

Winter Conference in Statistics 2013

Compressed Sensing

LECTURE #11
Compressible priors

Prof. Dr. Volkan Cevher

volkan.cevher@epfl.ch

LIONS/Laboratory for Information and Inference Systems

Dimensionality Reduction

Compressive sensing
Sparse Bayesian learning
Information theory
Theoretical computer science

non-adaptive measurements dictionary of features coding frame sketching matrix / expander

Dimensionality Reduction

Approaches

	Deterministic	Probabilistic
Prior	sparsity compressibility	f(x)
Metric	$\ell_p ext{-norm}^*$	likelihood function

$$||x||_p = \left(\sum_i |x_i|^p\right)^{1/p}$$

Deterministic View

My Insights on Compressive Sensing

1. Sparse or compressible $oldsymbol{x}$ not sufficient alone

- Projection Φ
 information preserving (stable embedding / special null space)
- 3. Decoding algorithms tractable

- Sparse signal: only K out of N coordinates nonzero
 - model: union of all K-dimensional subspaces aligned w/ coordinate axes

Example: 2-sparse in 3-dimensions

$$K=2$$
 \mathbb{R}^3
 $x \in \Sigma_2$

• Sparse signal: only K out of N coordinates nonzero

 model: union of all K-dimensional subspaces aligned w/ coordinate axes

- Sparse signal: only K out of N coordinates nonzero
 - model: union of K-dimensional subspaces

 Compressible signal: sorted coordinates decay rapidly to zero

- Model: weak ℓ_p ball:

wavelet coefficients:

 $|x|_{(i)} \le Ri^{-1/p}$

 $||x||_{w\ell_p} \le R$

- Sparse signal: only K out of N coordinates nonzero
 - model: union of K-dimensional subspaces

Compressible signal: sorted coordinates decay rapidly to zero

$$||x - x_K||_r \le (r/p - 1)^{-1/r} RK^{1/r - 1/p}$$

well-approximated by a K-sparse signal (simply by thresholding)

Restricted Isometry Property (RIP)

- Preserve the structure of sparse/compressible signals
- RIP of order 2K implies: for all K-sparse x_1 and x_2

A random Gaussian matrix has the RIP with high probability if

$$(1 - \delta_{2K}) \le \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \le (1 + \delta_{2K})$$
 $M = O(K \log(N/K))$

Restricted Isometry Property (RIP)

- Preserve the structure of sparse/compressible signals
- RIP of order 2K implies: for all K-sparse x_1 and x_2

A random Gaussian matrix has the RIP with high probability if

$$(1 - \delta_{2K}) \le \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \le (1 + \delta_{2K})$$
 $M = O(K \log(N/K))$

Robust Null Space Property (RNSP)

RNSP in 1-norm (RNSP-1):

 Ω : support of x

$$||v_{\Omega}||_1 < \eta_K ||v_{\Omega^c}||_1, \forall v \in \mathcal{N}(\Phi)$$

Null space of Φ : $\mathcal{N}(\Phi)$

$$\{x': y = \Phi x'\}$$

RNSP-1 <> instance optimality

$$\Delta_1(y) = \underset{x'}{\operatorname{argmin}} \|x'\|_1 \text{ subject to } y = \Phi x'$$

$$||x - \Delta(\mathbf{\Phi}x)||_2 \le 2\frac{1 + \eta_K}{1 - \eta_K} \cdot \sigma_K(x)_1$$

Best K-term approximation:

$$\sigma_K(x)_q := \inf_{\|u\|_0 \le K} \|x - u\|_q$$

[Cohen, Dahmen, and Devore; Xu and Hassibi; Davies and Gribonval]

Recovery Algorithms

• Goal: given $y = \Phi x + n$ recover x

- $\ell_{q:q\leq 1}$ and convex optimization formulations
 - basis pursuit, Lasso, scalarization ...

$$\widehat{x} = \arg\min \|x\|_q^q \text{ s.t. } y = \Phi x$$

$$\widehat{x} = \arg\min \|y - \Phi x\|_2 \text{ s.t. } \|x\|_q \le t$$

$$\hat{x} = \arg\min \|y - \Phi x\|_2^2 + \mu \|x\|_q$$
 $M = O(K \log(N/K))$

 $||x||_1 = c$

- iterative re-weighted $\ell_1 \& \ell_2$ algorithms
- Greedy algorithms: CoSaMP, IHT, SP

