

erc

Winter Conference in Statistics 2013

Compressed Sensing

LECTURE $#1-2$ Motivation & geometric insights

Prof. Dr. Volkan Cevher volkan.cevher@epfl.ch

LIONS/Laboratory for Information and Inference Systems

Major trends higher resolution / **denser sampling**

x

large numbers of sensors

increasing # of modalities / **mobility** 160MP

x

Motivation: solve bigger / more important problems decrease acquisition times / costs entertainment / new consumer products…

Problems of the current paradigm

- **Sampling at Nyquist rate**
	- expensive / difficult
- **Data deluge**
	- communications / storage
- **Sample then compress**
	- inefficient / impossible / not future proof

Recommended for you: A more familiar example

- Recommender systems
	- observe partial information

"ratings" "clicks" "purchases" "compatibilities"

Things: 163

Nays to Pursue

EXCELLENCE

Recommended for You

Wonderland

[Blu-ray]

Amazon.com has new recommendations for you based on items you purchased or told us you own.

Holmes [Blu-

ray

7 Triggers to

Persuasion and

Captivation

Recommended for you: A more familiar example

- Recommender systems
	- observe partial information

"ratings" "clicks" "purchases" "compatibilities"

• The Netflix problem

- from approx. 100,000,000 ratings predict 3,000,000 ratings
- 17770 movies x 480189 users
- how would you automatically predict?

e Little B

Holmes [Bli

ray

Triggers to

Persuasion and

Wonderland

[Blu-ray]

Recommended for you: A more familiar example

- Recommender systems
	- observe partial information

"ratings" "clicks" "purchases" "compatibilities"

• The Netflix problem **NETFLIX**

- 17770 movies x 480189 users
- how would you automatically predict?
- **what is it worth?**

Persuasion and

ray

[Blu-ray]

Theoretical set-up

• Matrix completion for Netflix

Theoretical set-up

• Matrix completion for Netflix

• Mathematical underpinnings: *compressive sensing*

$$
\text{observations} \rightarrow u = \Phi(X) + n
$$
\n(adversarial) perturbations

\nlinear (sampling) operator

CS: *when we have less samples than the ambient dimension*

Linear Inverse Problems

Myriad applications involve linear dimensionality reduction **deconvolution to data mining compression to compressive sensing geophysics to medical imaging** [Baraniuk, C, Wakin 2010; Carin et al. 2011]

Linear Inverse Problems

Linear Inverse Problems

Deterministic Low-Dimensional Models

• **Sparse** signal α

only K out of N coordinates nonzero

$$
K \ll N
$$

Sparse signal x

only K out of N coordinates nonzero in an *appropriate representation*

- Sparse representations *sparse* transform coefficients α
	- Basis representations
		- $\Psi \in \mathbb{R}^{N \times N}$
		- **Wavelets**, DCT…
	- Frame representations

 $\Psi \in \mathbb{R}^{N \times L}, L > N$

- Gabor, curvelets, shearlets…
- Other *dictionary* representations…

• Sparse signal:

only K out of N coordinates nonzero

 $K \ll N$

Sparse representations:

sparse transform coefficients

• A fundamental impact:

Sparse signal:

only K out of N coordinates nonzero

 $K \ll N$

Sparse representations:

sparse transform coefficients

• A fundamental impact:

• Sparse signal:

only K out of N coordinates nonzero

 $K \ll N$

Sparse representations:

sparse transform coefficients

• A fundamental impact:

Sparse signal:

only K out of N coordinates nonzero

 $K \ll N$

Sparse representations:

sparse transform coefficients

• A fundamental impact:

becomes effectively low dimensional*

 $M \times K$

 *: If we knew the locations of the coefficients. **More on this later.**

Low-dimensional signal models

 N

sparse signals

low-rank matrices

nonlinear models

Low-dimensional signal models

These lectures

sparse signals

nonlinear models

- A key notion in sparse representation
	- synthesis of the signal using a few vectors

• A slightly different mathematical formalism for generalization

Synthesis model:

$$
x = \sum_{i=1}^{|\mathcal{A}|} a_i c_i \qquad a_i \in \mathcal{A}, c_i \ge 0
$$

 a_i : atoms \mathcal{A} : atomic set

i.e., linear (positive) combination of elements from an atomic set

[Chandrasekaran et al. 2010]

