
!

École polytechnique fédérale de Lausanne
Department of Communication Science

Master Degree in Communication Science

Multiple Access via Compute-and-Forward: Practical
Code Design

Master Thesis of:
Erixhen Sula

Lab:
Laboratory for Information in Networked Systems (LINX)

Supervisors:
Prof. Michael Gastpar

Phd and Postdoc Supervisors:
Jingge Zhu, Sung Hoon Lim, Adriano Pastore

15 January 2016

i

Acknowledgments

I have been working under the supervision of Prof.Michael Gastpar, who is also
the leader of the research group I am part of. I would like to thank him for
the opportunity to be part of the research group. In this time frame I had the
wonderful opportunity of being “initiated” to research, which radically changed
the way I look at things: I found my natural “thinking outside the box” attitude
— that was probably well-hidden under a thick layer of lack-of-opportunities.

It was a great pleasure to work with my phd supervisor Jingge Zhu for
being among the prime suspects for getting me into all of this, and for his
continuous support and guidance throughout the semester. As if this was not
enough luck by itself, I also had the opportunity to interact with Sung Hoon
Lim and Adriano Pastore, who influenced this work in many different ways.

Another important acknowledgment goes to all members of LINX group
for the atmosphere and harmony, which is a team of outstanding researchers
including here the secretary France Faille.

Erixhen Sula
Lausanne

January 2016

ii

Abstract

In theMultiple Access Channel (MAC), we propose a novel Sequential
Decoding (SD) strategy via Compute-and-Forward (CF) to achieve
the boundary points on the capacity region. To investigate the practical
potentials of this strategy we use Low Density Parity Check (LDPC)
codes and address the problem of sequential decoding via compute-and-
forward for binary linear codes, with reasonable complexity and good
performance.

In a first part of the thesis, we recall the Sum-Product Algorithm
(SPA) and its implementation. In the second part, we introduce the
multiple access sequential decoder via CF for binary LDPC codes. In this
part, this strategy is developed and analysed. For the two-user Gaussian
MAC, it is shown that, points on the boundary of capacity region can
be attained with reasonable complexity and we can achieve within 1.7
dB of the Shannon limit at a bit error rate of 10−4 using moderate
block length of 1920. The strategy is extended to K-user Gaussian MAC.
Our contribution regarding sequential decoding via compute-and-forward
focuses on practical implementation with reasonable complexity, rarely
implemented before. Simulation results are presented for binary and
quaternary modulation, different user rates, and different channel gains.

The aforementioned strategy have been tested over one sample taken
from Mackay’s site — that are thoroughly documented in this thesis —
and lead to interesting results.

Contents

List of Figures vi

List of Tables viii

List of Acronyms ix

1 Introduction 1

2 Linear Codes 3
2.1 Nested Codes . 4
2.2 Low Density Parity Check Codes 4

2.2.1 Matrix Representation 5
2.2.2 Graphical Representation 5

2.3 Sum Product Algorithm . 6
2.3.1 Factor Graphs . 6
2.3.2 Update Rule . 7
2.3.3 Particular Factor Graphs 10

2.4 Implementation of SPA . 11
2.4.1 Approximation of function φ0 14

3 Sequential Decoding via Compute-and-Forward 15
3.1 Problem Statement . 15
3.2 Linear Codes Capacity . 16
3.3 Sequential Decoding via Compute-and-Forward Technique . . . 18

3.3.1 Implementation of Log Likelihood Ratio (LLR)-s 21
3.4 Achieving boundary points on capacity region 22

3.4.1 First Scenario: Symmetric Rate 22
3.4.2 Second Scenario: Asymmetric Rate 25

3.5 Extension to 4-Pulse Amplitude Modulation (PAM) 27
3.6 Extension to Multiple Users . 30
3.7 Asymmetric Channel Gain . 32

4 Conclusion 35

Bibliography 37

iii

List of Figures

2.1 Tanner graph corresponding to the parity check matrix. 5
2.2 Factor or Tanner graph for the global function g of equation (2.6) 7
2.3 Left: portion of the factor graph involved in the computation of

µ
(t+1)
x→f where t denoted the step number. This message is a func-

tion of µ(t)
x→f . Right: portion of the factor graph involved in the

computation of µ(t+1)
f→x . This message is a function of µ(t)

f→x. 8
2.4 Factor graph for the global function g of equation (2.6) 8
2.5 Table look-up approximation of the auxiliary function φ0(x) . . . 14

3.1 Multiple access communication system with independent messages. 16
3.2 An example of the rate regionR1(a, b) for some fixed q, p(u1, x1)p(u2, x2)

and a, b where H(U1) > H(U2) . 17
3.3 Factor graph corresponding to the parity check matrix in equation

(2.3) and input probabilities which are in LLR form. 20
3.4 Multiple access communication system specifications. 22
3.5 Simulation results for 1

3 rate code that can achieve within 2.25 dB
of the Shannon limit. 23

3.6 Target Point corresponding to rate pair (R1, R2) = (1
3 ,

1
3) at theo-

retical Signal-to-Noise Ratio (SNR) of 0.097 dB. 24
3.7 Approximately 1.653 dB away from the Shannon limit for the sym-

metric rate pair (R1, R2) = (1
3 ,

1
3). 24

3.8 Target Point corresponding to rate pair (R1, R2) = (9
20 ,

1
3) at theo-

retical SNR of 0.097 dB. 25
3.9 Approximately 2.95 dB away from Shannon limit for codeword1 and

3.4 dB for codeword2 in case of asymmetric rate pair (R1, R2) =
(9

20 ,
1
3). 26

3.10 Rate loss for user1 is 0.0468 and rate loss for user2 is 0.1635 in case
of asymmetric rate pair (R1, R2) = (9

20 ,
1
3). 26

3.11 Example which illustrates how to adapt the rate of a code. (a)
sample code, (b) rate adapted code. 27

3.12 Multiple access communication system specifications for 4-PAM
modulation. 28

3.13 Target Point corresponding to rate pair (R1, R2) = (9
10 ,

2
3) at theo-

retical SNR of 6.154 dB. 29

iv

List of Figures v

3.14 Approximately 5.5 dB away from Shannon limit for codeword1 and
5.65 dB for codeword2 in case of asymmetric rate pair (R1, R2) =
(9

10 ,
2
3) . 29

3.15 Multiple access communication system specifications for multiple
users. 30

3.16 Simulation results for channel gain pair (g1, g2) = (1,
√

2). 32
3.17 Simulation results for channel gain pair (g1, g2) = (1,

√
3). 33

3.18 Simulation results for channel gain pair (g1, g2) = (1, 2). 33

List of Tables

2.1 Approximation φ∗0(x) of the auxiliary function φ0(x) 14

3.1 Linear Approximation of the auxiliary function max∗(x, y) 21
3.2 Simulation results for different channel gain pairs 32

vi

List of Acronyms

SPA Sum-Product Algorithm . ii

BP Belief Propagation . 10

LDPC Low Density Parity Check . ii

LLR Log Likelihood Ratio . iv

SC Successive Cancellation. .15

MAC Multiple Access Channel . ii

AWGN Additive White Gaussian Noise . 15

BPSK Binary Phase Shift Keying . 22

MAP Maximum A Posteriori . 18

ML Maximum Likelihood . 18

PDF Probability Density Function . 19

PAM Pulse Amplitude Modulation . iv

SNR Signal-to-Noise Ratio . vi

BER Bit Error Rate . 22

CML Coded Modulation Library . 23

CF Compute-and-Forward . ii

SD Sequential Decoding . ii

DM-MAC Discrete Memoryless Multiple Access Channel 16

vii

Introduction 1

Linear codes, in particular LDPC codes are one of the most prominent examples
of practical codes which we will use throughout the thesis. The LDPC codes
have shown tremendous performance [1] for the point to point channel. However,
practical codes have not been studied thoroughly for multiuser communication
network, in particular the MAC.

In the MAC, all users share the same channel to transmit information to a
destination and in particular the Gaussian MAC, which is a well-understood
communication system. To achieve the boundary points on capacity region,
the receiver can either use joint decoding, or a single-user decoder combined
with successive cancellation decoding. Moreover, to achieve the entire capacity
region the above technique is combined with Rate-Splitting Multiple Access
in [2], but at the price that messages have to be split to create virtual users.
Selecting the proper decoder is a trade-off between performance and complexity.
The purpose of our project is to design an efficient and low complexity decoder,
and for this reason we will focus on sequential decoding via CF technique.