Performance of Recovery (q=1)

Tractability

polynomial time

Sparse signals

instance optimal

– noise-free measurements: exact recovery

– noisy measurements: stable recovery

Compressible signals

instance optimal

recovery as good as K-sparse approximation (via RIP)

$$||x-\widehat{x}||_2 \leq C_1 \frac{||x-x_K||_1}{K^{1/2}} + C_2 ||n||_2$$
 CS recovery signal K-term noise approx error
$$M = O(K \log(N/K))$$

The Probabilistic View

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

• Goal: given $y = \Phi x + n$ recover x

Prior: iid generalized Gaussian distribution (GGD)
 iid: independent and identically distributed

$$f(x) = \text{GGD}(x; q, \lambda) \propto e^{-(|x|/\lambda)^q}$$

- Algorithms: via Bayesian inference arguments
 - maximize $\widehat{x} = \arg\min \|x\|_q^q \text{ s.t. } y = \Phi x$
 - prior $\widehat{x} = \arg\min \|y \Phi x\|_2 \text{ s.t. } \|x\|_q \leq t$ thresholding
 - maximum a $\widehat{x}=\arg\min\|y-\Phi x\|_2^2+\mu\|x\|_q^q$ posteriori (MAP: $n\sim\mathcal{N}(0,\sigma^2)\Rightarrow\mu=2\sigma^2/\lambda^q$)

 $y = \Phi x + n$ Goal: given resover

• Prior: Iid generalized Gaussian distribution (GGD)

$$f(x) = \operatorname{GGD}(x; q, \lambda) \propto e^{-(|x|/\lambda)^q}$$

- $f(x) = \mathrm{GGD}(x;q,\lambda) \propto \mathrm{e}^{-(|x|/\lambda)^q}$ Algorithms: (q=1 <> deterministic view) $M = O(K \log(N/K))$
 - maximize $\widehat{x} = \arg\min \|x\|_q^q \text{ s.t. } y = \Phi x$ prior
 - prior $\widehat{x} = \arg\min \|y - \Phi x\|_2 \text{ s.t. } \|x\|_q \le t$ thresholding
 - $\hat{x} = \arg\min \|y \Phi x\|_2^2 + \mu \|x\|_q^q$ maximum a posteriori (MAP: $n \sim \mathcal{N}(0, \sigma^2) \Rightarrow \mu = 2\sigma^2/\lambda^q$) (MAP)

• Goal: given $y = \Phi x + n$ recover x

Prior: iid generalized Gaussian distribution (GGD)

$$f(x) = \text{GGD}(x; q, \lambda) \propto e^{-(|x|/\lambda)^q}$$

Stable embedding: an experiment by Mike Davies

- -q=1
- x from N iid samples from GGD (no noise)
- recover using ℓ_1

 $y = \Phi x + n$ Goal: given

recover

Prior: iid generalized Gaussian distribution (GGD)

$$f(x) = \operatorname{GGD}(x; q, \lambda) \propto e^{-(|x|/\lambda)^{\alpha}}$$

 $f(x) = \ \mathrm{GGD}(x;q,\lambda) \propto \mathrm{e}^{-(|x|/\lambda)^q}$ • Stable mbedding: a paradox

- -q=1
- x from N iid samples from GGD (no noise)
- recover using ℓ_1
- **need M~0.9 N** (Gaussian Φ) $vs. M = O(K \log(N/K))$

Approaches

- Do nothing / Ignore
 be content with
 where we are...
 - generalizes well
 - robust

Compressible Priors*

*You could be a Bayesian if

... your observations are less important than your prior.

