objective: approximate A via point queries of f

$$f: B_{\mathbb{R}^d}(1+\overline{\epsilon}) \to \mathbb{R} \quad \mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]^T$$

New analysis tool: L-Lipschitz 2nd order derivative

recall
$$H^f:=\int_{\mathbb{S}^{d-1}}\nabla f(\mathbf{x})\nabla f(\mathbf{x})^Td\mu_{\mathbb{S}^{d-1}}(\mathbf{x})\ \sigma_k(H^f)\geq \alpha>0$$

$$\frac{\left|\frac{\partial^{2} g}{\partial y_{i} \partial y_{j}}(\mathbf{y}_{1}) - \frac{\partial^{2} g}{\partial y_{i} \partial y_{j}}(\mathbf{y}_{2})\right|}{\left\|\mathbf{y}_{1} - \mathbf{y}_{2}\right\|_{l_{2}^{k}}} \leq L_{i,j} \quad \text{Lipschitz constant} \quad L = \max_{1 \leq i, j \leq k} L_{i,j} \quad \Rightarrow \alpha = \Theta\left(\frac{1}{d}\right)$$

(Model 1):
$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$$

 $+ \nabla^2 g(\mathbf{0})$ is full rank.

(Model 2):
$$f(\mathbf{x}) = \sum_{i=1}^k g_i(\mathbf{a}_i^T \mathbf{x}) \text{ or } f(\mathbf{x}) = \mathbf{a}_1^T \mathbf{x} + \sum_{i=2}^k g_i(\mathbf{a}_i^T \mathbf{x})$$

 $+ \nabla^2 g_i(\mathbf{0}) \neq 0, \forall i = 2, \dots, d$

Theorem: sample complexity

Algorithm 1 Estimating $f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$

- 1: Choose m_{Φ} and $m_{\mathcal{X}}$ and construct the sets \mathcal{X} and Φ .
- 2: Choose ϵ and construct \mathbf{y} using $y_i = \sum_{j=1}^{m_{\mathcal{X}}} \left| \frac{f(\xi_j + \epsilon \phi_{i,j}) f(\xi_j)}{\epsilon} \right|$.
- 3: Obtain **X** via a stable low-rank recovery algorithm.
- 4: Compute $SVD(\widehat{\mathbf{X}}) = \widehat{\mathbf{U}}\widehat{\Sigma}\widehat{\mathbf{V}}^T$ and set $\widehat{\mathbf{A}}^T = \widehat{\mathbf{U}}^{(k)}$, corresponding to k largest singular values.
- 5: Obtain $\widehat{f}(\mathbf{x}) := \widehat{g}(\widehat{\mathbf{A}}\mathbf{x})$ via quasi interpolants where $\widehat{g}(\mathbf{y}) := f(\widehat{\mathbf{A}}^T\mathbf{y})$.

Theorem 1 [Sample complexity of Algorithm 1] Let $\delta \in \mathbb{R}^+$, $\rho \ll 1$, and $\kappa < \sqrt{2} - 1$ be fixed constants. Choose

$$m_{\mathcal{X}} \ge \frac{2kC_2^2}{\alpha\rho^2}\log(k/p_1),$$

$$m_{\Phi} \ge \frac{\log(2/p_2) + 4k(d + m_{\mathcal{X}} + 1)u(\kappa)}{q(\kappa)}$$
, and

$$\epsilon \le \frac{\delta}{C_2 k^{5/2} d(\delta + 2C_2 \sqrt{2k})} \left(\frac{(1-\rho)m_{\Phi}\alpha}{(1+\kappa)C_0 m_{\mathcal{X}}} \right)^{1/2}.$$

Then, given $m = m_{\mathcal{X}}(m_{\Phi} + 1)$ samples, our function estimator \widehat{f} in step 5 of Algorithm 1 obeys $\left\| f - \widehat{f} \right\|_{L_{\infty}} \leq \delta$ with probability at least $1 - p_1 - p_2$.