In this thesis we provide and analyse a new strategy for the Gaussian MAC
using linear codes based on CF technique [3]. For the 2-user Gaussian MAC
case, the receiver first decodes the modulo sum of the two codewords, and then
decodes either one of the codewords using the sum as side information. Each
step of sequential decoding via CF technique has a complexity in the order of
a point to point decoder.

Hence this new approach allows us to achieve rate pairs in the capacity
region using sequential decoding via CF. The proposed decoding strategy
is then extended to the general case of K-user Gaussian MAC. A complete
characterisation of the achievable rates region is given in [4] for the general
case.

The thesis is organised as follows. Chapter 2 introduces the linear codes,
in particular LDPC used in our decoding strategy. Also SPA is explained
together with the approximations made to lower complexity. Chapter 3 gives

1

1. Introduction

the problem statement, a complete analysis of our decoding strategy for the
2-user Gaussian MAC, and an extension to K-user Gaussian MAC. Moreover,
in this chapter other extensions are considered as well. In addition, all the
simulation results are included in this chapter after every theoretical treatment.

2

Linear Codes 2

Random codes are often used as a proof technique in the information-theoretic
literature. However, random codes are impractical because they lack structure,
in the sense that they do not admit a concise representation other than an
explicit list of codewords. Linear codes are defined over alphabets Σ which are
finite fields. Throughout, we will denote by Fq the finite field with q elements,
where q is a prime power. For now, we can think of q as a prime, in which case
Fq is just {0, 1, . . . , q − 1} with addition and multiplication defined modulo q.

Definition 2.0.1 (Linear Codes) If Σ is a field and C ⊆ Σn is a subspace
of Σn then C is said to be a linear code.

As C is a subspace, there exists a basis c1, c2, . . . , ck where k is the dimension
of the subspace. Any codeword can be expressed as the linear combination of
these basis vectors. We can write these vectors in matrix form as the rows of a
k × n matrix. Such a matrix is called a generator matrix.

Definition 2.0.2 (Generator Matrix) Let C ⊆ Fnq be a linear code of di-
mension k. A matrix G ∈ Fk×nq is said to be a generator matrix for C if its
k rows span C. The generator matrix G provides a way to encode a message
x ∈ Fkq (thought of as a row vector) as the codeword xG ∈ C ⊆ Fnq . Thus a lin-
ear code has an encoding map Enc : Fkq 7→ Fnq which is a linear transformation
x 7→ xG.

Many coding textbooks and papers define the “transposed” version, where
the columns of the n× k generator matrix span the code. Note that a linear
code admits many different generator matrices, corresponding to the different
choices of basis for the code as a vector space. However, this does not change
the structure of the code at all.

3

2. Linear Codes

Definition 2.0.3 (Parity Check Matrix) Let C be an (n, k)-code over Fnq .
There exists an (n− k)× n-matrix H ∈ F(n−k)×n

q which is of rank n− k and
satisfies

C =
{
w ∈ Fnq | wH> = 0

}
,

where H> denotes the transpose of the matrix H. Any such matrix is called
check matrix of C. [5]

The rate of the codebook Ck is defined to be:

Rk =
1

n
log |C| · log q for k = 1, 2

where n represent the length of the message and q is the finite field size.

2.1 Nested Codes

Nested codes are always associated with multiple access scenario, considering
the definition of nested codes. This section establishes the basic definition of
nested codes. We start with the binary case and nested parity-check codes.
More formally stated a nested code is a pair of linear or lattice codes (C1, C2)
satisfying

C2 ⊆ C1 (2.1)

We call C1 the “fine code” and C2 the “coarse code”. If a pair {(n, k1), (n, k2)}
of codes where k1 > k2, satisfies condition (2.1), then the corresponding parity
check matrices H1 and H2 are interrelated as

H2 =

[
H1

∆H

]
(2.2)

where H1 is (n− k1)× n matrix, H2 is (n− k2)× n and ∆H is (k1 − k2)× n
matrix. This implies that syndromes s1 = xH>1 and s2 = xH>2 associated with
the n-length vector x are related as in [6] s2 = [s1,∆s] where the length of ∆s
is k1 − k2 bits. If s2 = 0 it implies that s1 = 0, in other words every codeword
of codebook C2 is also a codeword of codebook C1. In particular, if x ∈ C1, then
s2 = [0,∆s]. Therefore, we can partition C1 into 2k1−k2 cosets of C2 by setting
s1 = 0, and varying ∆s.

C1 =
⋃

∆s∈{0,1}k1−k2

C2,s2

Of fundamental importance is the question: can we require both components of
a nested code, the fine code and the coarse code, to be both “good” performing?

2.2 Low Density Parity Check Codes

The name comes from the characteristic of their parity-check matrix which
contain only a few 1’s in comparison to the amount of 0’s which in other words

4

2.2. Low Density Parity Check Codes

is a sparse matrix. Their main advantage is that they provide a performance
which is actually very close to the Shannon capacity for a lot of different
channels and low complexity algorithms for decoding. Furthermore they are
suited for implementations that make heavy use of parallelism. They were first
introduced by Gallager in his PhD thesis in 1960.

2.2.1 Matrix Representation

Let us consider an example for a low density parity check matrix first. The
matrix defined in equation (2.3) is a parity check matrix with dimension
n× (n− k) specifically 8× 4 code. We denote by wr and wc as the number of
1’s in each row and columns, respectively. For a matrix to be called low-density
the two conditions wc � n and wr � m must be satisfied. Nonetheless, for
pedagogical reasons, we will make use of the following simple example.

H =

0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0

 (2.3)

x1 x2 x3 x4 x5 x6 x7 x8

f1 f2 f3 f4

Figure 2.1: Tanner graph corresponding to the parity check matrix.

2.2.2 Graphical Representation

Tanner introduced an effective graphical representation for LDPC codes. Not
only do these graphs provide a complete representation of the code, they also
help to describe the decoding algorithm. Tanner graphs are bipartite graphs.
That means that the nodes of the graph are separated into two distinctive
sets, and edges do only connect nodes of two different types. The two types of
nodes in a Tanner graph are called variable nodes (f -nodes) and check nodes
(x-nodes). Figure (2.1) is an example of such a Tanner graph and represents
graphically the code expressed in matrix form (2.3). The creation of such a
graph is rather straightforward. It consists of n− k check nodes (the number
of parity bits) and n variable nodes (the number of bits in a codeword). Check
node fi is connected to variable node xj if the element hij of H is a 1.

5

2. Linear Codes

2.3 Sum Product Algorithm

We will introduce factor graphs to describe a generic message-passing algorithm,
called SPA. The SPA is a basic algorithm and a wide variety of variants
have been developed in signal processing, digital communications, and other
communities. Factor graphs are a straightforward generalisation of “Tanner
graphs”. Tanner in [7] introduced bipartite graphs to describe families of codes
which are generalisations of Gallager’s LDPC codes in [8].

The decoding complexity can be reduced dramatically when the factor
graph has some special structure. One particular case is that of tree factor
graphs. On trees, marginals can be computed in a number of operations
which grows linearly with the depth of the tree. This can be done through a
procedure that recursively sums over all variables starting from the leaves and
progressing towards the root of the tree. It is straightforward to prove that
belief propagation exactly computes marginals on tree factor graphs.

We begin with an example that illustrates the operation of the sum product
algorithm in a simple factor graph in [9].

2.3.1 Factor Graphs

Let x1, x2, . . . , xn be the set of variable nodes where the i-th element xi takes
values from the domain Ai. In the case of a binary finite field the domain is
Ai = {0, 1}. Now consider the global function of these variables g(x1, x2, . . . , xn)
with domain S = A1 × A2 × · · · × An where the range of this function is R.
Our global function g(x1, x2, . . . , xn) has n marginal functions gi(xi) defined
as:

gi(xi) =
∑
∼xi

g(x1, x2, . . . , xn) (2.4)

where ∼ xi denotes the summation over the set {x1, x2, . . . , xn} \xi. Suppose
that g(x1, x2, . . . , xn) factors into a product of several local functions, each
having some subset of {x1, x2, . . . , xn} as arguments:

g(x1, x2, . . . , xn) =
∏
j∈J

fj(Xj) (2.5)

where J is a discrete index set and Xj is a subset of {x1, x2, . . . , xn}.