Compressible Priors

• Goal: seek distributions whose iid realizations $x_i \sim p(x)$ can be well-approximated as **sparse**

Definition:

The PDF p(x) is a q-compressible prior with parameters (ϵ, κ) , when

$$\lim_{N\to\infty} \bar{\sigma}_{k_N}(x)_q \stackrel{a.s.}{\leq} \epsilon, \text{(a.s.: almost surely)};$$

for any sequence k_N such that $\lim_{N\to\infty}\inf\frac{k_N}{N}\geq \kappa$, where $\epsilon\ll 1$ and $\kappa\ll 1$.

relative k-term approximation:

$$\bar{\sigma}_k(x)_q = \frac{\sigma_k(x)_q}{\|x\|_q}$$

$$\sigma_k(x)_q := \inf_{\|u\|_0 \le k} \|x - u\|_q$$

Compressible Priors

 Goal: seek distributions whose iid realizations can be well-approximated as sparse

Compressible Priors

 Goal: seek distributions whose iid realizations can be well-approximated as sparse

 Motivations: deterministic embedding scaffold for the probabilistic view

analytical proxies for sparse signals

- learning (e.g., dim. reduced data)
- algorithms (e.g., structured sparse)

information theoretic (e.g., coding)

Main concept: order statistics

Key Proposition

Proposition 1. Suppose \mathbf{x} is iid with respect to p(x). Denote $\bar{p}(x) := 0$ for x < 0, and $\bar{p}(x) := p(x) + p(-x)$ for $x \ge 0$ as the PDF of $|X_n|$, and $\bar{F}(t) := \mathbb{P}(|X| \le t)$ as its cumulative distribution function. Assume that \bar{F} is continuous and strictly increasing on some interval $[a\ b]$, with $\bar{F}(a) = 0$ and $\bar{F}(b) = 1$, where $0 \le a < b \le \infty$. For any $0 \le \kappa \le 1$, define the following G-function:

$$G_q[p](\kappa) := \frac{\int_0^{\bar{F}^{-1}(1-\kappa)} x^q \bar{p}(x) dx}{\int_0^\infty x^q \bar{p}(x) dx}.$$
 (1)

1. Bounded moments: Let $\mathbb{E}|X|^q < \infty$ for some $q \in (0, \infty)$. Then, given any sequence k_N such that $\lim_{N\to\infty} \frac{k_N}{N} = \kappa \in [0, 1]$, the following holds almost surely

$$\lim_{N \to \infty} \bar{\sigma}_k(\mathbf{x})_q^q \stackrel{a.s.}{=} G_q[p](\kappa). \tag{2}$$

2. Unbounded moments: Let $\mathbb{E}|X|^q = \infty$ for some $q \in (0, \infty)$. Then, for $0 < \kappa \le 1$ and any sequence k_N such that $\lim_{N\to\infty} \frac{k_N}{N} = \kappa$, the following holds almost surely

$$\lim_{N \to \infty} \bar{\sigma}_k(\mathbf{x})_q^q \stackrel{a.s.}{=} G_q[p](\kappa) = 0.$$
 (3)

Example 1

Consider the Laplacian distribution (with scale parameter 1)

$$p_1(x) := \frac{1}{2} \exp(-|x|)$$

The G-function is straightforward to derive

$$G_1[p_1](\kappa) = 1 - \kappa \cdot \left(1 + \ln 1/\kappa\right),$$

$$G_2[p_1](\kappa) = 1 - \kappa \cdot \left(1 + \ln 1/\kappa + \frac{1}{2}(\ln 1/\kappa)^2\right).$$

Laplacian distribution <> NOT 1 or 2-compressible

$$\bar{\sigma}_k(\mathbf{x})_1^1 = \frac{\|x - x_K\|_1}{\|x\|_1} \le \epsilon \Rightarrow \kappa = \frac{k_N}{N} \ge (1 - \sqrt{\epsilon})$$

Example 1

Consider the Laplacian distribution (with scale parameter 1)

$$p_1(x) := \frac{1}{2} \exp(-|x|)$$

- Laplacian distribution <> NOT 1 or 2-compressible
- Why does ℓ_1 minimization work for sparse recovery then?
 - The sparsity enforcing nature of the $\,\ell_1$ cost function
 - The compressible nature of the unknown vector x