Theorem: sample complexity

Algorithm 1 Estimating $f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$

- 1: Choose m_{Φ} and $m_{\mathcal{X}}$ and construct the sets \mathcal{X} and Φ .
- 2: Choose ϵ and construct \mathbf{y} using $y_i = \sum_{j=1}^{m_{\mathcal{X}}} \left| \frac{f(\xi_j + \epsilon \phi_{i,j}) f(\xi_j)}{\epsilon} \right|$.
- 3: Obtain $\hat{\mathbf{X}}$ via a stable low-rank recovery algorithm.
- 4: Compute $SVD(\widehat{\mathbf{X}}) = \widehat{\mathbf{U}}\widehat{\Sigma}\widehat{\mathbf{V}}^T$ and set $\widehat{\mathbf{A}}^T = \widehat{\mathbf{U}}^{(k)}$, corresponding to k largest singular values.
- 5: Obtain $\widehat{f}(\mathbf{x}) := \widehat{g}(\widehat{\mathbf{A}}\mathbf{x})$ via quasi interpolants where $\widehat{g}(\mathbf{y}) := f(\widehat{\mathbf{A}}^T\mathbf{y})$.

Theorem 1 [Sample complexity of Algorithm 1] Let $\delta \in \mathbb{R}^+$, $\rho \ll 1$, and

$$\kappa < \sqrt{2} - 1$$
 be fixed constants. Choose

$$m_{\mathcal{X}} \geq \frac{2kC_2^2}{\alpha \rho^2} \log(k/p_1),$$

$$m_{\Phi} \geq \frac{\log(2/p_2) + 4k(d+m_{\mathcal{X}}+1)u(\kappa)}{a(\kappa)}$$
, and

$$\epsilon \leq \frac{\delta}{C_2 k^{5/2} d(\delta + 2C_2 \sqrt{2k})} \left(\frac{(1-\rho)m_{\Phi}\alpha}{(1+\kappa)C_0 m_{\mathcal{X}}} \right)^{1/2}.$$

Then, given $m = m_{\mathcal{X}}(m_{\Phi} + 1)$ samples, our function estimator \widehat{f} in step 5 of Algorithm 1 obeys $\left\| f - \widehat{f} \right\|_{L^{\infty}} \leq \delta$ with probability at least $1 - p_1 - p_2$.

$$m_{\mathcal{X}} = \mathcal{O}\left(\frac{k \log k}{\alpha}\right)$$

$$m_{\Phi} = \mathcal{O}(k(d + m_{\mathcal{X}}))$$

$$\epsilon = \mathcal{O}\left(\frac{\alpha \delta}{\sqrt{d}}\right)$$

Matrix Danzig selector as running example

$$\widehat{\mathbf{X}}_{DS} = \arg\min_{M} \|M\|_{*} \text{ s.t. } \|\Phi^{*}(y - \Phi(M))\| \le \lambda$$

$$m_{\mathcal{X}} = \mathcal{O}\left(\frac{k \log k}{\alpha}\right)$$
 $m_{\Phi} = \mathcal{O}(k(d + m_{\mathcal{X}}))$
 $\epsilon = \mathcal{O}\left(\frac{\alpha \delta}{\sqrt{d}}\right)$

Matrix Danzig selector as running example

$$\widehat{\mathbf{X}}_{DS} = \arg\min_{M} \|M\|_{*} \text{ s.t. } \|\Phi^{*}(y - \Phi(M))\| \leq \lambda$$

$$m_{\mathcal{X}} = \mathcal{O}\left(\frac{k \log k}{\alpha}\right)$$

$$m_{\Phi} = \mathcal{O}(k(d + m_{\mathcal{X}}))$$

$$\epsilon = \mathcal{O}\left(\frac{\alpha \delta}{\sqrt{d}}\right)$$

Tuning parameters

Proposition 1 We have $\|\varepsilon\|_{\ell_2^{m_{\Phi}}} \leq \frac{C_2\epsilon dm_{\mathcal{X}}k^2}{2\sqrt{m_{\Phi}}}$. Moreover, it holds that $\|\Phi^*(\varepsilon)\| \leq \lambda = \frac{C_2\epsilon dm_{\mathcal{X}}k^2}{2\sqrt{m_{\Phi}}}(1+\kappa)^{1/2}$, with probability at least $1-2e^{-m_{\Phi}q(\kappa)+(d+m_{\mathcal{X}}+1)u(\kappa)}$.

