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1 Introduction

The work presented in this report is realized in semester project, during autumn
2013. In this project I try to use a modi�ed compute-and-forward scheme[1]
which utilizes the Channel State Information (CSI) at the transmitters. By
using varied version of the same lattice at the transmitter and the receiver, it is
possible to make pro�t on the CSI to better balance the rates of di�erent users
and get a larger rate region.

This report is oranised as following. First we give a breif expanation about
the modi�ed version compute and forward. Then we use it to some channel
model, such as downlink distributed antenna system, multiple access channel
and many-to-one channel.
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2 Compute and Forward with CSI

An new observation[2] shows that the lattice with respect to which the decoder
performs the lattice decoding does not have to be the same lattice in which the
transmitted codeword lies.

Consider a relay network with K transmitters and M relays. The discrete-
time real Gaussian channel can be represented as following

ym =
∑K
k=1 hmkxk + zm, m ∈ [1 : M ] (1)

withym ∈ Rn, xk ∈ Rn, hmk ∈ R denoting the channel output of relay m,
channel input of transmitter k and channel gain, respectively. zm ∈ Rn is
Gaussian white noise with unit variance for each component.

When codeword tk is given to encoder, the channel input is forming as
following

xk =

[
tk
βk

+ dk

]
modΛsk/βk (2)

where dk is dither and uniformly distributed in voronoi region νsk/βk. Thans
to the dither, xk is independent from tk and also uniformly in νsk/βk hence has
average power P for all k.

As pointed out in[3] , rate tuple (R1, . . . , RK) is achievable if

Rk < rk (hm, am, β1:K)

:= max
αm∈R

1

2
log+

(
βkP

α2
m + P ‖αmhm − ãm‖2

)

=
1

2
log+

(
‖ãm‖2 −

P
(
hTmãm

)2
1 + P ‖hm‖2

)−1
+

1

2
log β2

k

(3)

for all k with ãm := [β1am1, . . . , βKamK ]. Without loss of generality, we can set
any of βk to be 1.

Comparing to the fomula of standard compute and forward, it is easy to �nd
that we can set di�erent βk to each user according to their channel state. As a
result, those users of better channels do not have to compromise with the worst
one.

3 Reverse Compute and Forward

3.1 Problem statement

Taking advantages of the linear structure of the lattice codes and the additive
nature of Gaussian interference networks, the compute and forward scheme is
a novel coding schemel for Gaussian networks. The basic idea is to decode
linear combiantion of messages rather than single message itself at the receiver.
Such idear works well when the receiver has many di�erent observations of the
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Figure 1: System Model for Reverse Compute and Forward

message. However, in some cases, for example downlink distributed antenna
system, each receiver have only one antenna and they locate in di�erent place
which means no cooperation among them.

In such situation, if any of those receivers wants to get their desired message,
it has to decode at least two equaiton and at most as many as the user number
equations, which depends one the channel coe�cients. Here we do not consider
the case that receiver only has to decode one equation and get the best rates,
since it is too special and it treat messages of other users as noise, which dose
not take the advantages of the linear structure of the lattice codes.

We also know that the achievable rate is monotone nonincreasing as the
number of equations gets larger. So the primary idea is decoding as less number
of equation as possible but still can get the demanding message. This idear is
proposed in [2] which mainly focus on the channel with discrete addictive noise.
But we �nd that it still works when the noise is continous.

3.2 System model and Scheme

Consider the downlink distributed antenna system as �gure1, where the trans-
mitter has K messages, each of which is only needed in the corresponding re-
ceiver.

When messages tuple (t1, . . . , tK) are given to encoder, �rst encoder makes
new tuple

(
t̂1, . . . , t̂k

)
as the linear combiantion of the old tuple.

t̂k =

K∑
i=1

akiti (4)

Then the new message tuple forms the channel input as following

xk = [t̂k + dk]modΛ (5)

where dk is dither which is a random vector uniformly distributed in Voronoi
region, which make xk is independent from t̂k and also uniformly distributed in
Λ.

Theorem 1: For any ε > 0 and n large enough, there exist nested lattice
codes Λ ⊆ Λ1 ⊆ · · · ⊆ Λk with rates R1, . . . , RK , such that for channel vector
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h1, . . . , hK ∈ RK and coe�cient vector b1, . . . , bK ∈ ZK . User m can decode
lattice

vm = [tm]modΛ (6)

with average probability of error ε so long as

Rk = max
1

2
log+

(
P

α2
m + P ‖αmhm − bm‖2

)
(7)

and B = [b1, b2, . . . , bk] is invertible.
Proof: The channel output at receiver m is

ym =

K∑
i=1

hmixi + zm (8)

and receiver computes

sm = αmym −
K∑
i=1

bmidi (9)