- A key notion in sparse representation
	- synthesis of the signal using a few vectors
- Sparse representations via the atomic formulation

$$
x = \sum_{i=1}^{|\mathcal{A}|} a_i c_i
$$

\n $a_i \in \mathcal{A}, c_i \ge 0$
\n a_i : atoms
\n A : atomic set

Example:

$$
\Psi = [\psi_1, \dots, \psi_L]
$$
\n
$$
\mathcal{A} = \{\psi_1, \dots, \psi_L, -\psi_1, \dots, -\psi_L\}
$$
\n
$$
\text{rank}(\Psi) = N
$$
\n
$$
c_i = \begin{cases} \alpha_i, & \alpha_i > 0; \\ 0, & \text{otherwise.} \\ 0, & \text{otherwise.} \end{cases}
$$
\n
$$
i = 1, \dots, L
$$
\n
$$
c_{i+L} = \begin{cases} -\alpha_i, & \alpha_i < 0; \\ 0, & \text{otherwise.} \end{cases}
$$

• Basic definitions on **low-dimensional** *atomic representations*

$$
x = \sum_{i=1}^{|\mathcal{A}|} a_i c_i
$$

 $a_i \in \mathcal{A}, c_i \geq 0$
 $||c_i||_0 \leq K$

 $K \ll N$

• Basic definitions on low-dimensional *atomic representations*

$$
x = \sum_{i=1}^{|\mathcal{A}|} a_i c_i
$$

\n
$$
a_i \in \mathcal{A}, c_i \ge 0
$$

\n
$$
||c_i||_0 \le K
$$

\nconv(\mathcal{A}): convex hull of atoms in A

$$
\mathcal{A} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\}
$$

 $K \ll N$

conv $(\mathcal{A}) = \{\sum_i a_i \beta_i : a_i \in \mathcal{A}, \beta_i \in \mathbb{R}_+, \sum_{i=1}^n \beta_i = 1, n = 1, 2, \ldots, |\mathcal{A}|\}$

• Basic definitions on low-dimensional *atomic representations*

$$
x = \sum_{i=1}^{|\mathcal{A}|} a_i c_i
$$

 $a_i \in \mathcal{A}, c_i \geq 0$ $||c_i||_0 \leq K$

- $\text{conv}(\mathcal{A})$: convex hull of atoms in A

$$
\mathcal{A} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\}
$$

 $K \ll N$

atomic ball

conv $(\mathcal{A}) = \{\sum_i a_i \beta_i : a_i \in \mathcal{A}, \beta_i \in \mathbb{R}_+, \sum_{i=1}^n \beta_i = 1, n = 1, 2, \ldots, |\mathcal{A}|\}$

• Basic definitions on low-dimensional *atomic representations*

$$
x = \sum_{i=1}^{n} a_i c_i
$$

\n
$$
= \text{conv}(A): \text{convex hull of atoms in A}
$$

\n
$$
A = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\}
$$

\n
$$
= \|x\|_{A} : \text{atomic norm*}
$$

\n
$$
\|x\|_{A} = \inf\{t > 0 : x \in t \times \text{conv}(A)\}
$$

\n
$$
= \begin{bmatrix} -1/5 \\ 1 \end{bmatrix}
$$

 $K \ll N$

*: requires A to be centrally symmetric

 $|\mathcal{A}|$

• Basic definitions on low-dimensional *atomic representations*

*: requires A to be centrally symmetric

• Basic definitions on low-dimensional *atomic representations*

$$
x = \sum_{i=1}^{|\mathcal{A}|} a_i c_i
$$

\n
$$
= \text{conv}(\mathcal{A}) : \text{convex hull of atoms in A}
$$

\n
$$
\mathcal{A} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\}
$$

\n
$$
= ||x||_{\mathcal{A}} : \text{atomic norm*}
$$

\n
$$
||x||_{\mathcal{A}} = \text{inf} \{ t > 0 : x \in t \times \text{conv}(\mathcal{A}) \} \quad ||x||_{\mathcal{A}} = \frac{6}{5}
$$