Matrix Danzig selector as running example

$$\widehat{\mathbf{X}}_{DS} = \arg\min_{M} \|M\|_{*} \text{ s.t. } \|\Phi^{*}(y - \Phi(M))\| \le \lambda$$

$$m_{\mathcal{X}} = \mathcal{O}\left(\frac{k \log k}{\alpha}\right)$$

$$m_{\Phi} = \mathcal{O}(k(d + m_{\mathcal{X}}))$$

$$\epsilon = \mathcal{O}\left(\frac{\alpha \delta}{\sqrt{d}}\right)$$

- Tuning parameters
- Recovery guarantees on X

Corollary 1 Denoting $\widehat{\mathbf{X}}_{DS}$ to be the solution of the matrix Danzig selector, if $\widehat{\mathbf{X}}_{DS}^{(k)}$ is the best rank-k approximation to $\widehat{\mathbf{X}}_{DS}$ in the sense of $\|\cdot\|_F$, and if $\kappa_{4k} < \kappa < \sqrt{2} - 1$, then we have

$$\left\|\mathbf{X} - \widehat{\mathbf{X}}_{DS}^{(k)}\right\|_F^2 \le 4C_0k\lambda^2 = \frac{C_0C_2^2k^5\epsilon^2d^2m_{\mathcal{X}}^2}{m_{\Phi}}(1+\kappa),$$
with probability at least $1 - 2e^{-m_{\Phi}q(\kappa) + 4k(d+m_{\mathcal{X}}+1)u(\kappa)}$.

Matrix Danzig selector as running example

$$\widehat{\mathbf{X}}_{DS} = \arg\min_{M} \|M\|_{*} \text{ s.t. } \|\Phi^{*}(y - \Phi(M))\| \le \lambda$$

$$m_{\mathcal{X}} = \mathcal{O}\left(\frac{k \log k}{\alpha}\right)$$

$$m_{\Phi} = \mathcal{O}(k(d + m_{\mathcal{X}}))$$

$$\epsilon = \mathcal{O}\left(\frac{\alpha \delta}{\sqrt{d}}\right)$$

- Tuning parameters
- Recovery guarantees on X
- Translation of guarantees on X to guarantees on A

Lemma 1 For a fixed
$$0 < \rho < 1$$
, $m_{\mathcal{X}} \ge 1$, $m_{\Phi} < m_{\mathcal{X}} d$ if $\epsilon < \frac{1}{C_2 k^2 d(\sqrt{k} + \sqrt{2})} \left(\frac{(1 - \rho) m_{\Phi} \alpha}{(1 + \kappa) C_0 m_{\mathcal{X}}} \right)^{1/2}$, then with probability at least $1 - k \exp\left\{-\frac{m_{\mathcal{X}} \alpha \rho^2}{2kC_2^2}\right\} - 2 \exp\left\{-m_{\Phi} q(\kappa) + 4k(d + m_{\mathcal{X}} + 1)u(\kappa)\right\}$ we have
$$\left\|\mathbf{A}\widehat{\mathbf{A}}^T\right\|_F \ge \left(k - \frac{2\tau^2}{(\sqrt{(1 - \rho) m_{\mathcal{X}} \alpha} - \tau)^2}\right)^{1/2},$$
 where $\tau^2 = \frac{C_0 C_2^2 k^5 \epsilon^2 d^2 m_{\mathcal{X}}^2}{m_{\Phi}}(1 + \kappa)$ is the error bound derived in Corollary 1.

This is precisely where the restricted Hessian property is used...

Matrix Danzig selector as running example

$$\widehat{\mathbf{X}}_{DS} = \arg\min_{M} \|M\|_{*} \text{ s.t. } \|\Phi^{*}(y - \Phi(M))\| \le \lambda$$

$$m_{\mathcal{X}} = \mathcal{O}\left(\frac{k \log k}{\alpha}\right)$$

$$m_{\Phi} = \mathcal{O}(k(d + m_{\mathcal{X}}))$$

$$\epsilon = \mathcal{O}\left(\frac{\alpha \delta}{\sqrt{d}}\right)$$

- Tuning parameters
- Recovery guarantees on X
- Translation of guarantees on X to guarantees on A
- Translation of guarantees on A to guarantees on f

