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Motivation:   solve bigger / more important problems 
 

       decrease acquisition times / costs 
 

       entertainment / new consumer products… 

Major trends higher resolution / denser sampling  

x 
large numbers of sensors 

x 
increasing # of modalities / mobility 160MP 



• Sampling at Nyquist rate  
 
– expensive / difficult 

 
• Data deluge  

 
– communications / storage 

 
• Sample then compress 

 
– inefficient / impossible / not future 

proof 
 
 

Problems of the current paradigm 



• Recommender systems 
 

– observe partial information  
 
   “ratings” 
   “clicks” 
   “purchases” 
   “compatibilities” 
 

 

 
 
 

Recommended for you: A more familiar example 



• Recommender systems 
 

– observe partial information  
 
   “ratings” 
   “clicks” 
   “purchases” 
   “compatibilities” 

 

• The Netflix problem 
 

– from approx. 100,000,000 ratings 
predict 3,000,000 ratings  
 

– 17770 movies x 480189 users 
 

– how would you automatically predict? 
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• Recommender systems 
 

– observe partial information  
 
   “ratings” 
   “clicks” 
   “purchases” 
   “compatibilities” 

 

• The Netflix problem 
 

– from approx. 100,000,000 ratings 
predict 3,000,000 ratings  
 

– 17770 movies x 480189 users 
 

– how would you automatically predict? 
 

– what is it worth?  
 

 

Recommended for you: A more familiar example 



• Matrix completion for Netflix 
 

 

Theoretical set-up 

users m
ovies 



• Matrix completion for Netflix 
 
 
 
 
 

• Mathematical underpinnings: compressive sensing 
 
 
 
 
 CS: when we have less samples than the ambient dimension 

Theoretical set-up 

users m
ovies 

linear (sampling) operator 

(adversarial) perturbations  
observations 



Linear Inverse Problems 

 
 
 
 

 
 
 
 
 
 

 
Myriad applications involve linear dimensionality reduction  
deconvolution to data mining 
compression to compressive sensing 
geophysics to medical imaging   [Baraniuk, C, Wakin 2010; Carin et al. 2011] 



Linear Inverse Problems 

 
 
 
 

 
 
 
 
 
 

 
 
• Challenge:  



Linear Inverse Problems 

 
 
      Deterministic        Probabilistic 

 
Prior    sparsity        distribution 

            
 
 

Metric              likelihood/  
       posterior  

 
 



 
 

Deterministic Low-Dimensional Models 



Sparse representations 

• Sparse signal  
  

  only K out of N  
  coordinates nonzero 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sorted index 

support: 



Sparse representations 

• Sparse signal  
  

  only K out of N  
  coordinates nonzero 
  in an appropriate  
  representation 
   
• Sparse representations 
 

  sparse transform  
  coefficients 
  

– Basis representations 
 
 

 Wavelets, DCT…   
 

– Frame representations 
 
 

 Gabor, curvelets, shearlets… 
 

– Other dictionary representations…  
 
 
 
 
 
 
 
 
 
 
 
 



Sparse representations 

• Sparse signal: 
  

  only K out of N  
  coordinates nonzero 
    

 
 

• Sparse representations: 
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• A fundamental impact: 
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Sparse representations 

• Sparse signal: 
  

  only K out of N  
  coordinates nonzero 
    

 
 

• Sparse representations: 
 

  sparse transform  
  coefficients 
  

 
• A fundamental impact: 

 
 
 
 becomes effectively 

  low dimensional* 
 
                   *: If we knew the locations of the  

         coefficients. More on this later.  
 
 
 
 
 
 
 
 
 



pixels 
large 
wavelet 
coefficients 
 

(blue = 0) 

sparse 
signals 

low-rank 
matrices 

Information  
level: 

Low-dimensional signal models 

nonlinear 
models 



nonlinear 
models 

sparse 
signals 

low-rank 
matrices 

Low-dimensional signal models 

• These lectures 
 
 
 
 Low-dimensional models 

based on 
linear representations 



Linear representation of low-dimensional models 

• A key notion in sparse representation  
 
 
– synthesis of the signal using a few vectors 

  
 
• A slightly different mathematical formalism for generalization 

 
 
 
 
 
 
 
 
 
 
 
i.e., linear (positive) combination of elements from an atomic set 

 
 
 
 
 
 

  
  

 
 
 
 

Synthesis model: 

[Chandrasekaran et al. 2010] 



Linear representation of low-dimensional models 

• A key notion in sparse representation  
 
 
– synthesis of the signal using a few vectors 

  
 