Definition 2.3.1 (Factor Graph) A factor graph is a bipartite graph that
expresses the structure of the equation (2.5). A factor graph has a variable
node for each variable xi, a factor node for each local function fj , and an edge
connecting variable node xi to factor node fj if and only if xi is an argument
of fj.

Example 2.3.1 (A Simple Factor Graph) Let g(x1, x2, x3, x4, x5) be a func-
tion of 5 variables and suppose that g can be expressed as a product of 5 factors
so that J = {A,B,C,D,E} , XA = {x1} , XB = {x2} , XC = {x1, x2, x3} ,

6

2.3. Sum Product Algorithm

XD = {x3, x4} and XE = {x4, x5}. The graph that corresponds to equation
(2.6) is shown in the figure

g(x1, x2, x3, x4, x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5) (2.6)

x5 x4 x3 x2 x1

fE fD fC fB fA

Figure 2.2: Factor or Tanner graph for the global function g of equation (2.6)

2.3.2 Update Rule

Let µx→f denote the message sent from variable node x to check node f in
the operation of the sum product algorithm, let µf→x denote the message
sent from check node f to variable node x. Also, let n(x) denote the set
of neighbours of a given node x in a factor graph. Then, the message com-
putations performed by the sum product algorithm may be expressed as follows:

variable to check node:

µx→f (x) =
∏

h∈n(x)\{f}

µh→x(x) (2.7)

check to variable node:

µf→x(x) =
∑
∼{x}

f(X)
∏

y∈n(f)\{x}

µy→f (y)

 (2.8)

marginal update:
g(x) =

∏
h∈n(x)

µh→x(x) (2.9)

where X is the set of arguments of function f . The proof of these update rules
is a direct consequence of transformation of expression tree and specifically
looking only to the neighbours of a variable node or a check node. More details
can be found in [9]. To better understand how the update rules operate on
a factor or Tanner graph we will give an example with the complete update
steps. But, before that let me give some further information about application
of update rules. When considering the so called “leaf” of a tree the update
rules simplify as follows:

7

2. Linear Codes

x

x

f

f

µ
(t+1)
x→f

µ
(t)
f→x

µ
(t+1)
f→x

µ
(t)
x→f

Figure 2.3: Left: portion of the factor graph involved in the computation of
µ

(t+1)
x→f where t denoted the step number. This message is a function of µ(t)

x→f .

Right: portion of the factor graph involved in the computation of µ(t+1)
f→x . This

message is a function of µ(t)
f→x.

variable node x is a leaf :

µx→f (x) = 1 (2.10)

check node f is a leaf :
µf→x(x) = f(x) (2.11)

x1

x2

x3

x4

x5

fA

fB

fC

fD

fE

µf→x−→ µx→f←−

Figure 2.4: Factor graph for the global function g of equation (2.6)

Example 2.3.2 (Update Rule Application) Let g(x1, x2, x3, x4, x5) be a
function of 5 variables and suppose that g can be expressed as a product of 5
factors as described in the figure 2.4. Message passing algorithm has a flow of
update rules as shown below:

8

2.3. Sum Product Algorithm

1st Step:

µfA→x1
(x1) =

∑
∼{x1}

fA(x1) = fA(x1)

µfB→x2
(x2) =

∑
∼{x2}

fB(x2) = fB(x2)

µx4→fD (x4) = 1

µx5→fE (x5) = 1

2nd Step:

µfD→x3
(x3) =

∑
∼{x3}

µx4→fD (x4)fD(x3, x4)

µfE→x3
(x3) =

∑
∼{x3}

µx5→fE (x5)fE(x3, x5)

µx1→fC (x1) = µfA→x1(x1)

µx2→fC (x2) = µfB→x2(x2)

3rd Step:

µfC→x3(x3) =
∑
∼{x3}

µx1→fC (x1)µx2→fC (x2)fC(x1, x2, x3)

µx3→fC (x3) = µfD→x3
(x3)µfE→x3

(x3)

4th Step:

µfC→x1
(x1) =

∑
∼{x1}

µx3→fC (x3)µx2→fC (x2)fC(x1, x2, x3)

µfC→x2
(x2) =

∑
∼{x2}

µx3→fC (x3)µx1→fC (x1)fC(x1, x2, x3)

µx3→fD (x3) = µfC→x3
(x3)µfE→x3

(x3)

µx3→fE (x3) = µfC→x3
(x3)µfD→x3

(x3)

5th Step:

µfD→x4
(x4) =

∑
∼{x4}

µx3→fD (x3)fD(x3, x4)

µfE→x5
(x5) =

∑
∼{x5}

µx3→fE (x3)fE(x3, x5)

µx1→fA(x1) = µfC→x1
(x1)

µx2→fB (x2) = µfC→x2
(x2)

9

2. Linear Codes

Now the most important step is to compute the marginals gi(xi) which we want
to express as a product of update messages which in log domain will reduce to
a sum so that complexity will be reduced significantly.

Marginalization Step:

g1(x1) = µfA→x1
(x1)µfC→x1

(x1)

g2(x2) = µfB→x2
(x2)µfC→x2

(x2)

g3(x3) = µfC→x3
(x3)µfD→x3

(x3)µfE→x3
(x3)

g4(x4) = µfD→x4
(x4)

g5(x5) = µfE→x5
(x5)

2.3.3 Particular Factor Graphs

With this example we now have a clear idea on how the message passing in
Belief Propagation (BP) is done iteratively back and forth between the variable
nodes and check nodes of the factor graph. However the example 2.3.2 describes
only a single update step and in order to compute the exact marginals in case
when the factor graph has a tree structure we need t∗ step where t∗ represents
the maximum distance between 2 variable nodes.

Theorem 2.3.1 (BP is exact) Consider a tree factor graph with depth t∗
(which means that t∗ is the maximum distance between any two variable nodes).
Then

1. Irrespective of the initial condition, the BP update (2.7), (2.8) converges
after at most t∗ iterations. In other words, for any t > t∗ µ

(t)
f→x = µ∗f→x

and µ(t)
x→f = µ∗x→f

2. For any variable node x and t > t∗, µ(t)
x = g(x)

Proof : Let us sketch an informal proof, leaving details to the reader. This
claim is proved by induction on the tree depth t∗. The induction step is easy as
well. Assuming the claim to be true for t∗ ≤ τ , one has to show that it holds
when t∗ = τ + 1.

10

2.4. Implementation of SPA

2.4 Implementation of SPA

The main concern of this section is how to implement SPA algorithm such
that the running time or complexity remains as low as possible. In order to
achieve this one cannot use directly the update rule (2.7) and (2.8) because the
running time can be arbitrarily large. As we are looking for a more practical
solution, some reasonable assumptions and approximations should take place.
Let us consider the case when there is no log-likelihood ratio and introduce
some notation which are used widely in the literature related to SPA algorithm.

• qij is a message sent by the variable node xi to the check node fj . Every
message contains always the pair qij(0) and qij(1) which stands for the
amount of belief that yi is 0 or 1. Throughout this work we will operate
only with binary linear codes, which means that messages can be in the
set {0, 1}.

• rji is a message sent by the check node fj to the variable node xi. Again
there is a rji(0) and rji(1) that indicates the amount of belief in that yi
is 0 or 1.

• Ci is the set of all “neighbour” check nodes connected to variable node xi.

• Vj is the set of all “neighbour” variable nodes connected to check node fi.

• kij is only a constant to normalize the update rules.