Sparse Modeling vs. Sparsity Promotion

 Bayesian interpretation of sparse recovery

four decoding algorithms:

$$<>$$
 inconsistent $\Delta_1(\mathbf{y}) = \underset{\mathbf{\tilde{x}}: \mathbf{y} = \mathbf{\Phi} \tilde{\mathbf{x}}}{\operatorname{argmin}} \|\tilde{\mathbf{x}}\|_1, \ \Delta_{\mathrm{LS}}(\mathbf{y}) = \underset{\mathbf{\tilde{x}}: \mathbf{y} = \mathbf{\Phi} \tilde{\mathbf{x}}}{\operatorname{argmin}} \|\tilde{\mathbf{x}}\|_2 = \mathbf{\Phi}^+ \mathbf{y}, \ \mathbf{\tilde{x}}: \mathbf{y} = \mathbf{\Phi} \tilde{\mathbf{x}}$

$$\Delta_{\text{oracle}}(\mathbf{y}, \Lambda) = \underset{\tilde{\mathbf{x}}: \mathbf{y} = \mathbf{\Phi} \tilde{\mathbf{x}}, \text{ support}(\mathbf{x}) = \Lambda}{\operatorname{argmin}} \|\tilde{\mathbf{x}}\|_{2} = \mathbf{\Phi}_{\Lambda}^{+} \mathbf{y},$$
$$\Delta_{\text{trivial}}(\mathbf{y}) = 0,$$

Lemma 1. Suppose that \mathbf{x} is iid with respect to p(x) and that p(x) satisfies $G_1[p](\kappa_0) \geq 1/2$, where $\kappa_0 \approx 0.18$ is an absolute constant that depends on the sensing matrix. Then, there is no undersampling ratio $\delta = m/N$ for which instance optimality for Δ_1 guarantees to outperform the trivial decoder $\Delta_{trivial}$.

Theorem 1. Suppose that \mathbf{x} is iid with respect to p(x) and that p(x) has a finite fourth-moment $\mathbb{E}X^4 < \infty$. Then there exists a minimum undersampling factor $\delta_0 = m_0/N$ such that for any $\delta < \delta_0$ and any k, the asymptotic performance of oracle k-sparse estimation is almost surely worse than that of LS estimation, when $\mathbf{n} = 0$.

 $(\delta_0 \approx 0.151$: Laplace)

Example 2

Approximation Heuristic for Compressible Priors via Order Statistics

 Probabilistic signal model

$$x_i \stackrel{\text{iid}}{\sim} f(x)$$
 <> $\bar{x}_{(1)} \geq \bar{x}_{(2)} \geq \ldots \geq \bar{x}_{(N)}$
 $(\bar{x}_i = |x_i|)$ order statistics of $\bar{f}(\bar{x}) = f(\bar{x}) + f(-\bar{x})$

Approximation Heuristic for Compressible Priors via Order Statistics

 Probabilistic signal model

$$x_i \stackrel{\text{iid}}{\sim} f(x)$$
 $\iff \bar{x}_{(1)} \geq \bar{x}_{(2)} \geq \ldots \geq \bar{x}_{(N)}$ $(\bar{x}_i = |x_i|)$ order statistics of $\bar{f}(\bar{x}) = f(\bar{x}) + f(-\bar{x})$

 Deterministic signal model

$$x \in w\ell_p(R) <> \bar{x}_{(i)} \le R \cdot i^{-1/p}$$

Approximation Heuristic for Compressible Priors via Order Statistics

 Probabilistic signal model

$$x_i \stackrel{\mathsf{iid}}{\sim} f(x)$$
 <> $\bar{x}_{(1)} \geq \bar{x}_{(2)} \geq \ldots \geq \bar{x}_{(N)}$ $(\bar{x}_i = |x_i|)$ order statistics of $\bar{f}(\bar{x}) = f(\bar{x}) + f(-\bar{x})$