• Sparse representations via the atomic formulation 

 
 
 
 
 
 
– Example:  

 
 
 
 



Linear representation of low-dimensional models 

• Basic definitions on low-dimensional atomic representations 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



Linear representation of low-dimensional models 

• Basic definitions on low-dimensional atomic representations 
 
 
 
 
 
–              : convex hull of atoms in A   

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



Linear representation of low-dimensional models 

• Basic definitions on low-dimensional atomic representations 
 
 
 
 
 
–              : convex hull of atoms in A   

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

atomic ball 



• Basic definitions on low-dimensional atomic representations 
 
 
 
 
 
–              : convex hull of atoms in A   

 
 
 
 
–           : atomic norm* 

 
 
 
 
 
 

 *: requires A  to be centrally symmetric 
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Linear representation of low-dimensional models 

• Basic definitions on low-dimensional atomic representations 
 
 
 
 
 
–              : convex hull of atoms in A   

 
 
 
 
–           : atomic norm* 

 
 
 
 
 
 
 
 
 

 *: requires A  to be centrally symmetric 

 
 
 
 
 

 
 
 
 

Alternative: 



Linear representation of low-dimensional models 

Examples with easy forms: 
 

• sparse vectors 
 
 
 
 
 

• low-rank matrices 
 
 
 
 
 

• binary vectors 
 
 
 
 
 
 

 
 
 
 

*symmetric 
   matrices 

* 



Linear representation of low-dimensional models 

Examples with easy forms: 
 

• sparse vectors 
 
 
 
 
 

• low-rank matrices 
 
 
 
 
 

• binary vectors 
 
 
 
 
 
 

 
 
 
 

Examples with no-so-easy forms: 
 
A : infinite set of unit-norm rank-one tensors 

 
A : finite (but large) set of permutation matrices 

 
A : infinite set of orthogonal matrices 

 
A : infinite set of matrices constrained by eigenvalues 

 
A : infinite set of measures 

 
A : finite (but large) set of cut matrices 

 [Chandrasekaran et al. 2010] 



Linear representation of low-dimensional models 

Pop-quiz: 

What is           ? 



Linear representation of low-dimensional models 

Pop-quiz: 

What is           ? 

HINT: 



Linear representation of low-dimensional models 

Pop-answer: 

What is           ? 



Towards algorithms: a geometric perspective 

Other key concepts: 
 
•   
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Tangent cone  
is the set of descent 
directions where you 
do not increase the 
atomic norm. 
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Consider the criteria:  
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Towards algorithms: a geometric perspective 

 
 
 
   
 
 
 
 
 
 

  
  

 
 
 
 

Stability assumption: 
 
 

How about noise? 

Matlab notation 

For this 2D example: 

want epsilon large 
to minimize overlap 
between 
and 



Towards algorithms: a geometric perspective 

 
 
 
   
 
 
 
 
 
 

  
  

 
 
 
 

Stability assumption: 
 
 

How about noise? 



Towards algorithms: a geometric perspective 

 
 
 
   
 
 
 
 
 
 

  
  

 
 
 
 

Can we guarantee the following?* 

*without knowing  



Towards algorithms: a geometric perspective 

 
 
 
   
 
 
 
 
 
 

  
  

 
 
 
 

Can we guarantee the following?* 

*without knowing  

Gordon’s Minimum Restricted 
Singular Values Theorem has a 
probabilistic characterization. 

deterministic 

probabilistic 

YES: with randomized measurements! 

[Gordon 1988] 



Towards algorithms: a geometric perspective 

 
 
 
   
 
 
 
 
 
 

  
  

 
 
 
 

Can we guarantee the following?* 

*without knowing  

Gordon’s Minimum Restricted 
Singular Values Theorem has a 
probabilistic characterization. 

Key concept:  
width of the tangent cone! 
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Can we guarantee the following?* 

*without knowing 1-sparse      and 1-random measurement  
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Can we guarantee the following?* 

*without knowing 1-sparse      and 1-random measurement  



Towards algorithms: a geometric perspective 

 
 
 
   
 
 
 
 
 
 

  
  

 
 
 
 

Can we guarantee the following?* 

http://www.agrell.info/erik/chalmers/hypercubes/ 

A projected 6D hypercube with 64 vertices 

Blessing-of-dimensionality! 

http://www.agrell.info/erik/chalmers/hypercubes/


Towards algorithms: a geometric perspective 

 
 
 
   
 
 
 
 
 
 

  
  

 
 
 
 

Pop-quiz: 

What is the probability that  
we can determine a 2-sparse x*  
with 1-random measurement? 



