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Dimensionality Reduction 

 
 
 
 

 
 
 
 
 
 

 
Compressive sensing  non-adaptive measurements 
Sparse Bayesian learning  dictionary of features 
Information theory  coding frame 
Theoretical computer science  sketching matrix / expander 



Dimensionality Reduction 

 
 
 
 

 
 
 
 
 
 

 
 
• Challenge:  

` 



Approaches 

 
 
      Deterministic        Probabilistic 

 
Prior    sparsity 

       compressibility     
 
 

Metric              likelihood  
        function 

 
 



Deterministic View 



1. Sparse or compressible 
  

  not sufficient alone 
   

 
2. Projection 
 

  information preserving  
 (stable embedding / special null space) 

 
3. Decoding algorithms 
  

  tractable  
 
 

My Insights on Compressive Sensing 



• Sparse signal:   only K out of N coordinates nonzero 
– model:  union of all K-dimensional subspaces 

  aligned w/ coordinate axes 
 
 
    Example:  2-sparse in 3-dimensions 

 
 

Deterministic Priors 

support: 



• Sparse signal:   only K out of N coordinates nonzero 
– model:  union of all K-dimensional subspaces 

  aligned w/ coordinate axes 
 
 

Deterministic Priors 

sorted index 



• Sparse signal:   only K out of N  
     coordinates nonzero 
– model:  union of K-dimensional subspaces 

 
 

• Compressible signal:     sorted coordinates decay  
         rapidly to zero  

 

– Model:  weak      ball: 

Deterministic Priors 

sorted index 

power-law 
decay 

wavelet coefficients: 



• Sparse signal:   only K out of N  
     coordinates nonzero 
– model:  union of K-dimensional subspaces 

 

• Compressible signal:     sorted coordinates decay  
         rapidly to zero 

 
  well-approximated by a K-sparse signal 
   (simply by thresholding)  

 

sorted index 

Deterministic Priors 



Restricted Isometry Property (RIP) 
• Preserve the structure of sparse/compressible signals 

 

• RIP of order 2K implies:  
for all K-sparse x1 and x2 

 

K-planes 

A random Gaussian matrix has  
the RIP with high probability if  



Restricted Isometry Property (RIP) 
• Preserve the structure of sparse/compressible signals 

 

• RIP of order 2K implies:  
for all K-sparse x1 and x2 

 

K-planes 

A random Gaussian matrix has  
the RIP with high probability if  

various works  
by Picasso 

http://upload.wikimedia.org/wikipedia/en/d/d6/GertrudeStein.JPG
http://upload.wikimedia.org/wikipedia/en/c/c3/Dora_Maar_Au_Chat.jpg


Robust Null Space Property (RNSP) 
 

• RNSP in 1-norm (RNSP-1): 
 
 
 

• RNSP-1 <> instance optimality 
 

 
 
 

Best K-term approximation: 

[Cohen, Dahmen, and Devore; Xu 
and Hassibi; Davies and Gribonval] 



Recovery Algorithms 
• Goal: given 

  

  recover  
 

•        and convex optimization formulations 
 

– basis pursuit, Lasso, scalarization … 
 
 
 
 
 
 
 

– iterative re-weighted              algorithms  
 

• Greedy algorithms: CoSaMP, IHT, SP  
 
 



Performance of Recovery (q=1) 

• Tractability     polynomial time 
 

• Sparse signals   instance optimal 
 

– noise-free measurements:  exact recovery  
 

– noisy measurements:   stable recovery 
 

• Compressible signals  instance optimal 
 

– recovery as good as K-sparse approximation (via RIP) 

CS recovery 
error 

 

signal K-term 
approx error 

noise 



 The Probabilistic View 



Probabilistic View 
• Goal: given 

  

  recover  
 

• Prior:  iid generalized Gaussian distribution (GGD) 
 

 
• Algorithms:  via Bayesian inference arguments 

 

– maximize                
prior 
 

– prior               
thresholding 
 

– maximum a        
posteriori       
 (MAP) 

 
 
 

iid: independent and identically distributed 



Probabilistic View 
• Goal: given 

  

  recover  
 

• Prior:  iid generalized Gaussian distribution (GGD) 
 
 

• Algorithms:  (q=1 <> deterministic view) 
 

– maximize                
prior 
 

– prior               
thresholding 
 

– maximum a        
posteriori       
 (MAP) 

 
 
 



Probabilistic View 
• Goal: given 

  

  recover  
 

• Prior:  iid generalized Gaussian distribution (GGD) 
 
 

• Stable embedding: an experiment by Mike Davies 
 

– q=1 
 

– x from N iid samples from GGD  
(no noise) 

 

– recover using  
 

 

 
 
 



Probabilistic View 
• Goal: given 

  

  recover  
 

• Prior:  iid generalized Gaussian distribution (GGD) 
 
 

• Stable embedding: a paradox 
 

– q=1 
 

– x from N iid samples from GGD  
(no noise) 

 

– recover using  
 

– need M~0.9 N      (Gaussian     )   
vs.  

 

 
 
 



Approaches 

 
 

• Do nothing / Ignore  
 

 be content with   
 where we are… 

 
– generalizes well 

 
– robust  

 
 
 
 



 
 
 
 
*You could be a Bayesian if  
  … your observations are less important than your prior. 