•
mij = log

qij(0)

qij(1)
whereas nji = log

rji(0)

rji(1)

Then the update rule (2.7) will take this form:

q
(t+1)
ij (0) = kij

∏
j′∈Ci\j

r
(t)

j′ i
(0) (2.12)

q
(t+1)
ij (1) = kij

∏
j′∈Ci\j

r
(t)

j′ i
(1) (2.13)

By taking the log-ratio of equation (2.12) and (2.13) we obtain:

m
(t+1)
ij = log

q
(t+1)
ij (0)

q
(t+1)
ij (1)

= log
∏

j′∈Ci\j

r
(t)

j′ i
(0)

r
(t)

j′ i
(1)

=
∑

j′∈Ci\j

n
(t)

j′ i
(2.14)

This step is quite easy to implement due to the low complexity of the
algebraic summation operation. Thus, no approximation is required in this
case. Now let us focus on the second update rule (2.8). This step contains an
additional function f(x) which represents the check node function defined in
this way:

f(x) = 1{xH>=0}

11

2. Linear Codes

The explicit expression of f(x) will be proven at a later stage. From now on let
us assume f(x) is defined as above where H is an (n− k)× n matrix and let
H = [f1, f2, . . . , fn−k]> thus f(x) =

∏n−k
j=1 1{xf>j =0}. Then the update rule

(2.8) will take this form:

r
(t+1)
ji =

∑
x
i
′

1{xf>j =0}
∏

i′∈Vj\i

q
(t)

i′ j

 (2.15)

Proposition 2.4.1 The equation (2.15) has the following explicit form after
some manipulation:

r
(t+1)
ji (0) =

1

2
+

1

2

∏
i′∈Vj\i

(
1− 2q

(t)

i′ j
(1)
)

(2.16)

r
(t+1)
ij (1) =

1

2
− 1

2

∏
i′∈Vj\i

(
1− 2q

(t)

i′ j
(1)
)

(2.17)

Proof: This claim is proven by induction on length of f and first of all let us
consider the case when vector f has all entries equal to 1 and length 3:

r
(t+1)
j3 (0) =

∑
x1,x2

1{x1⊕x2⊕0=0}
∏

i′∈{1,2}

q
(t)

i′ j

= q

(t)
1j (0)q

(t)
2j (0) + q

(t)
1j (1)q

(t)
2j (1)

= q
(t)
1j (1)q

(t)
2j (1) +

(
1− q(t)

1j (1)
)(

1− q(t)
2j (1)

)
=

1

2
+

1

2

(
1− 2q

(t)
1j (1)

)(
1− 2q

(t)
2j (1)

)
=

1

2
+

1

2

∏
i′∈{1,2}

(1− 2q
(t)

i′ j
(1))

Now to give the complete proof we assume that equation (2.15) is true when
the length of f is n − 1 and then prove it for length n. We omit the proof,
which is similar to the one before. Afterward by analogy we derive the final
form for any vector f .

12

2.4. Implementation of SPA

By taking the log-ratio of equation (2.16) and (2.17) we obtain:

n
(t+1)
ji = log

r
(t+1)
ji (0)

r
(t+1)
ji (1)

= log

1
2 + 1

2

∏
i′∈Vj\i

(
1− 2q

(t)

i′ j
(1)
)

1
2 −

1
2

∏
i′∈Vj\i

(
1− 2q

(t)

i′ j
(1)
)

(a)
= log

1 +
∏
i′∈Vj\i tanh (

m
(t)

i
′
j

2)

1−
∏
i′∈Vj\i tanh (

m
(t)

i
′
j

2)

= 2 tanh−1

 ∏
i′∈Vj\i

tanh (
m

(t)

i′ j

2
)

where (a) follows by the argument in equation (2.14) where

qi′ j(1) =
1

1 + e
m

i
′
j

⇒ 1− 2qi′ j(1) =
e
m

i
′
j − 1

e
m

i
′
j + 1

= tanh

m(t)

i′ j

2

The problem with these expressions is that even operating in log-domain we
cannot get rid of the product. Also it involves a hyperbolic tangent and its
inverse. How do we proceed? We do some approximations in order to keep
the complexity as low as possible as in [10]. First, split nji into its sign and
magnitude:

mij = αijβij

αij = sign[mij]

βij = |mij |

Then we have (for the moment we omit the step index for notation brevity):

nji =
∏
i′

αi′ j · 2 tanh−1

 ∏
i′∈Vj\i

tanh (
βi′ j
2

)

=
∏
i′

αi′ j · 2 tanh−1 exp log

 ∏
i′∈Vj\i

tanh (
βi′ j
2

)

=
∏
i′

αi′ j · 2 tanh−1 exp
∑

i′∈Vj\i

log

(
tanh (

βi′ j
2

)

)

=
∏
i′

αi′ j · φ
−1
0

 ∑
i′∈Vj\i

φ0(βi′ j)

13

2. Linear Codes

where φ0 is defined as:

φ0(x) = − log tanh
(x

2

)
= log

(
ex + 1

ex − 1

)
and use the fact that φ−1

0 (x) = φ0(x) when x > 0.

2.4.1 Approximation of function φ0

This function is well-behaved and has the following look-up table:

x φ∗0(x)

(0,9.08e-5] 10
(9.08e-5,5] log

(
ex+1
ex−1

)
(5,6] 9.2168e-3
(6,7] 3.3906e-3
(7,8] 1.2473e-3
(8,9] 4.5887e-4
(9,10] 1.6881e-4
>10 0

Table 2.1: Approximation φ∗0(x) of the auxiliary function φ0(x) for different
values of x when x > 0

x
0 5 10 15

?
0*

0

1

2

3

4

5

6

Figure 2.5: Table look-up approximation of the auxiliary function φ0(x)

14

Sequential Decoding via Compute-and-Forward 3

The Successive Cancellation (SC) is a multiuser decoding technique which can
be used to achieve the boundary of the capacity region of a MAC as in [11]. SC
decoding is based on subtracting (cancelling) the already decoded codeword
from the received codeword before the decoding of the next codeword. For
example, in the case of 2-user Gaussian MAC the first step is to decode one of
the codewords in which the other codeword is treated as noise, while in the
second step the decoded codeword is subtracted. The SC is very powerful and
looking from complexity perspective it is in the same order as point to point
decoding (when channel is Additive White Gaussian Noise (AWGN)). On the
other hand, sequential decoding via CF technique is also used to achieve the
boundary of the capacity region of linear codes.

An immediate question that raises here is: What is the difference between
SC and sequential decoding via CF? As mentioned before both technique are
used for achieving points on the boundary of capacity region however, SD via
CF is used for the points which cannot be decoded by SC. Moreover, SD via
CF is used to recover a linear functions of codewords without recovering the
individual codewords. In general, it decodes modulo sum of the codewords
without treating any codeword as noise and as a second step decodes one of
the codewords individually using the sum of codewords as side information.
Our main goal now is to do SD via CF using efficient decoding algorithm.

3.1 Problem Statement

Consider the multiple access communication system model as shown in figure
3.1. Each sender communicates an independent message reliably to a single
receiver. Sender j = {1, 2} encodes its message Wj into a codeword Xn

j and it
transmits it over the channel. After receiving the sequence Y n, the decoder
finds estimates Ŵj of each message. Since the senders transmit over a noisy

15

3. Sequential Decoding via Compute-and-Forward

channel, a tradeoff arises between the rates of reliable communication for the
two messages.

Decoder

Encoder1

Encoder2

W2

W1

(Ŵ1, Ŵ2)

Xn
1

Xn
2

Y n
p(y|x1, x2)

Figure 3.1: Multiple access communication system with independent messages.

We first consider a 2-sender Discrete Memoryless Multiple Access Channel
(DM-MAC) model (X1 × X2, p(y|x1, x2),Y) that consists of conditional pmfs
p(y|x1, x2) on Y (one for each input symbol pair (x1, x2)).

A (2nR1 , 2nR2 , n) code for the DM-MAC consists of:

• two message sets [1 : 2nR1] and [1 : 2nR1],

• two encoders, where encoder 1 assigns a codeword xn1 (w1) to each message
w1 ∈ [1 : 2nR1] and encoder 2 assigns a codeword xn2 (w2) to each message
w2 ∈ [1 : 2nR2], and

• a decoder that assigns an estimate (ŵ1, ŵ2) ∈ [1 : 2nR1]× [1 : 2nR2] or an
error message to each received sequence yn.

We assume that the message pair (M1,M2) is uniformly distributed over
[1 : 2nR1] × [1 : 2nR2]. Consequently, xn1 (W1) and xn2 (W2) are independent.
The average probability of error is defined as

P (n)
e = P

{
(Ŵ1, Ŵ2) 6= (W1,W2)

}
A rate pair (R1, R2) is said to be achievable for the DM-MAC if there

exist a sequence of (2nR1 , 2nR2 , n) codes such that limn→∞ P
(n)
e = 0. The

capacity region C of the DM-MAC is the closure of the set of achievable rate
pairs (R1, R2). Sometimes we are interested in the sum-capacity Csum of the
DM-MAC defined as Csum = max {R1 +R2 : (R1, R2) ∈ C }.