Towards algorithms: a geometric perspective 

 
 
 
   
 
 
 
 
 
 

  
  

 
 
 
 

Pop-answer: 

Tangent cone is too wide! 
Need at least 2 measurements! 



Take home messages 

 
 
 
 
 
 
 

 convex polytope  <>  atomic norm 
 

– geometry (and algebra) of representations in high dimensions 
 

 geometric perspective <>  convex criteria 
 

– convex optimization algorithms in high dimensions 
 

 tangent cone width <>  # of randomized samples 
 

– probabilistic concentration-of-measures in high dimensions  
 

  

[Chandrasekaran et al. 2010] 



• Matrix completion for Netflix 
 
 
 
 
 

• What is low-rank? 
 

 

Back to the initial example 

users m
ovies 

17770 movies x 480189 users 



• Matrix completion for Netflix 
 
 
 
 
 

• What does the simple low-rank assumption buy? 
 

 

Back to the initial example 

users m
ovies 

17770 movies x 480189 users 

quite a lot of extrapolation power! 





and do this fast 
with theoretical guarantees 

three 



Sampling/sketching design 

random 
pattern on 
DMD array 

DMD DMD 

single photon  
detector 

image 
reconstruction 

or 
processing 

scene 

+Coding theory 
+Theoretical computer science 
+Learning theory 
+Databases 

• Structured 
random matrices 
 

• 1-bit CS 
 

• expanders & 
extractors 



• Sparsity 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Structured recovery +Theoretical computer science 
+Learning theory 
+Optimization 
+Databases 

sorted index 

 Sparse vector 
  

  only K out of N  
  coordinates nonzero 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



• Sparsity 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Structured recovery +Theoretical computer science 
+Learning theory 
+Optimization 
+Databases 

sorted index 

 Structured sparse vector 
  

  only certain K out of N  
  coordinates nonzero 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



• Structured sparsity 
    

   

   + requires smaller sketches 
   
  + enhanced recovery 

 

   + faster recovery 
 
 
 
 
 

support of the solution     <>    modular approximation problem 
            integer linear program 

 
 

 
 
 

• Recovery with low-dimensional models, including low-rank… 
 

Structured recovery 

matroid structured sparse models 

clustered /diversified sparsity models 

tightly connected with max-cover, 
binpacking, knapsack problems 

+Theoretical computer science 
+Learning theory 
+Optimization 
+Databases 



• Quantum state estimation 
 

 a state of n possibly-entangled qubits takes  

~2n bits to specify, even approximately 
 
 

• Recovery with rank and trace constraints 

       with M=O(N) 

1. Create Pauli measurements (semi-random) 

2. Estimate Tr(Φiρ) for each 1≤i≤M 

3. Find any “hypothesis state” σ st Tr(Φ iσ)≈Tr(Φ iρ) for all 1≤i≤M 
 

• Huge dimensional problem!   
─ (desperately) need scalable algorithms  
─ also need theory for perfect density estimation 

 

 

Quantum tomography +Theoretical computer science 
+Databases 
+Information theory 
+Optimization 

0

1



• A fundamental problem: 
 
given                              learn a mapping  

 
 

• Our interest   <> non-parametric functions 
 

     graphs (e.g., social networks) 
     

      dictionary learning… 
 
• Rigorous foundations <> sample complexity 

 

      approximation guarantees 
 

      tractability 
 

• Key tools   <> sparsity/low-rankness  
      

     submodularity 
 

     smoothness 
 
 
 
       

Learning theory and methods +Learning theory 
+Optimization 
+Information theory 
+Theoretical computer science 



 
• Goal: seek distributions whose iid realizations   

  can be well-approximated as sparse 
 

Definition:       
 

 

sorted index 

relative k-term approximation: 

Compressible priors +Learning theory 
+Statistics 
+Information theory 



 
• Goal: seek distributions whose iid realizations  

  can be well-approximated as sparse 
 

  
    

 

 

sorted index 

Classical: New: 

Compressible priors +Learning theory 
+Information theory 



 
• Goal: seek distributions whose iid realizations  

  can be well-approximated as sparse 
 
 

• Motivations: deterministic embedding scaffold  
   for the probabilistic view  
 

    analytical proxies for sparse signals 
     

– learning       (e.g., dim. reduced data) 
– algorithms   (e.g., structured sparse) 

  

    information theoretic (e.g., coding) 
 
    lots of applications in vision, image 

   understanding / analysis 
 
 
 
 
 

 
 

Compressible priors +Learning theory 
+Statistics 
+Information theory 
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