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Major trends higher resolution / denser sampling

X

large numbers of sensors

X
increasing # of modalities / mobility

Motivation: solve bigger / more important problems

decrease acquisition times / costs

entertainment / new consumer products...



Problems of the current paradigm

2004-2010

1999 to 2004
\. __Upto1999

SNRbits (effective number of bits)

« Sampling at Nyquist rate IR
o
— expensive / difficult o o [H1]'oﬂ 10"
1000 i
e Data deluge o | wemat , Soo% &
ERay Microsoft e
| | N w ers :c
— communications / storage LA
12000 ’ 2005 2010 2015 2020 2025
e Sample then compress =

— Inefficient / impossible / not future —
proof _ =a




Recommended for you: A more familiar example

e Recommender systems © v irirt:

T Clear Rating

You rated this movie: 1.0 stars

— observe partial information Average of 597,034 ratings: 2.7 stars

“ratings”
“clicks”
“purchases”
“compatibilities” Peopie

G reat_ . Mathan and Angela
Relationships! 8 Matched by etarmony

Get started Now. simply fill out this form
and take the questionnaire to receive your matches.

Register to Begin m

amazon.com Recommended for You

&mazon.com has new recommendations for you based on jtems you purchased

—w‘\.ll.l!: PiSIEE:
TOMPENERS

The Little Big  Fascinate: Your
Things: 162 7 Triggers to
Ways to Pursue Persuasion an
EXCELLEMCE Captivation




Recommended for you: A more familiar example

< Recommender systems © v ey

T Clear Rating

You rated this movie: 1.0 stars

_ Observe partial information Average of 597,034 ratings: 2.7 stars

“ratings”
“clicks”
“purchases”
“compatibilities” Peopie

Great

-
Relationships! Matched by eHammony
® T h N tfl b I m o Get started Now. simply fil out this form
e e I X ro e and take the questionnaire to receive your matches.

— from approx. 100,000,000 ratings Register to Begin
predict 3,000,000 ratings

amazon.com

Recommended for You

— 17770 movies X 480189 users

&mazon.com has new recommendations for you based on jtems you purchased

BUTE]

— how would you automatically predict? B ™

rouperis
The Little Big  Fascinate: Your Sherlock Alice in
Things: 163 7 Triggers to Heolmes [Blu- Wonder land

Ways to Dursue DPersuasion and ray BElu-ray]
EXCELLEMCE Captivation




Recommended for you: A more familiar example

= Recommender systems Sdakatake

T Clear Rating

You rated this movie: 1.0 stars

_ Observe partial informatiOn Average of 597,034 ratings: 2.7 stars
“ratings”
“clicks”
“purchases” _
“compatibilities” Peopten.

Great
Relationships! Matched by eHarmony

Get started Now. simply fill out this form
and take the questionnaire to receive your matches.

— from approx. 100,000,000 ratings registerte Begn
predict 3,000,000 ratings

amazon.com

Recommended for You

— 17770 movies X 480189 users

— how would you automatically predict?

= = f) The Little Big  Fascinate: Your Sherlock Alice in
— W at I S I t WO rt / Things: 163 7 Triggers to Heolmes [Blu- Wonderland
Ways to Pursue Persuasion and ray Blu-ray]

EXCELLENCE Captivation




Theoretical set-up

e Matrix completion for Netflix

o

users ——

<« S3lAOW



Theoretical set-up

e Matrix completion for Netflix

users ——

2 i

<« S3lAOW

e Mathematical underpinnings: compressive sensing

'/(adversarial) perturbations

observations = — (I)(X) +n

K linear (sampling) operator

CS: when we have less samples than the ambient dimension



Linear Inverse Problems

u D X
l... ]
]
M x 1 M x N (M < N)

N x1

Myriad applications involve linear dimensionality reduction
deconvolution to data mining

compression to compressive sensing

geophySICS to medlcal Imaglng [Baraniuk, C, Wakin 2010; Carin et al. 2011]



Linear Inverse Problems

u D X

bR R

M x 1 M x N (M < N)