\n
$$
\text{Alternative: } ||x||_{\mathcal{A}} = \text{inf} \left\{ \sum_{i=1}^{|\mathcal{A}|} c_i : x = \sum_{i=1}^{|\mathcal{A}|} a_i c_i, c_i \ge 0, \forall a_i \in \mathcal{A} \right\}
$$

*: requires A to be centrally symmetric

Examples with easy forms:

- *sparse vectors*
	- $\mathcal{A} = {\{\pm e_i\}}_{i=1}^N$ $conv(\mathcal{A}) = cross-polytope$ $||x||_{\mathcal{A}} = ||x||_1$
- *low-rank matrices*

$$
\mathcal{A} = \{A : \text{rank}(A) = 1, ||A||_F = 1\}
$$

$$
\text{conv}(\mathcal{A}) = \text{nuclear norm ball}
$$

$$
||x||_{\mathcal{A}} = ||x||_{\star}
$$

- *binary vectors*
	- $\mathcal{A} = {\{\pm 1\}}^N$ $conv(\mathcal{A}) = hypercube$ $||x||_{\mathcal{A}} = ||x||_{\infty}$

Examples with easy forms:

• *sparse vectors*

$$
||x||_{\mathcal{A}} = ||x||_{\infty}
$$

Pop-quiz:

 $||x||_{\mathcal{A}} = \inf\{t > 0 : x \in t \times \text{conv}(\mathcal{A})\}\$

Pop-quiz:

Pop-answer:

$$
\mathcal{A} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, ||x_G||_2 = 1 \right\}
$$

What is $||x||_{\mathcal{A}}$?

 $||x||_{\mathcal{A}} = |x_1| + ||x_G||_2$ $G = \{2,3\}$

Towards algorithms: a geometric perspective

Other key concepts:

• Cone C: $x, y \in C \Rightarrow tx + \omega y \in C, \forall t, \omega \in \mathbb{R}_+$

Towards algorithms: a geometric perspective

Other key concepts:

- Cone C: $x, y \in C \Rightarrow tx + \omega y \in C, \forall t, \omega \in \mathbb{R}_+$
- Tangent cone of x^* with respect to $||x^*||_{\mathcal{A}}$ conv (\mathcal{A}) : •

 $T_{\mathcal{A}}(x^*) = \text{cone}\{z - x^* : ||z||_{\mathcal{A}} \le ||x^*||_{\mathcal{A}}\}$

Towards algorithms: a geometric perspective

Other key concepts:

- Cone $\mathcal{C}: x, y \in \mathcal{C} \Rightarrow tx + \omega y \in \mathcal{C}, \forall t, \omega \in \mathbb{R}_+$
- Tangent cone of x^* with respect to $||x^*||_{\mathcal{A}}$ conv (\mathcal{A}) : •

 $T_{\mathcal{A}}(x^*) = \text{cone}\{z - x^* : ||z||_{\mathcal{A}} \le ||x^*||_{\mathcal{A}}\}\$

Tangent cone

is the set of descent directions where you do not increase the atomic norm.
Other key concepts:

- Cone C: $x, y \in C \Rightarrow tx + \omega y \in C, \forall t, \omega \in \mathbb{R}_+$
- Tangent cone of x^* with respect to $||x^*||_{\mathcal{A}}$ conv (\mathcal{A}) : •

 $T_{\mathcal{A}}(x^*) = \text{cone}\{z - x^* : ||z||_{\mathcal{A}} \le ||x^*||_{\mathcal{A}}\}\$

Tangent cone

is the set of descent directions where you do not increase the atomic norm.

Towards algorithms: a geometric perspective x^{\ast} $M\times 1$ $M\times N$ $(M< N)$ $N\times 1$ **Consider the criteria:** x^* $\widehat{x} = \arg\min_{x:u = \Phi x} \lVert x \rVert_{\mathcal{A}}$ $\mathcal{N}(\Phi)$

How about noise?