3.2 Linear Codes Capacity

An important question here would be: What is the achievable rate pair (R1, R2)
that linear codes can reach? In order to answer the question we need to analyse
the simultaneous decoder for linear codes. This step is not as easy as it looks in
the sense that the analysis of the probability of error for linear codes is closely
related to the analysis of the random codes. However, due to the dependency
issues (in linear codes) the packing lemma in [12] for i.i.d random codes cannot
be applied directly in our case. To solve this issue a lemma which is adapted
for linear codes is found in [13]. Now I will state a theorem which determines

16

3.2. Linear Codes Capacity

the achievable rates for linear codes. Since we need only the theorem itself, I
will only cite the proof.

Theorem 3.2.1 A rate pair (R1, R2) is achievable by linear random codes
over the discrete memoryless MAC if it is included in⋃

a,b∈F2
q

R1(a, b) (3.1)

for some prime q, p(u1, x1)p(u2, x2) where a = [a1, a2], b = [b1, b2], the union
is over all a, b ∈ F2

q such that a 6= 0 and b 6= 0 are linearly independent,

R1(a, b) = {(R1, R2) :

R1 < I(U1;Y |U2),

R2 < I(U2;Y |U1),

R1 +R2 < I(U1, U2;Y),

min {R1 + I(W1;U2), R2 + I(W1;U1)} < I(W1;Y)

min {R1 + I(W2;U2), R2 + I(W2;U1)} < I(W2;Y,W1)

(3.2)

where [
W1

W2

]
=

[
a1 a2

b1 b2

] [
U1

U2

]
(3.3)

Proof 3.2.1 The complete proof can be found in [13]

H(U1)−H(U2)

I1(U2)

I2(U2)

I1(U1) I2(U1)

I(U1;Y |U2)

I(U2;Y |U1)

I(U1, U2;Y)

R1 = R2

R1 = R2 +H(U1)−H(U2)

R1

R2

Figure 3.2: An example of the rate region R1(a, b) for some fixed q,
p(u1, x1)p(u2, x2) and a, b where H(U1) > H(U2)

17

3. Sequential Decoding via Compute-and-Forward

Where I1(Uk) = I(W1;Y) − I(W1;Uk) and I2(Uk) = I(W2;Y,W1) −
I(W2;Uk). This figure illustrates a possible achievable rates region.

Remark 1 By including the time sharing random variable, it can be easily
verified that linear codes achieve the capacity of the standard MAC. Furthermore,
if H(W1|Y) = H(W2|Y,W1), the region R1(a, b) is a pentagon.

3.3 Sequential Decoding via Compute-and-Forward
Technique

For the case of 2 input codewords the decoder consists of 2 steps. The first one
is decoding the modulo sum of the codewords and the second one is decoding
one of the codewords using the sum as a side information. The decoder is based
on Maximum A Posteriori (MAP) rule which in the case of equally likely a
priori distribution becomes Maximum Likelihood (ML).

1st Step:
ŝi = argmax

si

p(si|yn) (3.4)

2nd Step:
x̂1i = argmax

x1i

p(x1i|yn, sn) (3.5)

The equation (3.4) and (3.5) are the general MAP rules 1. However, our main
focus will remain binary linear codes with codebook C ⊆ Fn2 (q = 2 in this
case). An useful notation is the set {x1, x2, . . . , xi−1, xi+1, . . . , xn} denoted by
∼ xi. Also H is an (n− k)× n matrix and H = [f1, f2, . . . , fn−k]>. Therefore
the procedure will be as follows:

1st Step:

ŝi = argmax
si∈{0,1}

p(si|yn)

= argmax
si∈{0,1}

∑
∼si

p(sn|yn)

= argmax
si∈{0,1}

∑
∼si

p(sn, yn)

p(yn)

= argmax
si∈{0,1}

∑
∼si

p(yn|sn)p(sn)

= argmax
si∈{0,1}

∑
∼si

n∏
i=1

p(yi|si)
1

|C|
1{sH>=0}

= argmax
si∈{0,1}

∑
∼si

 n∏
i=1

p(yi|si)
1

|C|

n−k∏
j=1

1{sf>j =0}

(3.6)

1For the sake of simplicity both u and x are represented as x because x = f(u) and in
addition p(y|x) = p(y|u). For this reason x1i ∈ {0, 1} is used instead of x1i ∈ {−1, 1} (3.7)

18

3.3. Sequential Decoding via Compute-and-Forward Technique

2nd Step:

x̂1i = argmax
x1i∈{0,1}

p(x1i|yn, sn)

= argmax
x1i∈{0,1}

∑
∼x1i

p(xn1 |yn, sn)

= argmax
x1i∈{0,1}

∑
∼x1i

p(xn1 , y
n, sn)

p(yn, sn)

= argmax
x1i∈{0,1}

∑
∼x1i

p(yn|xn1 , sn)p(sn|xn1)p(xn1)

= argmax
x1i∈{0,1}

∑
∼x1i

n∏
i=1

p(yi|x1i, si)
1

|C|2
1{x1H>=0}

= argmax
x1i∈{0,1}

∑
∼x1i

 n∏
i=1

p(yi|x1i, si)
1

|C|2
n−k∏
j=1

1{xf>j =0}

(3.7)

Note 1 Assuming a uniform distribution over the codewords of codebook C

p(xn1) =

1
|C| xn1 is a codeword

0 otherwise

=
1

|C|
1{x1H>=0} (3.8)

p(sn|xn1) = P(Sn = sn|Xn
1 = xn1)

= P(Xn
2 = sn ⊕ xn1 |Xn

1 = xn1) =
1

|C|
(3.9)

The term xn1 is already a codeword due to the fact that if not, the term
p(sn|xn1)p(xn1) is already 0. Also sn is a codeword because it is the outcome
of the first step (SPA) which in every case even if wrong decoded it outputs a
codeword. Therefore, it is left that xn2 is already a codeword and for this reason
equation (3.9) contains no indicator function.

Note 2 As we have assume a Gaussian channel, we can write the Probability
Density Function (PDF) of the channel as follows:

p(yi|x1i, x2i) =
1√
2π

exp

(
−1

2
(yi − x1i − x2i)

2

)
The only term not specified explicitly remains, in [14]:

p(yi|si) =
∑
x1i

p(yi|x1i, si)p(x1i|si)

=
1

2

∑
x1i

p(yi|x1i, x2i = si ⊕ x1i)

19

3. Sequential Decoding via Compute-and-Forward

Our next task is reduced into converting SD via CF steps into factor graphs.
Surprisingly, each step of SD can be represented by a factor graph containing
only a single tanner graph. This statement is supported by equations (3.6) and
(3.7) which contain a single indicative function. In other words the graph will
be determined only by the parity check matrix H and LLR-s.

Example 3.3.1 The corresponding factor graph of the first step of SD via CF
is illustrated by this example.

s1 s2 s3 s4 s5 s6 s7 s8

f1 f2 f3 f4

p(y1|s1) p(y2|s2) p(y3|s3) p(y4|s4) p(y5|s5) p(y6|s6) p(y7|s7) p(y8|s8)

Figure 3.3: Factor graph corresponding to the parity check matrix in equation
(2.3) and input probabilities which are in LLR form.