[sm]modΛ =

[
K∑
i=1

(αmhmixi − bmidi) + αmzm

]
modΛ

=

[
K∑
i=1

(bmi (xi − di) + (αmhmi − bmi)xi) + αmzm

]
modΛ

=

[
K∑
i=1

bmit̂i +

K∑
i=1

(αmhmi − bmi)xi + αmzm

]
modΛ

(10)

To get an extimation of lattice eqaution of vm.

v̂m =

[
K∑
i=1

bmit̂i

]
modΛ

=

[
K∑
i=1

K∑
k=1

bmiaikti

]
modΛ

= [tm]modΛ

(11)

If we choose A = [a1, a2, . . . , aK ] = B−1.
When B is not invertible, we can still choose A to make it happen for some

of the receivers that they only have to decode one equation to get the desired
messages. For those who cannot enjoy such advantage just need to decode
more equations to get their messages as what they do in standard compute and
forward.
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4 Compute-and-forward on MAC

4.1 Problem statement

In order to achieve the capacity on non-corner point of multiple access channel,
we usually use time sharing. However, it is shown that the compute-and-forward
is able to achiveve those points on the boundary of the capacity region of a two-
user MAC[4]. It is not known that whether such property still occurs when the
number of user increases.

4.2 Three User MAC

We �rst consider the three-user MAC

y = h1x1 + h2x2 + h3x3 + Z (12)

with equal constraints P . Without loss of generality we can set P = 1 and
β1 = 1.

There are two trivial cases which can achieve the capacity boundary. One is
decode identity matrix as equation matrix which give the corner points on the
capacity boundary. Another is using the �rst equation to decode one message
and treat others as noises. In such way, we can reduce the dimention to 2,
which is known that we can achieve the capacity bounds by using compute and
forward. So we focus on when the �rst equation cannot give any message.

4.2.1 One Capacity Achievable Equation Matrix

Theorem 2: Decoding the following eqaution matrix

[
a b c

]
=

 a1 1 0
a2 0 1
a3 0 0

 (13)

can achieve the capacity boundary of 3-user-MAC, if the following inequalities
are satis�ed.

β2
2β

2
3

(
1 + ‖h‖2

)2
≥
[(

1 + ‖h‖2
)
‖ã‖2 −

(
hT ã

)2]3
β4
2β

4
3

(
1 + ‖h‖2

)
≥
[(

1 + ‖h′‖2
)
‖ã′‖2 −

(
h′T ã′

)2]3
a3 ≤ β2

(14)

where ã = [a1β1, a2β2, a3β3]
T
, h′ = [h2, h3]

T
and ã′ = [a2β2, a3β3]

T
.

proof: Decode the �rst equation a = [a1, a2, a3]
T
, we have the rates

R1 (a) =
1

2
log+ 1

ãT (I + hhT )
−1
ã

(15)

R1 (a) =
1

2
log+ β2

ãT (I + hhT )
−1
ã

(16)
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R1 (a) =
1

2
log+ β3

ãT (I + hhT )
−1
ã

(17)

If we could achieve the boundary of the capacity region, we should have

R1 (a) +R2 (a) +R3 (a) ≥ Csum =
1

2
log
(

1 + ‖h‖2
)

(18)

which is equivalent to

β2
2β

2
3

(
1 + ‖h‖2

)2
≥
[(

1 + ‖h‖2
)
‖a‖2 −

(
hTa

)2]3
(19)

Using SIC we decode the second equation b = [b1, b2, b3]
T
with the rates

R1 (b | a) =
1

2
log b̃T

I − ããT

‖a‖2
−

(
I − ããT

‖a‖2

)
hhT

(
I − ããT

‖a‖2

)
1 + hT

(
I − ããT

‖a‖2

)
h

 b̃ (20)

R2 (b | a) = R1 (b | a) +
1

2
log β2

2 (21)

R3 (b | a) = R1 (b | a) +
1

2
log β2

3 (22)

where b̃ = [b1β1, b2β2, b3β3]
T
.

By choosing b = [1, 0, 0]
T
, we can simplify the results and get

R1 (b | a) =
1

2
log

(
1 + ‖h‖2

)
‖a‖2 −

(
hTa

)2(
1 + ‖h′‖2

)
‖a′‖2 − (h′Ta′)

2
(23)

R2 (b | a) =
1

2
log

((
1 + ‖h‖2

)
‖a‖2 −

(
hTa

)2)
β2
2(

1 + ‖h′‖2
)
‖a′‖2 − (h′Ta′)

2
(24)

R3 (b | a) =
1

2
log

((
1 + ‖h‖2

)
‖a‖2 −

(
hTa

)2)
β2
3(

1 + ‖h′‖2
)
‖a′‖2 − (h′Ta′)

2
(25)

If we could achieve the boundary of the capacity region, we should have

R1 (b | a) +R2 (b | a) +R3 (b | a) ≥ Csum =
1

2
log
(

1 + ‖h‖2
)