 $N\times 1$

Stability assumption: $\|\Phi v\| \geq \epsilon \|v\|, \forall v \in T_{\mathcal{A}}(x^*)$

 \boldsymbol{n}

 $M\times 1$

 $N \times 1$

Stability assumption: $\|\Phi v\| \geq \epsilon \|v\|, \forall v \in T_{\mathcal{A}}(x^*)$

want epsilon large to minimize overlap between $||x^*||_{\mathcal{A}}$ conv (\mathcal{A}) **and** $||u - \Phi x|| \leq \sigma$

Matlab notation For this 2D example: $\|\Phi v\| \geq \|v\| \sin(\varphi) \min_i \|\Phi(i,:)\|$

Can we guarantee the following?*

$$
\mathcal{N}(\Phi) \cap T_{\mathcal{A}}(x^*) = \{0\}
$$

 $N\times 1$

Can we guarantee the following?*

$$
\mathcal{N}(\Phi) \cap T_{\mathcal{A}}(x^*) = \{0\}
$$

 $N \times 1$

Gordon's Minimum Restricted Singular Values Theorem has a probabilistic characterization.

Key concept: **width of the tangent cone!**

Can we guarantee the following?*

$$
\mathcal{N}(\Phi) \cap T_{\mathcal{A}}(x^*) = \{0\}
$$

 $N \times 1$

Gordon's Minimum Restricted Singular Values Theorem has a probabilistic characterization.

Gaussian width of $S \subseteq \mathbb{R}^M$ $w(S) = \mathrm{E} \left[\sup_{z \in S} g^T z \right];\ g \sim \mathcal{N}(0, I)$

 λ_k expected norm of a k-dimensional Gaussian random vector:

$$
\lambda_k = \sqrt{E\left[\sum_{i=1}^k g_i^2\right]} = \frac{\sqrt{2}\Gamma((k+1)/2)}{k/2}
$$

 \mathbf{R}^N $||x^*||_{\mathcal{A}}$ conv (\mathcal{A}) x^* $T_A(x^*)$

Can we guarantee the following?*

$$
\mathcal{N}(\Phi) \cap T_{\mathcal{A}}(x^*) = \{0\}
$$

 $\mathcal{N}(\Phi)$

 $||x^*||_{\mathcal{A}}$ conv (\mathcal{A})

 $T_A(x^*)$

 $N \times 1$

Gordon's Minimum Restricted Singular Values Theorem has a probabilistic characterization.

Let Ω be a closed subset of the unit sphere and A be an $M \times N$ matrix with iid $\mathcal{N}(0,1)$ entries. Then, if $\lambda_k \geq w(\Omega) + \epsilon$:

 \mathbf{R}^N

 x^*

$$
\star \text{without knowing } x^* \qquad \qquad P\left[\min_{z \in \Omega} \|Az\|_2 \ge \epsilon\right] \ge 1 - \frac{1}{2} e^{-\frac{1}{18}(\lambda_k - w(\Omega)\epsilon)^2}
$$

Can we guarantee the following?*

$$
\mathcal{N}(\Phi) \cap T_{\mathcal{A}}(x^*) = \{0\}
$$

 $||x^*||_{\mathcal{A}}$ conv (\mathcal{A})

 $T_A(x^*)$

 $N \times 1$

Gordon's Minimum Restricted Singular Values Theorem has a probabilistic characterization.

$$
\Phi \sim_{\text{iid}} \mathcal{N}(0, 1/M), \Omega = T_{\mathcal{A}}(x^*) \cap \mathbb{S}^{N-1}
$$

Let Ω be a closed subset of the unit sphere and A be an $M \times N$ matrix with iid $\mathcal{N}(0,1)$ entries. Then, if $\lambda_k \geq w(\Omega) + \epsilon$:

 \mathbf{R}^N

 x^*

 $P\left[\min_{z\in\Omega} \|Az\|_2 \geq \epsilon\right] \geq 1 - \frac{1}{2}e^{-\frac{1}{18}(\lambda_k - w(\Omega) - \epsilon)^2}$ *without knowing x^*

 $\mathcal{N}(\Phi)$

Can we guarantee the following?*

$$
\mathcal{N}(\Phi) \cap T_{\mathcal{A}}(x^*) = \{0\}
$$

 $N \times 1$

Gordon's Minimum Restricted Singular Values Theorem has a probabilistic characterization.