First observe that:
$$\widehat{f}(\mathbf{x}) = f(\widehat{\mathbf{A}}^T \widehat{\mathbf{A}} \mathbf{x}) = g(\mathbf{A} \widehat{\mathbf{A}}^T \widehat{\mathbf{A}} \mathbf{x}).$$

$$\Rightarrow \left| f(\mathbf{x}) - \widehat{f}(\mathbf{x}) \right| = \left| g(\mathbf{A} \mathbf{x}) - g(\mathbf{A} \widehat{\mathbf{A}}^T \widehat{\mathbf{A}} \mathbf{x}) \right| \le C_2 \sqrt{k} \left\| (\mathbf{A} - \mathbf{A} \widehat{\mathbf{A}}^T \widehat{\mathbf{A}}) \mathbf{x} \right\|_{\ell_2^k} \le C_2 \sqrt{k} \left\| \mathbf{A} - \mathbf{A} \widehat{\mathbf{A}}^T \widehat{\mathbf{A}} \right\|_F \|\mathbf{x}\|_{\ell_2^d}.$$
Now it is easy to verify that:

$$\left\|\mathbf{A} - \mathbf{A}\widehat{\mathbf{A}}^T\widehat{\mathbf{A}}\right\|_F^2 = \text{Tr}((\mathbf{A}^T - \widehat{\mathbf{A}}^T\widehat{\mathbf{A}}\mathbf{A}^T)(\mathbf{A} - \mathbf{A}\widehat{\mathbf{A}}^T\widehat{\mathbf{A}})) = k - \left\|\mathbf{A}\widehat{\mathbf{A}}^T\right\|_F^2.$$

Impact of noisy queries

Algorithm 1 Estimating $f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$

- 1: Choose m_{Φ} and $m_{\mathcal{X}}$ and construct the sets \mathcal{X} and Φ .
- 2: Choose ϵ and construct \mathbf{y} using $y_i = \sum_{j=1}^{m_{\mathcal{X}}} \left[\frac{f(\xi_j + \epsilon \phi_{i,j}) f(\xi_j)}{\epsilon} \right]$.
- 3: Obtain $\hat{\mathbf{X}}$ via a stable low-rank recovery algorithm.
- 4: Compute $SVD(\widehat{\mathbf{X}}) = \widehat{\mathbf{U}}\widehat{\Sigma}\widehat{\mathbf{V}}^T$ and set $\widehat{\mathbf{A}}^T = \widehat{\mathbf{U}}^{(k)}$, corresponding to k largest singular values.
- 5: Obtain $\widehat{f}(\mathbf{x}) := \widehat{g}(\widehat{\mathbf{A}}\mathbf{x})$ via quasi interpolants where $\widehat{g}(\mathbf{y}) := f(\widehat{\mathbf{A}}^T\mathbf{y})$.
 - Assume evaluation of **f** yields $f(\mathbf{x}) + Z$, where $Z \sim \mathcal{N}(0, \sigma^2)$

Impact of noisy queries

Algorithm 1 Estimating $f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$

- 1: Choose m_{Φ} and $m_{\mathcal{X}}$ and construct the sets \mathcal{X} and Φ .
- 2: Choose ϵ and construct \mathbf{y} using $y_i = \sum_{j=1}^{m_{\mathcal{X}}} \left[\frac{f(\xi_j + \epsilon \phi_{i,j}) f(\xi_j)}{\epsilon} \right]$.
- 3: Obtain X via a stable low-rank recovery algorithm.
- 4: Compute $SVD(\widehat{\mathbf{X}}) = \widehat{\mathbf{U}}\widehat{\Sigma}\widehat{\mathbf{V}}^T$ and set $\widehat{\mathbf{A}}^T = \widehat{\mathbf{U}}^{(k)}$, corresponding to k largest singular values.
- 5: Obtain $\widehat{f}(\mathbf{x}) := \widehat{g}(\widehat{\mathbf{A}}\mathbf{x})$ via quasi interpolants where $\widehat{g}(\mathbf{y}) := f(\widehat{\mathbf{A}}^T\mathbf{y})$.
 - Assume evaluation of ${m f}$ yields $f({f x}) + Z,$ where $Z \sim \mathcal{N}(0,\sigma^2)$ tuning parameter changes:

$$\|\Phi^*(\varepsilon + \mathbf{z})\| \le \frac{2\gamma\sigma}{\epsilon} \sqrt{2(1+\kappa)m_{\mathcal{X}}m_{\Phi}} + \frac{C_2\epsilon dm_{\mathcal{X}}k^2}{2\sqrt{m_{\Phi}}} (1+\kappa)^{1/2}, \quad (\gamma > 2\sqrt{\log 12}).$$