LLR1 = log
p(yi|si = 0)

p(yi|si = 1)

= log

(∑
x1i

p(yi|x1i, x2i = x1i)∑
x1i

p(yi|x1i, x2i = 1⊕ x1i)

)

= log

(
e−

1
2 (yi−2

√
P)2 + e−

1
2 (yi+2

√
P)2

2e−
1
2y

2
i

) (3.10)

LLR2 = log
p(yi|x1i = 0, si)

p(yi|x1i = 1, si)

= log

(
p(yi|x1i = 0, x2i = si)

p(yi|x1i = 1, x2i = si ⊕ 1)

)

=

 4yi
√
P for si = 0

0 for si = 1

(3.11)

20

3.3. Sequential Decoding via Compute-and-Forward Technique

3.3.1 Implementation of LLR-s

Clearly, a direct observation which is not favourable for us is the complicated
expression of LLR1 containing exponential expression. Therefore, we have to
come up with a simplification method. In the vast majority of literature the
log-sum of exponential terms is defined as:

max∗(x, y) = log(ex + ey) (3.12)

which is shown in [15] to be

max∗(x, y) = max(x, y) + log(1 + e−|x−y|) (3.13)

Apparently, the function depends on the difference ∆ = x − y and the
term containing it serves as an correction term. Due to this reason, a linear
approximation with respect to the difference ∆ will be done. The function will
have the following look-up table:

∆ = x− y max∗(x, y)

> 2.507 y
< -2.507 x
(0, 2.507] y − 2.49(∆− 2.507)
(-2.507, 0] y + 2.49(∆ + 2.507)

Table 3.1: Linear Approximation of the auxiliary function max∗(x, y) for
different values of ∆ = x− y

21

3. Sequential Decoding via Compute-and-Forward

3.4 Achieving boundary points on capacity region

After we have defined the achievable rates region in section 3.2 now we are
ready to aim for some of those boundary points which are assumed to be the
most difficult points to achieve. The theoretical capacity calculation is done for
binary input symbols (not for gaussian) which would be a fair comparison for
our case. Moreover, the actual comparison is between the theoretical SNR to
achieve error free transmission and the actual SNR to achieve Error Probability
or Bit Error Rate (BER) at 10−4.

The SNR is represented by Pk/σ2
w, which is the user power Pk over the

gaussian noise variance σ2
w. Throughout simulations noise variance σ2

w is set to
1 to keep the calculations simple.

BPSK

BPSK

D

E2

E1

+

z ∼ N (0, 1)

w2

w1

u2

u1

(̂s, x̂1)

x1

g1

g2

AWGN

x2

y

Figure 3.4: Multiple access communication system specifications.

• Encoders(E1, E2): u1 = w1G⊕ d1 where G is the generator matrix and d
is the dither vector.

• Modulator(BPSK): x1i =
√
P (1−2u1i) where P is the power assigned to

the first user. This mapping is called Binary Phase Shift Keying (BPSK).

• Channel(AWGN): y = g1x1 +g2x2 +z where g1, g2 are the channel gains
and z is the gaussian noise of zero mean and unity variance. Since having
different channel gains decoding one of the codewords would be easier
than to decode the other one we focus on the special case (g1, g2) = (1, 1)
and the channel equation becomes y = x1 + x2 + z.

• Decoder(D): The method used by the decoder is SD via CF. At the end
the decoder should be able to decode both codewords separately (x̂1, x̂2)

by firstly decoding sum ŝ = ˆ(x1 ⊕ x2) and then one of the codewords x̂i
where i ∈ {1, 2}.

3.4.1 First Scenario: Symmetric Rate

In this scenario the power for the user 1 and user 2 is the same P1 = P2. The
aimed point is the symmetric rate pair (R1, R2) = (1

3 ,
1
3) which is shown in

figure 3.5. The corresponding theoretical SNR is 0.097dB under the condition
of using binary input symbols. To calculate the actual SNR we will use SPA
algorithm as in [16] embedded perfectly in SD via CF. If the modulo sum

22

3.4. Achieving boundary points on capacity region

SNR
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

E
r
r
o
r

P
r
o
b
a
b
i
l
i
t
y

10-5

10-4

10-3

10-2

10-1

100

Decoded codeword for point-to-point
Theoretical SNR

Figure 3.5: Simulation results for 1
3 rate code that can achieve within 2.25

dB of the Shannon limit.

of the users is successfully decoded then we have no error propagation. An
important aspect used throughout all the simulations is Coded Modulation
Library (CML) package. The CML is a library of communication system
simulations developed at West Virginia University. Also it is an open source
toolbox for simulating capacity approaching codes in Matlab. It also uses
C-mex to reduce the complexity (running time). Even thought CML has many
features and ready supported standards (UMTS, CCSDS, DVB-RCS, WiMAX
IEEE 802.16, DVB-S2 etc) we used only a few ingredients.

The LDPC codes used here are taken from Mackay’s site [17] of block
length 1920. Mackay himself has created a whole database of Gallager’s
codes containing performance results for the point-to-point communication.
In figure 3.6 simulation results for 1

3 rate code and point-to-point case are
shown. Moreover, this LDPC code can achieve within 2.25 dB of the Shannon
limit. This result is particularly surprising since such codes are extremely
easy to implement. Using the same code as above for the 2-user Gaussian
MAC to decode the pair (R1, R2) = (1

3 ,
1
3) the actual SNR for achieving Error

Probability around 10−4 is approximately 1.75 dB as shown in figure 3.7. From
another perspective, we are 1.653 dB away from the Shannon limit. Should
someone consider it as a reasonable result? Taking into consideration the fact
that the code itself has 2.25 dB loss, the simulation results we are obtaining
from sequential decoding via CF are more than reasonable. While this may
not be entirely rigorous, it infers that the code we are using is far from perfect.

23

3. Sequential Decoding via Compute-and-Forward

Rate of user 1
0 0.1 0.2 0.3 0.4 0.5 0.6

R
a
t
e

o
f

u
s
e
r

2

0

0.1

0.2

0.3

0.4

0.5

0.6

Binary input linear code
Binary input MAC
Binary input CF
(0.5, 0.5) reference
MAC capacity

Figure 3.6: Target Point corresponding to rate pair (R1, R2) = (1
3 ,

1
3) at

theoretical SNR of 0.097 dB.

SNR
-5 -4 -3 -2 -1 0 1 2

E
r
r
o
r

P
r
o
b
a
b
i
l
i
t
y

10-6

10-5

10-4

10-3

10-2

10-1

100

Decoded Codeword S
Decoded Codeword X given decoded sum S
Decoded Codeword X given true sum S

Figure 3.7: Approximately 1.653 dB away from the Shannon limit for the
symmetric rate pair (R1, R2) = (1

3 ,
1
3).

24

3.4. Achieving boundary points on capacity region

3.4.2 Second Scenario: Asymmetric Rate

In this scenario the power for the user 1 and user 2 is the same P1 = P2. The
aimed point is the asymmetric rate pair (R1, R2) = (9

20 ,
1
3) which is shown in

figure 3.8. The corresponding theoretical SNR is 0.097dB under the condition
of using binary input symbols. Surprisingly, the theoretical SNR is the same for
symmetric rate pair. To calculate the actual SNR we should construct nested
linear codes whose performance does not degrade at high rates. Based on rate
1
3 code which have a reasonably good performance we want to construct rate
9
20 code by adapting some of the check nodes of the rate 1

3 code. The relation
between codebooks is: C 1

3
⊆ C 9

20

One of the possible strategies is by removing some check nodes of the rate 1
3

code, however the performance is degraded by a lot of margin. Another strategy
is by “merging” some of the check nodes into a single one. Explaining “merging”
technique into mathematical expression: fk = fi⊕fj where k ∈ {1, 2, . . . , 1056}
and i, j ∈ {1, 2, . . . , 1280}. While this is not our main purpose it is a key
ingredient of simulation results. Moreover the performance of hybrid rate 9

20
code is very close and even better than the performance of rate 1

3 code. Having
a slightly better performance is actually intuitive and we can indeed increase
this margin, however it become a problem of designing adaptive rate code (not
in our scope). The rate adaptive technique used is arbitrarily chosen, however
the performance is roughly stable for different simulations.

Rate of user 1
0 0.1 0.2 0.3 0.4 0.5 0.6

R
a
t
e

o
f

u
s
e
r

2

0

0.1

0.2

0.3

0.4

0.5

0.6

Binary input linear code
Binary input MAC
Binary input CF
(0.5, 0.5) reference
MAC capacity

X: 0.45
Y: 0.333

Figure 3.8: Target Point corresponding to rate pair (R1, R2) = (9
20 ,

1
3) at

theoretical SNR of 0.097 dB.

25

3. Sequential Decoding via Compute-and-Forward

SNR
-4 -3 -2 -1 0 1 2 3 4

E
r
r
o
r

P
r
o
b
a
b
i
l
i
t
y

10-6

10-5

10-4

10-3

10-2

10-1

100

Decoded Codeword S
Decoded Codeword X1 given decoded sum S
Decoded Codeword X1 given true sum S
Decoded Codeword X2 given decoded sum S

Figure 3.9: Approximately 2.95 dB away from Shannon limit for codeword1

and 3.4 dB for codeword2 in case of asymmetric rate pair (R1, R2) = (9
20 ,

1
3).