Compressible Priors* 

[VC; Gribonval, VC, Davies; VC, Gribonval, Davies] 



Compressible Priors 
 

• Goal: seek distributions whose iid realizations   
  can be well-approximated as sparse 
 

Definition:       
 

 

sorted index 

relative k-term approximation: 



Compressible Priors 
 

• Goal: seek distributions whose iid realizations  
  can be well-approximated as sparse 
 

  
    

 

 

sorted index 

Classical: New: 



Compressible Priors 
 

• Goal: seek distributions whose iid realizations  
  can be well-approximated as sparse 
 
 

• Motivations: deterministic embedding scaffold  
   for the probabilistic view  
 

    analytical proxies for sparse signals 
     

– learning       (e.g., dim. reduced data) 
– algorithms   (e.g., structured sparse) 

  

    information theoretic (e.g., coding) 
 

• Main concept: order statistics  
 
 
 
 

 
 



Key Proposition 
 
 

 
 



Example 1 
• Consider the Laplacian distribution (with scale parameter 1) 

 

 
 

– The G-function is straightforward to derive 
 
 
 
 

 

• Laplacian distribution    <>  NOT 1 or 2-compressible 



Example 1 
• Consider the Laplacian distribution (with scale parameter 1) 

 
 

 

• Laplacian distribution    <>  NOT 1 or 2-compressible 
 

• Why does      minimization work for sparse 
recovery then? 

 
– The sparsity enforcing nature of the       cost function 

 
– The compressible nature of the unknown vector x 

 
 



Sparse Modeling vs. Sparsity Promotion 

• Bayesian interpretation    <>        inconsistent 
of sparse recovery 
 

four decoding algorithms: 



Example 2 



Approximation Heuristic for Compressible Priors 
via Order Statistics 

 
• Probabilistic    <>          

signal model 
 
 

 
 

iid 

order statistics of  



 
• Probabilistic    <>          

signal model 
 
 

• Deterministic                  
signal model     <>     

 
 

iid 

order statistics of  

Approximation Heuristic for Compressible Priors 
via Order Statistics 



 
• Probabilistic    <>          

signal model 
 
 

• Deterministic                      
signal model     <> 
 

• Quantile                
approximation     

 
 

iid 

order statistics of  

cdf 
Magnitude quantile  

function  (MQF) 

Approximation Heuristic for Compressible Priors 
via Order Statistics 



Compressible Priors w/ Examples 



Compressible Priors w/ Examples 



Dimensional (in)Dependence 
 

• Dimensional        
independence          <>  

 
      <> unbounded moments 

 
 example: 
 
   

 
 CS recovery 

error 
 

signal K-term 
approx error 

noise 



Dimensional (in)Dependence 
 

• Dimensional        
independence             <>  
 

     
    truly logarithmic embedding 
• Dimensional        

dependence              <> 
 

         <> bounded moments 
 

 example:     iid Laplacian 
 

 
not so much! / same result can be obtained via the G-function 



Why should we care? 

• Natural images   
 

– wavelet coefficients 
 

   deterministic view    vs.    probabilistic view 
 

 Besov spaces         GGD, scale mixtures   
  wavelet tresholding       Shannon source coding  
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Why should we care? 

• Natural images   
 

– wavelet coefficients 
 

   deterministic view    vs.    probabilistic view 
 

 Besov spaces         GGD, scale mixtures   
  wavelet tresholding       Shannon source coding  
 
      

[Choi, Baraniuk; Wainwright, Simoncelli; …] 



Berkeley Natural Images Database 



Berkeley Natural Images Database 



Berkeley Natural Images Database 

Learned parameters depend on the dimension 



Why should we care? 

• Natural images    (coding / quantization) 
 

– wavelet coefficients 
 

   deterministic view    vs.    probabilistic view 
 

 Besov spaces         GGD, scale mixtures   
  wavelet tresholding       Shannon source coding  
      (histogram fits, KL divergence)

        [bad ideas] 
  
• Conjecture: Wavelet coefficients of natural images  

   belong to a dimension independent  
   (non-iid) compressible prior   
    



Incompressibility of Natural Images  

1-norm instance optimality blows up: 



Incompressibility of Natural Images  

1-norm instance optimality blows up: 

Is compressive sensing 
USELESS  

for natural images? 



Instance Optimality in Probability  
to the Rescue 



Incompressibility of Natural Images  

Is compressive sensing 
USELESS  

for natural images? 

Not according to  
Theorem 2!!! 

For  large N, 1-norm  
minimization is still 
near-optimal. 



Incompressibility of Natural Images  

Is compressive sensing 
USELESS  

for natural images? 

Not according to  
Theorem 2!!! 

But, are we NOT missing 
something practical? 



Incompressibility of Natural Images  

But, are we NOT missing 
something practical? 

Natural images have finite energy 
since we have finite dynamic 
range. 
 
While the resolution of the images are 
currently ever-increasing, their 
dynamic range is not.  
 
In this setting, compressive sensing 
using naïve sparsity will not be useful.  



Other Bayesian Interpretations 

• Multivariate Lomax dist.          
(non-iid, compressible w/ r=1) 
 
– maximize                

prior 
 

– prior               
thresholding 
 

– maximum a        
posteriori       
 (MAP) 

 
 

• Interactions of Gamma and GGD 
 

– iterative re-weighted       algorithms 

fixed point continuation 

(has GPD(xi;q,λi) marginals) 



Summary of Results 



Conclusions 

• Compressible priors <> probabilistic models for 
     compressible signals  
     (deterministic view) 

• q-parameter   <> (un)bounded moments 
 

– independent of N  truly logarithmic embedding 
     with tractable recovery 
         

     dimension agnostic learning 
 

– not independent of N  many restrictions (embedding, 
     recovery, learning) 
 

• Natural images  <> CS is not a good idea w/
     naïve sparsity 
 

• Why would compressible priors be more useful vs.    ? 
– Ability to determine the goodness or confidence of estimates 
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