$$
g\sim_{\text{iid}}\mathcal{N}(0,1)
$$

$$
\Phi \sim_{\text{iid}} \mathcal{N}(0, 1/M), \Omega = T_{\mathcal{A}}(x^*) \cap \mathbb{S}^{N-1}
$$

$$
w(T_{\mathcal{A}}(x^*) \cap \mathbb{S}^{N-1}) \le \mathcal{E}_g \left[\text{dist}\left(g, T_{\mathcal{A}}^{\circ}(x^*)\right) \right]
$$

$$
T_{\mathcal{A}}(x^*) \cap \mathbb{S}^{N-1}) + w^2(T_{\mathcal{A}}^{\circ}(x^*) \cap \mathbb{S}^{N-1}) \le N
$$

$$
\displaystyle w(T_{\mathcal{A}}(x^*) \cap \mathbb{S}^{N-1}) \leq \sqrt{\log\left(\tfrac{4}{\mathrm{vol}(T_{\mathcal{A}}^\circ(x^*) \cap \mathbb{S}^{N-1})}\right)}
$$

$$
||x^*||_{\mathcal{A}^{\text{conv}}(\mathcal{A})} \longrightarrow \mathbf{R}^N
$$
\n
$$
T_{\mathcal{A}}(x^*)
$$
\n
$$
\mathcal{N}(\Phi)
$$
\n
$$
w(T_{\mathcal{A}}(x^*))
$$
\n
$$
w^2(T_{\mathcal{A}}(x^*))
$$
\n
$$
w^2(T_{\mathcal{A}}(x^*))
$$
\n
$$
w(T_{\mathcal{A}}(x^*))
$$

Can we guarantee the following?*

$$
\mathcal{A} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\}
$$

$$
\mathcal{N}(\Phi) \cap T_{\mathcal{A}}(x^*) = \{0\} \text{ w.p. } 1/2
$$

$$
\Rightarrow x^* = \arg \min_{x: u = \Phi x} ||x||_1
$$

without knowing 1-sparse x^ and 1-random measurement

Can we guarantee the following?*

$$
\mathcal{N}(\Phi) \cap T_{\mathcal{A}}(x^*) = \{0\} \qquad \mathcal{A} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\}
$$
\n
$$
\mathcal{N}(\Phi) \cap T_{\mathcal{A}}(x^*) = \{0\} \text{ w.p. } 1/2
$$
\n
$$
\Rightarrow x^* = \arg \min_{x: u = \Phi x} ||x||_1
$$
\n
$$
\bar{\mathcal{A}} = \left\{ \begin{bmatrix} \sqrt{3}/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -\sqrt{3}/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} -\sqrt{3}/2 \\ -1/2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \begin{bmatrix} \sqrt{3}/2 \\ -1/2 \end{bmatrix} \right\}
$$
\n
$$
\mathcal{N}(\Phi) \cap T_{\bar{\mathcal{A}}}(x^*) = \{0\} \text{ w.p. } 1/3
$$
\n
$$
\Rightarrow x^* = \arg \min_{x: u = \Phi x} ||x||_{\bar{\mathcal{A}}}
$$
\n
$$
\mathcal{N}(\Phi) \cap T_{\bar{\mathcal{A}}}(x^*) = \{0\} \text{ w.p. } 1/3
$$

without knowing 1-sparse x^ and 1-random measurement

Can we guarantee the following?*

without knowing 1-sparse x^ and 1-random measurement

Can we guarantee the following?*

 $\mathcal{N}(\Phi) \cap T_{\mathcal{A}}(x^*) = \{0\}$

A projected 6D hypercube with 64 vertices

Blessing-of-dimensionality!