Rate of user 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
a
t
e

o
f

u
s
e
r

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Binary input linear code
Binary input MAC
Binary input CF
(0.5, 0.5) reference
MAC capacity

X: 0.6549
Y: 0.4968

Figure 3.10: Rate loss for user1 is 0.0468 and rate loss for user2 is 0.1635 in
case of asymmetric rate pair (R1, R2) = (9

20 ,
1
3).

26

3.5. Extension to 4-PAM

In terms of results in order to decode the rate pair (R1, R2) = (9
20 ,

1
3) the

actual SNR for achieving Error Probability around 10−4 is approximately 3.05
dB for codeword1 and 3.5 dB for codeword2 as shown in figure 3.9. In other
words, we are 2.95 dB away from the Shannon limit for codeword1 and 3.4 dB
away for codeword2. Let us look from another perspective and analyse the rate
loss. Our goal is to achieve the boundary point, but where does the point fall
into the achievable rates region. According to the simulation results user1 has
0.0468 rate loss (or away from the achievable rates limit) and user2 has 0.1635
rate loss as it is depicted in figure 3.10.

x1 x2 x3 x4 x5 x6 x7 x8

f1 f2 f3 f4

(a)

x1 x2 x3 x4 x5 x6 x7 x8

f
′

1 f
′

2 f
′

3

(b)

Figure 3.11: Example which illustrates how to adapt the rate of a code. (a)
sample code, (b) rate adapted code.

Considering example 3.11 the adapted check nodes have thee following form:
f
′

1 = f1 ⊕ f2, f
′

2 = f2 and f
′

3 = f3. The above example illustrates how to
increase the rate of a code from 1

2 to 5
8 . Apparently, the example 3.11 that I

choose on purpose lacks connectivity. The node corresponding to 2nd bit of
the codeword is not connected and SPA algorithm does not update this node,
which may lead to a permanent error. To overcome this issue we must make
sure that the check nodes (forming adapted check nodes) have disjoint set of
variable nodes. In our case {x2, x4, x5, x8} ∩ {x1, x2, x3, x6} = {x2}. Loosely
speaking the problem above is solved somehow by itself due to low density
structure of LDPC codes. The parity check matrix we are using has dimension
1280× 1920 where each column has a weight of 2 or 3. Due to the sparseness of
the code the probability to encounter such a problem is quite small. A rigorous
way to verify such a problem is to check whether the number of 1-s in the
sample parity check is equal to the number of 1-s in the adapted parity check.

3.5 Extension to 4-PAM

The only step which changes from before is the modulation block. One of the
limitations is that achievable rate region leaves aside all the points whenever
both rates are grater than 1

2 at the same time. To overcome this issue we will
use 4-PAM modulation instead of BPSK. One could suggest to use a higher
order modulation, however this leads to significantly high dB loss, degrading
the performance.

27

3. Sequential Decoding via Compute-and-Forward

PAM

PAM

D

E2

E1

+

z ∼ N (0, 1)

w2

w1

u2

u1

(̂s, x̂1)

x1 AWGN

x2

y

Figure 3.12: Multiple access communication system specifications for 4-PAM
modulation.

• Modulator(PAM): x1i =
√
P
5

(
(2u1

1i − 1) · 2 + (2u0
1i − 1)

)
where P is the

power assigned to the first user and the binary representation for u1 is
u1

1u
0
1. This mapping is called 4-PAM. The mapping can be done in 24

different ways and the one we shown before is the simplest one. Without
taking into consideration the power scale it maps 00 → −3, 01 → −1,
10→ 1 and 11→ 3.

The decoding SD via CF method will remain the same as before except the
input LLR-s. Intuitively the number of LLR (which should be in vector form
due to 4 possible values) is halved taking into account the fact that 2 bits are
mapped into 1 symbol. To overcome this issue we split LLR into 2 part for
each of the SD via CF steps as below:

LLR1
1 = log

(∑
s1i
p(yi|s1

i s
0
i = s1

i 0)∑
s1i
p(yi|s1

i s
0
i = s1

i 1)

)

LLR2
1 = log

(∑
s0i
p(yi|s1

i s
0
i = 0s0

i)∑
s0i
p(yi|s1

i s
0
i = 1s0

i)

) (3.14)

LLR1
2 = log

(∑
x1
1i
p(yi|x1

1ix
0
1i = x1

1i0, s
1
i s

0
i)∑

x1
1i
p(yi|x1

1ix
0
1i = x1

1i1, s
1
i s

0
i)

)

LLR2
2 = log

(∑
x0
1i
p(yi|x1

1ix
0
1i = 0x0

1i, s
1
i s

0
i)∑

x0
1i
p(yi|x1

1ix
0
1i = 1x0

1i, s
1
i s

0
i)

) (3.15)

In this scenario again the power for the user 1 and user 2 is the same P1 = P2.
The aimed point is the asymmetric rate pair (R1, R2) = (9

10 ,
2
3) which is

shown in figure 3.13. The corresponding theoretical SNR is 6.154dB under the
condition of using quaternary input symbols. To calculate the actual SNR we
use the constructed nested linear codes from before. From simulation results in
order to decode rate the pair (R1, R2) = (9

10 ,
2
3) the actual SNR for achieving

Error Probability around 10−4 is approximately 5.5 dB away form the Shannon
limit for codeword1 and 5.65 dB for codeword2 as shown in figure 3.14.

28

3.5. Extension to 4-PAM

Rate of user 1
0 0.2 0.4 0.6 0.8 1 1.2

R
a
t
e

o
f

u
s
e
r

2

0

0.2

0.4

0.6

0.8

1

1.2

Binary input linear code
Binary input MAC
Binary input CF
(1,1) reference
MAC capacity

X: 0.9
Y: 0.6666

Figure 3.13: Target Point corresponding to rate pair (R1, R2) = (9
10 ,

2
3) at

theoretical SNR of 6.154 dB.

SNR
0 2 4 6 8 10 12

E
r
r
o
r

P
r
o
b
a
b
i
l
i
t
y

10-5

10-4

10-3

10-2

10-1

100

Decoded Codeword S
Decoded Codeword X1 given decoded sum S
Decoded Codeword X1 given true sum S
Decoded Codeword X2 given decoded sum S

Figure 3.14: Approximately 5.5 dB away from Shannon limit for codeword1

and 5.65 dB for codeword2 in case of asymmetric rate pair (R1, R2) = (9
10 ,

2
3)

29

3. Sequential Decoding via Compute-and-Forward

3.6 Extension to Multiple Users

BPSK

BPSK

BPSK

D

E2

E1

En

+

z ∼ N (0, 1)

w2

w1

wn

u2

u1

un

(x̂1, x̂2, . . . , x̂n)

x1 AWGN

x2

xn

y

.

.

.

Figure 3.15: Multiple access communication system specifications for multiple
users.

• Channel(AWGN): y = x1 + x2 + · · · + xn + z where z is the gaussian
noise of zero mean and unity variance. The equation is a special case
when channel gains are (g1, g2, . . . , gn) = (1, 1, . . . , 1).

For the case of k input signals the decoder consists of k steps. Let us
introduce a new parameter needed throughout SD via CF method: wk =
x1 ⊕ x2 ⊕ · · · ⊕ xk, k ∈ {1, 2, . . . , n}, with initial value w1 = x1. The first step
is to decode the modulo sum of the codewords and the other steps are decoding
parameter wk−1 using wk as a side information. The decoder is based on MAP
rule, which in this case is simply ML.

1stStep:
ŵin = argmax

win

p(win|yn) (3.16)

2ndStep:
ŵi(n−1) = argmax

wi(n−1)

p(wi(n−1)|yn, wnn) (3.17)

.

.