(26)

which is equivalent to

β2
2β

2
3

[(
1 + ‖h‖2

)
‖a‖2 −

(
hTa

)2]3 ≥ [(1 + ‖h′‖2
)
‖a′‖2 −

(
h′Ta′

)2]3 (
1 + ‖h‖2

)
(27)

together with (19) we can get

β4
2β

4
3

(
1 + ‖h‖2

)
≥
[(

1 + ‖h′‖2
)
‖a′‖2 −

(
h′Ta′

)2]3
(28)
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Using SIC we only have to decode c = [0, 1, 0]
T
or c = [0, 0, 1]

T
. Suppose we

choose the former one, then we can get rates

R1 (c | a, b) =
1

2
log
([(

1 + ‖h′‖2
)
‖a′‖2 −

(
h′Ta′

)2])− 1

2
log
(
a23β

2
3

)
(29)

R2 (c | a, b) =
1

2
log
([(

1 + ‖h′‖2
)
‖a′‖2 −

(
h′Ta′

)2])− 1

2
log

(
a23β

2
3

β2
2

)
(30)

R13 (c | a, b) =
1

2
log
([(

1 + ‖h′‖2
)
‖a′‖2 −

(
h′Ta′

)2])− 1

2
log
(
a23
)

(31)

then we can have sum rate

Rsum (c | a, b) =
1

2
log
([(

1 + ‖h′‖2
)
‖a′‖2 −

(
h′Ta′

)2])3 − 1

2
log

(
a3
β2

)6

(32)

If equation (28) holds, then we have

Rsum (c | a, b) =
1

2
log
(

1 + ‖h‖2
)
− 1

2
log

(
a3
β2

)6

(33)

which means if a3 5 β2, then we can achieve the capacity, since the rates we
got from previous two eqautions both achieve the capacity.

4.2.2 Possible Case

Form previous results we can conclude that if the �rst and second equaiton can
solve at least one message out, then we can choose β to achieve the capacity
boundary. The result is not clear if one message can be sloved from the �rst
and second equations. However we belive that under some certain condition, it
is possible to achieve capacity for this case.

4.2.3 Numeric Example

In the simulation, we set power P = 5 and channel gain coe�cientH = [1, 1.5, 2].
In �gure 2, the blue points on the boundary are obtained by the two trivial cases
we mentioned above. The red points are cases that we decode a = [0, 1, 1]as the
�rst equation. As can be seen from the �gure, two red points is overlaped with
two blue points. According to the symmetry, it seems that there should exits
more red points, but it may be because the parameters we choose is too small
which make them cannot happen. The green points are cases that we decode
a = [1, 1, 1]as the �rst equation. Results of all red and green points satisfy the
three conditions as we pointed at (14).
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Figure 2: Example of COF on 3 User MAC

4.3 N User MAC

Consider the general case, when the number of user is N , the following equation
matrix is capacity achievable

a1 1 0 · · · 0
a2 0 1 · · · 0
· · · · · · · · · · · · 1
aN 0 0 0 0

 =

[
a

I
0

]
(34)

where aN 6= 0. The provement is similar to what we have done in 4.2.1. Af-
ter decoding the �rst and second equations, we have successfully reduce the
dimension to N − 1. Using induction we can prove that this equation matrix is
capacity achievable.

5 COF on Many-to-one Interference Channel

During the summer, we have explored the relationship between the number of
required eqautions and the channel coe�cients. We have obtained some patterns
about the region for number of required eqautions. Now we want to use compute
and forward with channel state information to see whether it has strong in�uence
about the result. we run several simulations for the di�erent power setting for
the same channel H = [1, 3.5, h2, h3] and the channel coe�cients of direct links
of cogitive users are 1 . The results of standard compute and forward is shown as
�gure 3, while the results of compute and foward with channel state information
is shown as �gure 4.

Give power constriant P = 5, in the standard compute and forward case,
the number of required equations is

[
2 3 4

]
and largest region part is for

decoding 4 equations. However, with channel state information, the number of
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Figure 3: Simulation results for COF on Many-to-one

required equation is
[

1 2 3
]
and the largest region part is for decoding 2

equations. Also, if we set di�erents powe constraint for the modi�ed compute
and forward case, we can �nd that when P is small, there are still large part of
the region where we need to decode 4 equations, which means decoding all the
messages, not a good news. As P goes large, the region for decoding 2 equations
become lagrer and for 3 and 4 equaitons become smaller. When P large enough,
region for 1 equation occurs and region for 4 equations disappears.

6 Conclusion

In this semester project, I mainly study the computer-and-forward with channel
state information and try to use it in some channel model and compare the
performance with the standard compute-and-forward in many-to-one channel.
The scheme of reverse compute and forward seems quite good when we have a
invertible equaiton matrix, but how to choose proper preprocessing matrix A
when B is not invertible is still a uncover part. For the compute-and-forward on
MAC, we found a capacity achievable way to choose the equations. But whether
the condition becomes looser or tigthter as N goes large is unkown. If I have
more time, they are quite interesting things to discover.
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