<http://www.agrell.info/erik/chalmers/hypercubes/>

Pop-quiz:

 $\mathcal{N}(\Phi) \cap T_{\mathcal{A}}(x^*) = \{0\}$

Pop-answer:

 $\mathcal{N}(\Phi) \cap T_{\mathcal{A}}(x^*) = \{0\}$

Take home messages

[Chandrasekaran et al. 2010]

convex polytope <> atomic norm

– geometry (and algebra) of representations in **high dimensions**

geometric perspective \le > convex criteria

– convex optimization algorithms in **high dimensions**

tangent cone width \lt > \qquad $\#$ of randomized samples

– probabilistic concentration-of-measures in **high dimensions**

Back to the initial example

• Matrix completion for Netflix 17770 movies x 480189 users

• What is low-rank?

 $R \ll \min\{M, N\}$

Back to the initial example

• Matrix completion for Netflix 17770 movies x 480189 users

• What does the simple low-rank assumption buy?

Leaderboard

Display top $20 \rightarrow$ leaders.

quite a lot of extrapolation power!

with theoretical guarantees

Sampling/sketching design

+Coding theory +Theoretical computer science +Learning theory +Databases

- **Structured** random matrices
- 1-bit CS $u = \text{sign}(\Phi x)$
- expanders & extractors

scene

Structured recovery +Theoretical computer science +Learning theory +Optimization +Databases

• **Sparsity**

Sparse vector

only K out of N coordinates nonzero

$$
K \ll N
$$

Structured recovery +Theoretical computer science +Learning theory +Optimization +Databases

• **Sparsity**

Structured sparse vector

only certain K out of N coordinates nonzero

$$
K \ll N
$$

Structured recovery

+Theoretical computer science +Learning theory +Optimization +Databases

• **Structured sparsity**

- + enhanced recovery
- + faster recovery

$$
\mathsf{P}_{\Sigma_{\mathcal{M}}}(u;K) \in \arg\min_{x} \{ ||x - u|| : x \in \Sigma_{\mathcal{M}_K} \}
$$

support of the solution <> modular approximation problem integer linear program

matroid structured sparse models

clustered /diversified sparsity models

tightly connected with max-cover, binpacking, knapsack problems

• Recovery with low-dimensional models, including low-rank…

Quantum tomography +Theoretical computer science

- **Quantum state estimation**
	- a state of n possibly-entangled qubits takes **~2n** bits to specify, even approximately
-
- **+Databases**
- **+Information theory**
- **+Optimization**

• **Recovery with rank and trace constraints**

with M=O(N)

- *1. Create Pauli measurements (semi-random)*
- *2. Estimate Tr(*^Φ*ⁱ* ^ρ*) for each 1≤i≤M*
- *3. Find any "hypothesis state"* ^σ *st Tr(*^Φ *ⁱ* ^σ*)*≈*Tr(*^Φ *ⁱ* ^ρ*) for all 1≤i≤M*
- **Huge dimensional problem!**
	- ─ (desperately) need scalable algorithms
	- ─ also need theory for perfect density estimation

Learning theory and methods+Learning theory +Optimization

• A fundamental problem:

+Information theory +Theoretical computer science

given (y_i, x_i) : $\mathbb{R} \times \mathbb{R}^d$, $i = 1, \ldots, m$, learn a mapping $f: x \to y$

- Our interest <> non-parametric functions graphs (e.g., social networks) dictionary learning…
- Rigorous foundations <> sample complexity
- approximation guarantees tractability
	- Key tools <> sparsity/low-rankness submodularity smoothness
	-

Compressible priors +Learning theory

+Statistics +Information theory

 $x_i \sim p(x)$ **Goal:** seek distributions whose iid realizations can be well-approximated as *sparse*

Definition:

The PDF $p(x)$ is a *q-compressible prior* with parameters (ϵ, κ) , when

$$
\lim_{N \to \infty} \bar{\sigma}_{k_N}(x)_q \stackrel{a.s.}{\leq} \epsilon, \text{(a.s.: almost surely)};
$$

for any sequence k_N such that $\lim_{N\to\infty} \inf \frac{k_N}{N} \geq \kappa$, where $\epsilon \ll 1$ and $\kappa \ll 1$.

relative k-term approximation:

$$
\bar{\sigma}_k(x)_q = \frac{\sigma_k(x)_q}{\|x\|_q}
$$

$$
\sigma_k(x)_q := \inf_{\|u\|_0 \le k} \|x - u\|_q
$$

Compressible priors +Learning theory

+Information theory

• **Goal:** seek distributions whose iid realizations can be well-approximated as *sparse*