.

nthStep:
ŵi1 = argmax

wi1

p(wi1|yn, wnn, wnn−1, . . . , w
n
2) (3.18)

The equation (3.16), (3.17) and (3.18) are the general MAP rules. An useful
notation is the set {x1, x2, . . . , xi−1, xi+1, . . . , xn} denoted by ∼ xi. Also H is
(n− k)×n matrix and H = [f1, f2, . . . , fn−k]>. The procedure for the kth step
will be as follows:

30

3.6. Extension to Multiple Users

kthStep:

ŵik = argmax
wik∈{0,1}

p(wik|yn, wnn, wnn−1, . . . , w
n
k+1)

= argmax
wik∈{0,1}

∑
∼wik

p(wnk |yn, wnn, wnn−1, . . . , w
n
k+1)

= argmax
wik∈{0,1}

∑
∼wik

p(wnk , y
n, wnn, w

n
n−1, . . . , w

n
k+1)

p(yn, wnn, w
n
n−1, . . . , w

n
k+1)

= argmax
wik∈{0,1}

∑
∼wik

p(yn|wnn, wnn−1, . . . , w
n
k)p(wnn, w

n
n−1, . . . , w

n
k)

(∗)
= argmax

wik∈{0,1}

∑
∼wik

n∏
i=1

p(yi|win, . . . , wik)
1

|C|n−k+1
1{wkH>=0}

= argmax
wik∈{0,1}

∑
∼wik

 n∏
i=1

p(yi|win, . . . , wik)
1

|C|n−k+1

n−k∏
j=1

1{wkf>j =0}

(3.19)

Note 3 Assuming a uniform distribution over the codewords of codebook C

p(wnk) =

1
|C| wnk is a codeword

0 otherwise

=
1

|C|
1{wkH>=0} (3.20)

p(wnm|wnm−1, . . . , w
n
k) = P(Wn

m = wnm|Wn
m−1 = wnm−1, . . . ,W

n
k = wnk)

= P(Xn
m = wnm ⊕ wnm−1|Wn

m−1 = wnm−1, . . . ,W
n
k = wnk)

= P(Xn
m = wnm ⊕ wnm−1) =

1

|C|
(3.21)

The terms wnm, wnm−1, . . . , wnk+1 are already codewords as a result of previous
steps which in every case, even if wrong decoded, it outputs a codeword. Also wnk
is a codeword due to the fact that if not, the term p(wnm, w

n
m−1, . . . |wnk)p(wnk)

is already 0. As a result, we are left with xnm is already a codeword and for
this reason equation (3.21) contains no indicator function. The equation (∗)
is proved by using the chain rule together with equation (3.20) and (3.21) for
m ∈ {k + 1, k + 2, . . . , n}:

p(wnn, w
n
n−1, . . . , w

n
k) = p(wnk)

n∏
m=k+1

p(wnm|wnm−1, . . . , w
n
k)

=
1

|C|
1{wkH>=0} ·

1

|C|n−k

31

3. Sequential Decoding via Compute-and-Forward

3.7 Asymmetric Channel Gain

Throughout the thesis we have focused on symmetric channel gain, in particular
channel gain pair (g1, g2) = (1, 1). However, asymmetric channel gain can be
of a particular importance. To support the previous statement, the motivation
comes from the fact that channels in reality are never symmetric due to many
contributing factors. In this scenario the power for the user-1 and user-2 is the
same P1 = P2. The aimed point is the symmetric rate pair (R1, R2) = (1

3 ,
1
3).

Considering sequential decoding via CF, in the second step we will decode the
codeword corresponding to the greater channel gain. For all simulation results
in table 3.2 we are looking for the SNR value corresponding to Error Probability
10−4 as depicted in figures 3.16, 3.17 and 3.18. As the gap between channel
gains increases the performance improves and this is intuitively expected.

Channel gain pair Theoretical SNR Practical SNR ∆-SNR

(1,
√

2) -1.16 0.4 1.56
(1,
√

3) -1.67 -0.3 1.37
(1,2) -1.92 -1.25 0.67

Table 3.2

SNR
-5 -4 -3 -2 -1 0 1

E
r
r
o
r

P
r
o
b
a
b
i
l
i
t
y

10-5

10-4

10-3

10-2

10-1

100

Decoded Codeword S
Decoded Codeword X given decoded sum S
Decoded Codeword X given true sum S

Figure 3.16: Simulation results for channel gain pair (g1, g2) = (1,
√

2).

32

3.7. Asymmetric Channel Gain

SNR
-5 -4 -3 -2 -1 0 1

E
r
r
o
r

P
r
o
b
a
b
i
l
i
t
y

10-6

10-5

10-4

10-3

10-2

10-1

100

Decoded Codeword S
Decoded Codeword X given decoded sum S
Decoded Codeword X given true sum S

Figure 3.17: Simulation results for channel gain pair (g1, g2) = (1,
√

3).

SNR
-5 -4 -3 -2 -1 0 1

E
r
r
o
r

P
r
o
b
a
b
i
l
i
t
y

10-6

10-5

10-4

10-3

10-2

10-1

100

Decoded Codeword S
Decoded Codeword X given decoded sum S
Decoded Codeword X given true sum S

Figure 3.18: Simulation results for channel gain pair (g1, g2) = (1, 2).

33

Conclusion 4

For the Gaussian MAC, we have shown that sequential decoding via compute-
and-forward technique is able to achieve boundary points on the capacity
region with reasonable complexity and good performance. A set of practical
LDPC codes with moderate block length are used to investigate the practical
performance of the proposed technique. In order to match the BER performance
under the BPSK modulation, the binary input channel capacity equation is
used to obtain the theoretical values as the benchmark for the simulations. For
this particular case of BPSK modulation, under the conditions of equal channel
gains and equal power of users, the capacity region leaves aside all the rate
pairs of users that are greater than 1

2 at the same time. To overcome this issue
another modulation named 4−PAM is used to achieve rate pairs within (0, 1)
interval that are not achieved using BPSK modulation.

Surprisingly, simulation results show that sometimes multiples access sur-
passes the performance of point-to-point communication. From modulation
perspective, 4−PAM scenario degrades the performance over BPSK scenario,
but it still remains a key ingredient of our thesis.

35

Bibliography

[1] S.-Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the
design of low-density parity-check codes within 0.0045 db of the shannon
limit,” IEEE Communications Letters, vol. 5, no. 2, February 2001.

[2] B. Rimoldi and R. Urbanke, “A rate-splitting approach to the gaus-
sian multiple-access channel,” IEEE Transactions on Information Theory,
vol. 42, no. 2, March 1996.

[3] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference
through structured codes,” IEEE Transactions on Information Theory,
October 2011.

[4] J. Zhu and M. Gastpar, “Multiple access via compute-and-forward,” IEEE,
July 2014.

[5] A. Betten, M. Brown, and H. Fripertinger, Error-Correcting Linear Codes.
Springer, July 2006, vol. 18.

[6] R. Zamir, S. Shamai, and U. Erez, “Nested linear/lattice codes for struc-
tured multiterminal binning,” IEEE Transactions on Information Theory,
vol. 57, pp. 1250 – 1276, June 2002.

[7] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Transactions on Information Theory, vol. 27, September 1981.

[8] R. G. Gallager, Low Density Parity Check Codes. M.I.T. Press, July
1963.

[9] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, no. 2, February 2001.

[10] W. E.Ryan, An Introduction to LDPC Codes, August 2003.

[11] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge University Press, 2005.

[12] A. E. Gamal and Y.-H. Kim, Network Information Theory. Cambridge
University Press, December 2011.

37

Bibliography

[13] S. H. Lim and M. Gastpar, “Coding theorems via linear codes: Joint
decoding rate regions,” IEEE, 2015.

[14] J. Zhu and M. Gastpar, “Compute-and-forward using nested linear codes
for the gaussian mac,” IEEE, pp. 1–5, May 2015.

[15] A. J. Viterbi, “An intuitive justification and a simplified implementation
of the map decoder for convolutional codes,” IEEE Journal on Selected
Areas in Communications, vol. 16, no. 2, pp. 260–264, February 1998.

[16] S. Lin and D. J. Costello, Error Control Coding. Pearson Prentice Hall,
2004.

[17] (2002, April). [Online]. Available: http://www.inference.phy.cam.ac.uk/
mackay/codes/data.html

38

http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Linear Codes
	Nested Codes
	Low Density Parity Check Codes
	Matrix Representation
	Graphical Representation

	Sum Product Algorithm
	Factor Graphs
	Update Rule
	Particular Factor Graphs

	Implementation of SPA
	Approximation of function 0

	Sequential Decoding via Compute-and-Forward
	Problem Statement
	Linear Codes Capacity
	Sequential Decoding via Compute-and-Forward Technique
	Implementation of LLR-s

	Achieving boundary points on capacity region
	First Scenario: Symmetric Rate
	Second Scenario: Asymmetric Rate

	Extension to 4-PAM
	Extension to Multiple Users
	Asymmetric Channel Gain

	Conclusion
	Bibliography