= Challenge: Null space of ®: N (D)
(I)CC, :(I)(m_I_fU) = Uu, \V/’U EN((I))



Linear Inverse Problems

(@'ﬁ
Y W\ a“/ |

Deterministic

g

Probabilistic

Prior ©parsity distribution
Metric ¢,-norm* likelihood/
posterior

Nl = (5, |2P) "




Deterministic Low-Dimensional Models




Sparse representations

N x 1
e Sparse signal & N
only K out of N -
coordinates nonzero support: —
-
alo=S|=K F
oflo =1S|=K H
84
K =
R3
K N

sorted index




Sparse representations

e Sparse signal T

only K out of N
coordinates nonzero
INn an appropriate
representation

e Sparse representations

sparse transform
coefficients &« T

Q

— Basis representations

U ¢ RVXN
= Wavelets, DCT...

— Frame representations

U eRVXL > N

= Gabor, curvelets, shearlets...

— Other dictionary representations...



Sparse representations

e Sparse signal:

only K out of N
coordinates nonzero

K< N

e Sparse representations:

sparse transform
coefficients

e A fundamental impact:

Q



Sparse representations

e Sparse signal:

only K out of N
coordinates nonzero

K< N

e Sparse representations:

sparse transform
coefficients

e A fundamental impact:

Q

O TTITIWTT] O




Sparse representations

e Sparse signal:

only K out of N
coordinates nonzero

K< N

e Sparse representations:

sparse transform
coefficients

e A fundamental impact:

EEE EEEEN EECEEN Q

Q



Sparse representations

e Sparse signal:

only K out of N
coordinates nonzero

K< N

e Sparse representations:

sparse transform
coefficients

e A fundamental impact:

D

becomes effectively
low dimensional™

M x K

M > K

*- If we knew the locations of the
coefficients. More on this later.

Q



Low-dimensional signal models

pixels

v

sparse low-rank
sighals matrices

Information
level:

K <KKN
large
wavelet

coefficients
(blue = 0)

68

nonlinear
models



Low-dimensional signal models

e These lectures

Low-dimensional models
based on
linear representations

RN RN

v

sparse low-rank
sighals matrices

©

nonlinear
models



Linear representation of low-dimensional models

e A key notion in sparse representation

— synthesis of the signal using a few vectors

e A slightly different mathematical formalism for generalization

| A
Synthesis model: T = E a;C; a; € A,ci >0
=1
a;: atoms

A: atomic set

I.e., linear (positive) combination of elements from an atomic set
[Chandrasekaran et al. 2010]



Linear representation of low-dimensional models

e A key notion in sparse representation

— synthesis of the signal using a few vectors

e Sparse representations via the atomic formulation

|A| a; € A, c; > 0
r = E a;Cq a;: atoms
i=1 A: atomic set
— Example:
le:['ﬁL’l,.-.,wL] A:{wla"'awLa_wla“'a_wL}
rank(¥) = N ) i a; >0
= 0, otherwise. i=1,...,L

-y, o < 0;
Ci+L — .
0, otherwise.



Linear representation of low-dimensional models

e Basic definitions on low-dimensional atomic representations

| Al K < N

a; € A,c; >0
L = E a;C;
P leillo < K




Linear representation of low-dimensional models

e Basic definitions on low-dimensional atomic representations

Al K < N
a; € A, c; >0
L = E a;C;
i—1 leillo < K
— conv(.A) : convex hull of atoms in A a2 ,
1 0 -1 0 — a1
S EIR SRR A
J

COHV(A) — {Zz aiﬂi Pa € -Aa /83 S R-I—a Z?:l /82 — 17 n = 1729 sy |A|}



Linear representation of low-dimensional models

e Basic definitions on low-dimensional atomic representations

| Al K < N
a; € A,c; >0
L = E a;C;
i=1 ||C%H0 < K
— conv(.A) : convex hull of atoms in A a2
1 0 —1 0 ai
A<{o V)0 ) LA]) =
a4
atomic ball

COHV(A) — {Zz aiﬂi Pa € -Aa /8?, S R-l—a Z?:l /8’& — 17 n = 1729 sy |A|}



Linear representation of low-dimensional models

e Basic definitions on low-dimensional atomic representations

| Al K < N
a; € A,c; >0
L = Z a;C;
i=1 ||C%H0 < K
— conv(.A) : convex hull of atoms in A a2
1 0 —1 0 41
A<tV LS
_ H:L‘HA : atomic norm> - [ e ] =
SN
|x||4 =inf{t >0:2z €t x conv(A)} .