Compressible priors +Learning theory

+Statistics +Information theory

• **Goal:** seek distributions whose iid realizations can be well-approximated as *sparse*

• **Motivations:** deterministic embedding scaffold for the probabilistic view

analytical proxies for sparse signals

- learning (e.g., dim. reduced data)
- algorithms (e.g., structured sparse)

information theoretic (e.g., coding)

lots of applications in vision, image understanding / analysis

M. Afonso, J. Bioucas-Dias, M. Figueiredo, "Fast image recovery using variable splitting and constrained optimization", *IEEE Transactions on Image Processing, vol. 19, 2010.*

H. Attouch, J. Bolte, P. Redont, A. Soubeyran, "Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Lojasiewicz inequality", *Math. Oper. Research*, 2010

O. Axelsson*, Iterative Solution Methods,* Cambridge University Press, 1996.

R. Baraniuk, V. Cevher, M. Duarte, C. Hegde, "Model-based compressive sensing", *IEEE Transactions on Information Theory*, vol. 56, 2010.

R. Baraniuk, M. Davenport, R. de Vore, M. Wakin, "A Simple Proof of the Restricted Isometry Property for Random Matrices", *Constructive Approximation*, 2008.

R. Baraniuk, V. Cevher, M. Wakin, "Low-dimensional models for dimensionality reduction and signal recovery: A geometric perspective*"*, *Proceedings of the IEEE*, vol. 98, 2010.

J. Barzilai and J. Borwein, "Two point step size gradient methods," *IMA Journal of Numer. Anal., vol. 8, 1988.* R. Basri, D. Jacobs, "Lambertian Reflectance and Linear Subspaces", *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 25, 2003.

A. Beck, M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," *SIAM Journal on Imaging Science, vol. 2,* 2009.

J. Bioucas-Dias, M. Figueiredo, "A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration," *IEEE Transactions on Image Processing, vol. 16, 2007.*

P. Boufounos, R. Baraniuk, "1-bit compressed sensing", *Proceedings of the Conference on Information Science and Systems*, Princeton, 2008.

C. Boutsidis, M. Mahoney, P. Drineas, "An improved approximation algorithm for the column subset selection problem", *Proc. 20th Annual ACM/SIAM Symposium on Discrete Algorithms,* New York*, NY, 2*008.

P. Bühlmann, S. van der Geer, *Statistics for High-Dimensional Data,* Springer, 2011.

E. Candès, "The restricted isometry property and its implications for compressed sensing", *Comptes Rendus Mathematique,* vol. 346, 2008.

E. Candès and B. Recht, "Exact matrix completion via convex optimization", *Foundations of Computational Mathematics*, vol. 9, 2009.

L. Carin, R. Baraniuk, V. Cevher, D. Dunson, M. Jordan, G. Sapiro, M. Wakin, "Learning low-dimensional signal models", *IEEE Signal Processing Magazine*, vol. 28, 2010.

V. Cevher, "An ALPS view of sparse recovery", *Proc. ICASSP,* 2011.

V. Chandrasekaran, B. Recht, P. Parrilo, A. Willsky, "The convex geometry of linear inverse problems", submitted, 2010.

R. Chartrand, W. Yin, "Iteratively reweighted algorithms for compressive sensing", *Proc. ICASSP*, 2008

S. Chen, D. Donoho, M. Saunders, "Atomic decomposition by Basis Pursuit", *SIAM Review*, vol. 43, 2001.

P. Combettes, V. Wajs, "Signal recovery by proximal forward-backward splitting", *SIAM Journal Multiscale Modeling and Simulation, vol. 4,* 2005.

J. Eckstein, D. Bertsekas, "On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators", *Mathematical Programming, vol. 5, 1992.*

M. Figueiredo and J. Bioucas-Dias, "Restoration of Poissonian images using alternating direction optimization", *IEEE Transactions on Image Processing,* vol. 19, 2010.

M. Figueiredo, R. Nowak, S. Wright, "Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems", *IEEE Journal of Selected Topics in Signal Processing,* vol. 1, 2007.