Deterministic signal model

$$x \in w\ell_p(R) <> \bar{x}_{(i)} \le R \cdot i^{-1/p}$$

 Quantile approximation

$$\bar{x}_{(i)} \sim \mathcal{N}\left(E[\bar{x}_{(i)}], \frac{\frac{i}{N}(1-\frac{i}{N})}{N[f(E[\bar{x}_{(i)}])]^2}\right)$$

$$R = \bar{F}^{-1} \left(1 - \frac{1}{N} \right),$$
$$p = R\bar{p}(R)N.$$

$$R = \bar{F}^{-1}\left(1-\frac{1}{N}\right), \qquad E\big[\bar{x}_{(i)}\big] = \bar{F}^\star\left(1-\frac{i}{N+1}\right) \qquad \bar{F}^\star(u) = \bar{F}^{-1}(u)$$
 cdf
$$p = R\bar{p}(R)N.$$
 Magnitude quantile

function (MQF)

Compressible Priors w/ Examples

Compressible Priors w/ Examples

Dimensional (in)Dependence

• Dimensional independence $p = p(\theta)$ <> $M = O(K \log(N/K))$

unbounded moments

$$K = (p/\epsilon)^{\frac{p}{1-p}} \Rightarrow ||x - x_K||_1 \le \epsilon ||x||_1$$

$$||x - \hat{x}||_2 \le C_1 \frac{||x - x_K||_1}{K^{1/2}} + C_2 ||n||_2$$

CS recovery error

signal K-term approx error

 $M = O(K \log(N/K))$

Dimensional (in)Dependence

Dimensional independence $p = p(\theta)$ <> $M = O(\log N)$

$$K = (p/\epsilon)^{\frac{p}{1-p}} \Rightarrow ||x - x_K||_1 \le \epsilon ||x||_1$$

truly logarithmic embedding

Dimensional dependence

$$p = p(\theta, N) \iff M = o(N)$$

<> bounded moments

example:

iid Laplacian OS: $\bar{x}_{(i)} \approx \lambda \log \frac{N}{i}$

$$K = (1 - \sqrt{\epsilon})N \Rightarrow ||x - x_K||_1 \le \epsilon ||x||_1$$

not so much! / same result can be obtained via the G-function

Why should we care?

Natural images

wavelet coefficients

deterministic view vs.

Besov spaces wavelet tresholding

probabilistic view

GGD, scale mixtures
Shannon source coding

Why should we care?

Natural images

wavelet coefficients

deterministic view vs. probabilistic view

Besov spaces wavelet tresholding

sorted index [log]

 $q_{
m GPD} pprox 1.6$ $\sim 10^4\text{-coeff}$ $\sim 10^4\text{-coeff}$ $\sim 10^4\text{-coeff}$

GGD, scale mixtures
Shannon source coding

[Choi, Baraniuk; Wainwright, Simoncelli; ...]

Berkeley Natural Images Database

Berkeley Natural Images Database

$$\log \operatorname{GPD}(q, \lambda) \doteq -(q+1) \log \left(1 + \frac{|x|}{\lambda}\right) \approx -\frac{|x|}{\lambda/(q+1)}$$

Berkeley Natural Images Database

Learned parameters depend on the dimension

Why should we care?

Natural images

(coding / quantization)

wavelet coefficients

deterministic view vs. probabilistic view

Besov spaces wavelet tresholding

GGD, scale mixtures

Shannon source coding

(histogram fits, KL divergence)

[bad ideas]

 Conjecture: Wavelet coefficients of natural images belong to a dimension independent (non-iid) compressible prior

1-norm instance optimality blows up:

$$||x - \widehat{x}||_2 \le C_1 \frac{||x - x_K||_1}{K^{1/2}} + C_2 ||n||_2$$

1-norm instance optimality blows up:

$$||x - \widehat{x}||_2 \le C_1 \frac{||x - x_K||_1}{K^{1/2}} + C_2 ||n||_2$$

Is compressive sensing USELESS for natural images?

Instance Optimality in Probability to the Rescue

Theorem 2 (Asymptotic performance of the ℓ_1 decoder under infinite second moment). Let $X_n, n \in \mathbb{N}$ be iid samples from a distribution with PDF p(x) satisfying the hypotheses of Proposition 1. Assume that $\mathbb{E}X^2 = \infty$, and define the coefficient vector $\mathbf{x}_N = (X_1, \dots, X_N) \in \mathbb{R}^N$. Similarly let $\phi_{i,j}$, $i, j \in \mathbb{N}$ be iid Gaussian variables $\mathcal{N}(0,1)$ and define the $m_N \times N$ Gaussian random matrix $\Phi_N = \left[\phi_{ij}/\sqrt{m_N}\right]_{1 \leq i \leq m_N, 1 \leq j \leq N}$. Consider a sequence of integers m_N such that $\lim_{N \to \infty} m_N/N = \delta$ then

$$\frac{\|\Delta_1(\mathbf{\Phi}_N\mathbf{x}_N) - \mathbf{x}_N\|_2}{\|\mathbf{x}_N\|_2} \stackrel{a.s.}{\to} 0$$

Is compressive sensing USELESS for natural images?