*: requires A to be centrally symmetric




Linear representation of low-dimensional models

e Basic definitions on low-dimensional atomic representations

| Al K < N
a; € A,c; >0
L = E a;C;
i=1 ||C%H0 < K
— conv(.A) : convex hull of atoms in A a2
1 0 —1 0 41
A<tV LS
a4

_ - H x*
H;I;HA - atomic norm

RSN

2|4 =inf{t >0:2 €t xconv(A)} lzla=53

o

*: requires A to be centrally symmetric



Linear representation of low-dimensional models

e Basic definitions on low-dimensional atomic representations

| Al K < N
a; € A,c; >0
L = Z a;C;
i=1 ||C%H0 < K
— conv(.A) : convex hull of atoms in A a2
1 0 —1 0 41
A<tV LS
_ H:L‘HA : atomic norm> - [ e ] =
_ : _\
||.’L‘||_A — iﬂf{t >0:x et X COIlV(.A)} ||| 4 = %

|A| | A
Alternative: ||z||4 = inf {X:C3 T = Zaicij c; > 0,Va; € A}

=1 1=1

*: requires A to be centrally symmetric



Linear representation of low-dimensional models

Examples with easy forms:
e sparse vectors
A= {£e; }V,
conv(.A) = cross-polytope
|z]la = [zl
e |ow-rank matrices

matrices
conv(.A) = nuclear norm ball

][4 = [l]].
e Dbinary vectors 4
A= {F1}V

conv(.A) = hypercube

v

lzlla = llzllo




Linear representation of low-dimensional models

Examples with easy forms:

e sSparse vectors

Examples with no-so-easy forms:
v A : infinite set of unit-norm rank-one tensors
e |d VA : finite (but large) set of permutation matrices
v A : infinite set of orthogonal matrices
v A : infinite set of matrices constrained by eigenvalues
v A : infinite set of measures

v A : finite (but large) set of cut matrices
[Chandrasekaran et al. 2010]

conv(.A) = hypercube L

lzlla = ||2]loo /
VA

v




Linear representation of low-dimensional models

Pop-quiz:

11 conv(.A)

What is ||.’1:||A’>

|z||4 =inf{t >0:2 €t x conv(A)}



Linear representation of low-dimensional models

Pop-quiz:

HINT: o
11 , conv(A) 1 —1
A= 01, 0 |,|zcgllz=1

G ={2,3}

What is ||.’1:||A’>

' |z||4 =inf{t >0:2 €t x conv(A)}



Linear representation of low-dimensional models

Pop-answer:

5171“1 conv(.A) L] [ -1
A 01,1 0 [.llzcllz=

What is ||.’1:||A’>

lz]la = lza] + llzall2

G ={2,3}




Towards algorithms: a geometric perspective

Other key concepts: I \
C

e ConeC: z,yeC=tr+wy cC,Vt,w e R,

»
>



Towards algorithms: a geometric perspective

Other key concepts: I \
C

e ConeC: z,yeC=tr+wy cC,Vt,w e R,

v

« Tangent cone of z* with respect to ||z*|| 4conv(.A):

Ta(z*) = cone{z — x* : ||z][a < [|z"[|.4}

|z*|| 4conv(.A)

»
»

A

.
p



Towards algorithms: a geometric perspective

Other key concepts: I \
C

e ConeC: z,yeC=tr+wy cC,Vt,w e R,

v

« Tangent cone of z* with respect to ||z*|| 4conv(.A):