D. Gabay, B. Mercier, "A dual algorithm for the solution of nonlinear variational problems via finite-element approximations", *Computers and Mathematics with Application, vol. 2, 1976.*

R. Glowinski, A. Marroco, "Sur l'approximation, par elements finis d'ordre un, et la resolution, par penalisation-dualité d'une classe de problemes de Dirichlet non lineares," *Rev. Française d'Automatique, 1975.*

Y. Gordon, "On Milman's inequality and random subspaces which escape through a mesh in ℝⁿ", in *Geometric Aspects of Functional Analysis,* Springer, 1988.

E. Hale, W. Yin, Y. Zhang, "Fixed-point continuation for l1-minimization: Methodology and convergence", *SIAM Journal on Optimization*, vol. 19, 2008.

N. Halko, P.-G. Martinsson, J. Tropp, "Finding structure with randomness: stochastic algorithms for constructing approximate matrix decompositions", *SIAM Review*, vol. 53, 2011.

C. Hegde, M. Duarte, V. Cevher, "Compressive sensing recovery of spike trains using a structured sparsity model", *Proceedings of SPARS'09*, Saint-Malo, France, 2009.

M. Hestenes, "Multiplier and gradient methods", *Journal of Optimazion Theory andApplications, vol. 4, 1969.*

A. Kyrillidis, V. Cevher, "Recipes for hard thresholding methods", Tech. Rep., EPFL, 2011.

J. Lee, V. Mirrokni, V. Nagarajan, M. Sviridenko, "Non-monotone submodular maximization under matroid and knapsack constraints", *Proc. 41st Annual ACM Symposium on Theory of Computing, Bethesda, MD, 2009.*

A. Lewis, J. Malick, "Alternating projections on manifolds", *Math. of Operations Research*, vol. 33, 2008.

D. Lorenz, "Constructing test instances for basis pursuit denoising", submitted, 2011.

N. Meinshausen, P. Bühlmann, "High-dimensional graphs and variable selection with the lasso", *The Annals of Statistics*, vol. 34, pp. 1436-1462, 2006.

J.-J. Moreau, "Proximité et dualité dans un espace hilbertien," *Bull. Soc. Mathematiques de France, vol. 93, 1965.*

G. Nemhauser, L. Wolsey, *Integer and combinatorial optimization*, Wiley, 1988.

S. Osher, M. Burger, D. Goldfarb, J. Xu, W. Yin, "An iterative regularization method for total variation-based image restoration", *SIAM Journal on Multiscale Modeling and Simulation*, vol. 4, 2005.

Y. Plan, "Compressed sensing, sparse approximation, low-rank matrix estimation*"*, PhD Thesis, Caltech, 2011

M. Powell, "A method for nonlinear constraints in minimization problems", in *Optimization,* Academic Press*, 1969.*

H. Raguet, J. Fadili, G. Peyré, "Generalized Forward-Backward splitting", Tech. report, Hal-00613637, 2011.

S. Setzer, G. Steidl, T. Teuber, "Deblurring Poissonian images by split Bregman techniques," *Journal of Visual Communication and Image Representation, 2010.*

K.-C. Toh , S. Yun, "An accelerated proximal gradient algorithm for nuclear norm regularized least squares Problems", *Pacific Journal of Optimization*, vol. 6, 2010.

A. Waters, A. Sankaranarayanan, R. Baraniuk, "SpaRCS: recovering low-rank and sparse matrices from compressive measurements", *Neural Information Processing Systems,* 2011.

S. Wright, R. Nowak, M. Figueiredo, "Sparse reconstruction by separable approximation," *IEEE Transactions on Signal Processing, vol. 57,* 2009.

W. Yin, S. Osher, D. Goldfarb, J. Darbon, "Bregman iterative algorithms for l1-minimization with applications to compressed sensing", *SIAM Journal on Imaging Science, vol. 1, 2008.*

T. Zhou, D. Tao, "Godec: randomized low-rank & sparse matrix decomposition in noisy case," *Proc. International Conference on Machine Learning*, Bellevue, WA, 2011.