Not according to Theorem 2!!!

For large *N*, 1-norm minimization is still near-optimal.

Is compressive sensing USELESS for natural images?

Not according to Theorem 2!!!

But, are we NOT missing something practical?

But, are we NOT missing something practical?

Natural images have finite energy since we have finite dynamic range.

While the resolution of the images are currently ever-increasing, their dynamic range is not.

In this setting, compressive sensing using naïve sparsity will not be useful.

Other Bayesian Interpretations

• Multivariate Lomax dist. (non-iid, compressible w/ r=1) $\lambda_i = \lambda$

$$f(x_1, \dots, x_N) \propto \frac{1}{\left(1 + \sum_i \lambda_i^{-1} |x_i|\right)^{q+N}}$$
 (has GPD(x_i; q, \lambda_i) marginals)

maximize prior

- $\widehat{x} = \arg\min \|x\|_1 \text{ s.t. } y = \Phi x$
- prior thresholding

$$\widehat{x} = \arg\min \|y - \Phi x\|_2 \text{ s.t. } \|x\|_1 \le t$$

maximum a posteriori (MAP)

$$\widehat{x}^{\{k\}} = \arg\min \|y - \Phi x\|_2^2 + \mu^{\{k\}} \|x\|_1$$

$$(n \sim \mathcal{N}(0, \sigma^2) \Rightarrow \mu^{\{k\}} = 2\sigma^2(q+N)/(\lambda + \|\widehat{x}^{\{k-1\}}\|_1))$$

fixed point continuation

Interactions of Gamma and GGD

$$f(x) \propto \frac{1}{(1+|x|^r/\lambda^r)^{\frac{q+1}{r}}}$$

- iterative re-weighted ℓ_r algorithms

Summary of Results

Table 1: Simple Rule of Thumbs for IID Compressibility and Linear Regression

Moment property	$\mathbb{E}x^2 = \infty$	$\mathbb{E}x^2 < \infty \text{ and } \mathbb{E}x^4 = \infty$	$\mathbb{E}x^4 < \infty$
		N/A	
General result	Δ_1 performs ideally	depends on finer	Δ_{LS} outperforms Δ_{oracle}
	for any δ	properties of $p(x)$	for small $\delta < \delta_0$
		Example:	Example:
		$p_0(x) := 2 x /(x^2+1)^3$	$p_{\tau,\lambda}(x) \propto \exp\left(- x/\lambda ^{\tau}\right)$
			$0 < \tau < \infty$
		$\Delta_{ m oracle}$ performs just as $\Delta_{ m LS}$	Generalized Gaussian
Examples			
	Example:		
	$p(x) \propto (1 + x/\lambda ^{\tau})^{-(q+1)/\tau}$		
	Generalized Pareto $(\tau = 1)$ / Student's t $(\tau = 2)$		
	Case $0 < q \le \overline{2}$	$\bar{\text{Case 2}} = \bar{2} = \bar{4}$	Case q > 4
		$\Delta_{ m oracle}$ outperforms $\Delta_{ m LS}$	I
		for small $\delta < \delta_0$	

$$\delta = M/N$$

Conclusions

- Compressible priors <> probabilistic models for compressible signals (deterministic view)
- q-parameter
 <> (un)bounded moments
 - independent of N truly logarithmic embedding with tractable recovery
 - dimension agnostic learning
 - not independent of N
 many restrictions (embedding,
 - recovery, learning)
- Natural images <> CS is not a good idea w/ naïve sparsity
- Why would compressible priors be more useful vs. ℓ_1 ?
 - Ability to determine the goodness or confidence of estimates