Ta(z*) = cone{z — x* : ||z][a < [|z"[|.4}

Ta(z*)
. 4 Tangent cone
S z is the set of descent
directions where you
x* do not increase the
« > atomic norm.

|z*|| 4conv(.A)



Towards algorithms: a geometric perspective

Other key concepts: I >
C

e ConeC: z,yeC=tr+wy cC,Vt,w e R,

v

« Tangent cone of z* with respect to ||z*|| 4conv(.A):

Ta(z*) = cone{z — 2" : |[z]la < [lz"[l.4}

S Tl e
Tangent cone

Is the set of descent
directions where you
do not increase the
atomic norm.

|| aconv(A)



Towards algorithms: a geometric perspective
b

T

Mx N (M < N)

o

Null space of ®: N (D)
Pv =0, Yo € N (D)



Towards algorithms: a geometric perspective
u

M x 1 M x N (M < N)

N x1

A




Towards algorithms: a geometric perspectig)e
U x*

M x1 M x N (M < N)

N x1

Consider the criteria:

A

T =arg min ||




Towards algorithms: a geometric perspectig)e
u x*

k"
= "..IE "

M x1 M x N (M < N)

N x1

|Z]].aconv(A) Consider the criteria:

T =arg min ||




Towards algorithms: a geometric perspective

U b x*
M x 1 M x N (M < N) E

N x1

|Z]| .aconv(A) Consider the criteria:

F —arg min o]




Towards algorithms: a geometric perspective

U b x*
M x 1 MXN(M(N.) E

N x1

*
2] .aconv(A) Consider the criteria:

F —arg min o]




Towards algorithms: a geometric perspectlve

&> ]

M x 1 M x N (M < N)

N x1

*
||| aconv(A) Key observation:

N(‘I)) NT(z*) ={0} =

r* =arg min ||l




Towards algorithms: a geometric perspective
u

How about noise? =

|z* || 4conv(.A)

M x1

.J!... ':ﬂ i
M x N (M < N) M x 1

[}

N x1

Inf| < o

T

arg

min ||zl
z:||lu—dz||<o




Towards algorithms: a geometrlc perspectlve

How about noise? — I. a l: ﬁ

M x1 M x N (M < N) M x 1

N x1

Stability assumption:
. |Dv]| = ef|v]|, Vv € Ta(z™)

A




Towards algorithms: a geometrlc perspectlve

How about noise? — I. a l: ﬁ

M x 1 M x N (M < N) M x 1

N x1

Stability assumption:
. |Dv]| = ef|v]|, Vv € Ta(z™)

Note that if N(®) NT4(z*) = {0}
= ||Pv|| > 0,Vv # 0




Towards algorithms: a geometrlc perspectlve

How about noise? = 0 m-: %

M x 1 MXN(M<N) M x 1

|l || aconv(A)

N x1

Stability assumption:
|Dv]| = ef|v]|, Vv € Ta(z™)

want epsilon large
to minimize overlap

between |[|z*|| 4conv(A)
and |[u — @zl <o

For this 2D example: H(I)'UH > H’UH SiIl(QO) min, ”(I)(?:a )”
Matlab notation 7



Towards

How about noise? =
u
M x 1 M x N (M < N) M x 1

|z* || 4conv(.A)

algorithms: a geometric perspgctive
u

N x1

Stability assumption:
|Pv[| = eflv]], Vv € Ta(z™)

T = arg%”ur}qﬁlggllxlu

= [lo* -3 < %




Towards algorithms: a geometric perspectl\gbe

i d]

M x 1 M x N (M < N)

Can we guarantee the following?*

N(®) NTy(z*) = {0}

N x 1

|z* || 4conv(.A)

*without knowing x*



Towards algorithms: a geometric perspective
u

(¢p) x*
Can we guarantee the following?* . l.:::.::
= |
N(®) N Ta(a*) = {0) g S E

M x1 M x N (M < N)
YES: with randomized measurements!
N x1

|z* || 4conv(A) - :
Gordon’s Minimum Restricted

Singular Values Theorem has a
probabilistic characterization.