Impact of noisy queries

Algorithm 1 Estimating $f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$

- 1: Choose m_{Φ} and $m_{\mathcal{X}}$ and construct the sets \mathcal{X} and Φ .
- 2: Choose ϵ and construct \mathbf{y} using $y_i = \sum_{j=1}^{m_{\mathcal{X}}} \left| \frac{f(\xi_j + \epsilon \phi_{i,j}) f(\xi_j)}{\epsilon} \right|$.
- 3: Obtain \mathbf{X} via a stable low-rank recovery algorithm.
- 4: Compute $SVD(\widehat{\mathbf{X}}) = \widehat{\mathbf{U}}\widehat{\Sigma}\widehat{\mathbf{V}}^T$ and set $\widehat{\mathbf{A}}^T = \widehat{\mathbf{U}}^{(k)}$, corresponding to k largest singular values.
- 5: Obtain $\widehat{f}(\mathbf{x}) := \widehat{g}(\widehat{\mathbf{A}}\mathbf{x})$ via quasi interpolants where $\widehat{g}(\mathbf{y}) := f(\widehat{\mathbf{A}}^T\mathbf{y})$.
 - Assume evaluation of ${\bf f}$ yields $f({\bf x}) + Z$, where $Z \sim \mathcal{N}(0, \sigma^2)$ tuning parameter changes:

$$\|\Phi^*(\varepsilon + \mathbf{z})\| \le \frac{2\gamma\sigma}{\epsilon} \sqrt{2(1+\kappa)m_{\mathcal{X}}m_{\Phi}} + \frac{C_2\epsilon dm_{\mathcal{X}}k^2}{2\sqrt{m_{\Phi}}} (1+\kappa)^{1/2}, \quad (\gamma > 2\sqrt{\log 12}).$$

$$\Rightarrow m = \mathcal{O}\left(\frac{\sqrt{d}}{\alpha}\right)m_{\mathcal{X}}(m_{\Phi}+1)$$

We resample the same data points $\mathcal{O}(\epsilon^{-1})$ -times and average.

Learning a logistic function

$$f(\mathbf{x}) = g(\mathbf{a}^T \mathbf{x})$$
, where $g(y) = \frac{1}{1 + e^{-y}}$

$$\alpha = \int |g'(\mathbf{a}^T \mathbf{x})|^2 d\mu_{\mathbb{S}^{d-1}} \approx |g'(0)|^2 = (1/16)$$

$$C_2 = \sup_{|\beta| \le 2} |g^{(\beta)}(y)| = 1$$

 $|\langle \hat{\mathbf{a}}, \mathbf{a} \rangle| \ge 0.99$

Declare success if

theory:
$$m = O(d)$$

theory: $m_{\Phi} = \mathcal{O}(d)$ practice: $m_{\Phi} = 1.45d$

Learning sum of Gaussian functions

$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x} + \mathbf{b}) = \sum_{i=1}^{k} g_i(a_i^T\mathbf{x} + b_i)$$

$$d = 100$$

$$\epsilon = 10^{-3}$$

$$g_i(y) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{(y+b_i)^2}{2\sigma_i^2}\right)$$

6000

$$\epsilon=10^{-3}$$
 BUT WHEN I DO, I PREFER GAUSSIANS GAUSSIANS

I DON'T ALWAYS LEARN

Stability example with the quadratic

$$f(\mathbf{x}) = g(\mathbf{A}\mathbf{x}) = \|\mathbf{A}\mathbf{x} - b\|^2$$

$$\tilde{f}(\mathbf{x}) = f(\mathbf{x}) + \sigma \mathcal{N}(0, 1)$$

2000

$$m_{\mathcal{X}} = 30$$

$$\sigma = 0.01$$

k=5

 $\epsilon = 10^{-1}$

• Declare success if
$$\frac{1}{2} \| \mathbf{A} \widehat{\mathbf{A}}^T \|^2 > 0.99$$

Main focus

 estimation of low-dim subspace for dimensionality reduction
 learning/optimizing f for later model building, cluster analysis,

variable selection...

Active setting

<>

polynomial time samples/scheme a new link between old low-rank models with new low-rank algorithms

New tools

L-Lipschitz 2nd order derivative matrix ALPS for low-rank recov.

beyond linear models

system calibration, PDE models, matrix compression...