Ta(z*) Prob(min,, [|[®v|| > ¢€)

' [7 N((I)) Vo € Ty(z*),||v|| =1

probabilistic

deterministic
[Gordon 1988]

*without knowing x*



Towards algorithms: a geometric perspective
u

(¢p) x*
Can we guarantee the following?* . l.:::.::
= |
N(®) N Ta(a*) = {0) g S E
M x1 M x N (M < N)

N x 1

|l*{].4conv(A)

Key concept:
width of the tangent cone!

. RN
Gordon’s Minimum Restricted
. | Singular Values Theorem has a
T~ | probabilistic characterization.

N (@)

*without knowing x*




Towards algorithms: a geometric perspecti\gbe
U x*

Can we guarantee the following?* _ l.:::-l
N (@) NTa(z") = {0} -

M x1 M x N (M < N)

N x 1

Gordon’s Minimum Restricted
. | Singular Values Theorem has a
T~ | probabilistic characterization.

Gaussian width of S C RM
w(S) =E [sup,cg9'2]; g ~N(0,1)

|l*{].4conv(A)

A, expected norm of a k-dimensional Gaussian random vector:

V2L ((k+1)/2)
k/2

> 9| =

k
*without knowing x* J [




Towards algorithms: a geometric perspective
u

P x*
Can we guarantee the following?* _ ® AR .:l
= |
N(®) N Ta(a*) = {0) g S E
M x1 M x N (M < N)
N x1

|z* || 4conv(A) - :
Gordon’s Minimum Restricted

Singular Values Theorem has a
probabilistic characterization.

Let 2 be a closed subset of the unit sphere and A be an M x N matrix with iid
N(0,1) entries. Then, if A\ > w(2) + ¢

1 . :
. . : _ a5 (Me—w(Q)e)
*without knowing x* P [‘528”‘42”2 = 6] Zl=ge =



Towards algorithms: a geometric perspective
u

(¢p) x*
Can we guarantee the following?* . l.:::.::
= |
N(®) N Ta(a*) = {0) g S E

M x1 M x N (M < N)

N x1
Gordon’s Minimum Restricted

. | Singular Values Theorem has a
T~ | probabilistic characterization.

© ~ijig N(0,1/M), Q@ = Ty (") N ST

|l*{].4conv(A)

Let € be a closed subset of the unit sphere and A be an M x N matrix with iid
N(0,1) entries. Then, if A\ > w(2) + ¢

o1 - L@ -
=179

*without knowing x* P [g’ggl\AZIb > €



Towards algorithms: a geometric perspectlve

&> ]

M x 1 M x N (M < N)

N x1

*
||| aconv(A) Key observation:

N(‘I)) NT(z*) ={0} =

r* =arg min ||l

M > w(Q)? + O(1)




Towards

How about noise? =
u
M x 1 M x N (M < N) M x 1

|z* || 4conv(.A)

algorithms: a geometric perspgctive
u

N x1

Stability assumption:
|Pv[| = eflv]], Vv € Ta(z™)

T = arg%”ur}qﬁlggllxlu

= [lo* -3 < %

M>g;<92+0()



Towards algorithms: a geometric perspective
u

0> x*
Can we guarantee the following?* _ = P .
D
N((I)) M TA(.CL‘*) = {0}
M x1 M x N (M < N)
N x 1
N
]| aconv(A) R — .
Gordon’s Minimum Restricted
. | Singular Values Theorem has a
"I’l probabilistic characterization.
Ta(z*) g ~iia N(0,1)
D ~iig N(O, L/M), Q2 =Ty (x*)N SN—1

w(Tg(x )N SN 1)<E dist (g, Tq(z*))]
w(Ta(z*) NSN =) + w*(Ty(z*) NSV < N

* N—-1
*without knowing x* NEQW(TA("E )NSTT) < \/1085 (VOI(TO(T NSV-T)



Towards algorithms: a geometric perspective

Can we guarantee the following?*

vwrr=o, (][] (315 )
N(®) N Ty(z*) = {0} w.p. 1/2

) L .
x* = 2% =arg min |z,

*without knowing 1-sparse ™ and 1-random measurement



Towards algorithms: a geometric perspective

Can we guarantee the following?*

vwr=o (][] (315 )
N(®) N Ty(z*) = {0} w.p. 1/2

= z* = arg min |z|;
r:u=%Px

SIS AT
N(®) N Ty(2*) = {0} w.p. 1/3

- = x* = arg min |z 4
r:u=%Px

*without knowing 1-sparse ™ and 1-random measurement



Towards algorithms: a geometric perspective

Can we guarantee the following?*

vwrr=o (][] (315 )
N(®) N Ty(z*) = {0} w.p. 1/2

~ 4* — arg_min |l
L L)
s N(@)NT4(x*) = {0} w.p. 1/3
< / > = r* = arga::%l:i%mnxnﬂ
A= {|z]la =1}
N(®)NT ;(x*) = {0} w.p. 0
> @' =arg miy ||zl

*without knowing 1-sparse ™ and 1-random measurement



Towards algorithms: a geometric perspective

Can we guarantee the following?*

N(®) NTy(z*) = {0}

i A projected 6D hypercube with 64 vertices

Blessing-of-dimensionality!


http://www.agrell.info/erik/chalmers/hypercubes/

Towards algorithms: a geometric perspective

Pop-quiz:

N(®) NTy(z*) = {0}

NN IRIEA Rl EA)
N(®) N Tg(a*) = {0} w.p. 277

) . = r* = arg min |z] 4
r:u=>dx

What is the probability that
we can determine a 2-sparse x*
with 1-random measurement?




Towards algorithms: a geometric perspective

Pop-answer:

N(®) NTy(z*) = {0}

R AR
N(®) NTx(z*) = {0} w.p. 0

= x* = arg min |z 4
r:u=>x

Tangent cone is too wide!
Need at least 2 measurements!




Take home messages

Underlying Model Atomic Norm Gaussian Measurements
K-sparse vector in RY {1-norm (2K 4+ 1) log(N — K)

N x N rank-R matrix nuclear norm 3R(2N — R) +2(N — R — R?)
sign vector {£1}" { o-norm N/2

N x N-perm. matrix Birkoff polytope norm 9N log(NN)

N x N orth. matrix spectral norm (BN? — N)/4

[Chandrasekaran et al. 2010]

convex polytope <> atomic norm

— geometry (and algebra) of representations in high dimensions

geometric perspective <> convex criteria

— convex optimization algorithms in high dimensions

tangent cone width <> # of randomized samples

— probabilistic concentration-of-measures in high dimensions




Back to the initial example

e Matrix completion for Netflix 17770 movies x 480189 users

users ——

2 i

<« S3lAOW

M x N

e \What is low-rank?

R x N

M x R

R < min{M, N}



Back to the initial example

e Matrix completion for Netflix 17770 movies x 480189 users

users ——

2 i

<« S3lAOW

M x N

e What does the simple low-rank assumption buy?

Leaderboa rd Display top 20 ~ leaders.

Rank Team Name Best Score % Improvement Last Submit Time
The Ensemble 0.8553 10.10 2009-07-26 18:38:22
2 BellKor's Pragmatic Chaos 0.8554 10.09 2009-07-26 18:18:28
Coranirre mnsecoases ]
3 Grand Prize Team 0857 ag’ 2009-07-24 13-07:49 5 B e s e e
4 Opera Solutions and Vandelay United 08573 9.89 2009-07-25 20:05:52
5 Vandelay Industries ! 0.8579 9.83 2009-07-26 02:49:53
5} PragmaticTheory 0.8582 9.80 2009-07-12 15:09:563
7 BellKar in BigChaas 0.8590 9.7 2009-07-26 12:57:25
o D= ey o amrves - qyite a lot of extrapolation power!
g Opera Solutions 0.861° 9.49 2009-07-26 18:02:08
10 BellKor 0.8612 9.48 2009-07-26 17:19:17
11 BigChaaos 0.8613 9.47 2009-06-23 23:06:562

12 Feeds?Z 08613 9.47 2008-07-24 20:06:45



— p—

Tlgere are two types of
nennle in this} wnrlll

Tlmse whn_eutranolate
~fromincomplete data




three

Tnere are tvo ulnes of
nennle inthis; wnrlll

. Tlmse whneutranolate

from incomplete data
and do this fast

with theoretical guarantees




Sampling/sketching design *+Coding theory _
+Theoretical computer science

+Learning theory

single photon
detector

PD

A/D

+Databases

v)

random

pattern on
DMD array

e Structured
random matrices

e 1-bit CS u = sign (Px)

e expanders &
extractors

Xmtr

Mirror -10 deg




+Theoretical computer science
+Learning theory
+Optimization

+Databases

Structured recovery

e Sparsity

K N

sorted index

Sparse vector K

only K out of N
coordinates nonzero R3

K <N




+Theoretical computer science
+Learning theory
+Optimization

+Databases

Structured recovery

e Sparsity

K sorted index N
Structured sparse vector RY
only certain K out of N M|

coordinates nonzero

K <N



Structured recovery :Ing;f;écfggggp“ter science

+Optimization

e Structured sparsity +Databases

+ requires smaller sketches

+ enhanced recovery

+ faster recovery

Py (u; K) € argmin {||lx —ul| : 2 € Bp, }

support of the solution <> modular approximation problem
Integer linear program

matroid structured sparse models

clustered /diversified sparsity models 1 M

tightly connected with max-cover,
binpacking, knapsack problems

 Recovery with low-dimensional models, including low-rank...



+Theoretical computer science
+Databases

+Information theory
+Optimization

Quantum tomography

e Quantum state estimation 1

~— 2" pits to specify, even approximately

a state of n possibly-entangled qubits takes / 0)

« Recovery with rank and trace constraints
with M=O(N)
1. Create Pauli measurements (semi-random)
Estimate Tr(®@yp) for each 1<i<M
3. Find any “hypothesis state” o st Tr(@® ;0)~Tr(® p) for all 1<i<M

« Huge dimensional problem!
— (desperately) need scalable algorithms
— also need theory for perfect density estimation



Learning theory and methods*Learning theory
+Optimization

+Information theory

e A fundamental problem: +Theoretical computer science
given (y;,z;): Rx R4 i=1,...,m, learnamapping f:z—y
e Our interest <> non-parametric functions

graphs (e.g., social networks)

dictionary learning...

e Rigorous foundations <> sample complexity
approximation guarantees

tractability

e Key tools <> sparsity/low-rankness
submodularity

smoothness



+Learning theory
+Statistics
+Information theory

Compressible priors

e Goal:  seek distributions whose iid realizations Z; ~ p(z)
can be well-approximated as sparse

Definition:

The PDF p(x) is a g-compressible prior with parameters (e, k), when

lim 6%, (), aﬁs. €, (a.s.: almost surely);
N — o0

for any sequence kx such that limy_, . inf kWN > Kk, where ¢ < 1 and kK < 1.

relative k-term approximation:

|33|(z')
_ OL\X
O'k:(x)q — ”a(:”)q
q
s —
or(x), ;= 1nf ||z —u
K sorted index N k( )q ||u||0§k|| ”q



+Learning theory

Compressible priors +Information theory

e Goal: seek distributions whose iid realizations
can be well-approximated as sparse

Classical: New:
”x”wEP — Sup{'gg'(?) .3'1/39} <R O-HJN(CE)Q S €
: (el

K

N

sorted index



Compressible priors

+Learning theory
+Statistics
+Information theory

e Goal: seek distributions whose iid realizations
can be well-approximated as sparse

e Motivations:

deterministic embedding scaffold
for the probabilistic view

analytical proxies for sparse signals

— learning (e.g., dim. reduced data)
— algorithms (e.g., structured sparse)

Information theoretic (e.g., coding)

lots of applications in vision, image
understanding / analysis
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