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Abstract

Information measures have found widespread use in neuroscience. In this project, we extend the
well-known information bottleneck method for certain uses in networks of neurons. e informa-
tion bottleneck method is a technique for ënding the best trade-off between accuracy and complex-
ity. is is important for this project in the sense that it permits to infer facts about the structure of
the signal and information processing in networks. e information bottleneck method is extended
in this project for identifying linear relationships between random variables. is approach is then
tested both on artiëcial data and real experimental data from a brain-interface experiment involving
a monkey performing behavioral tasks. Using this technique we are able to identify neuron triplets
in the data such that the spiking response of one of the neurons is a weighted sum of the spiking
response of the other two neurons. Moreover, we observe that neurons which follow such a relation-
ship in their spiking patterns during a particular experiment, also exhibit similar behavior in some
of the different trials of the same experiment. An information bottleneck method based approach
for clustering neurons in the network using their spike responses is also presented in this project.

v



Chapter 1

Introduction

1.1 Motivation

Information theory is well integrated into neuroscience research mainly for answering questions
about neural coding. Neural coding is a fundamental aspect of neuroscience concerned with the
representation of sensory and other information in the brain by networks of neurons. It characterizes
the relationship between external sensory stimuli and the corresponding neural activity in the form
of time-dependent sequences of discrete action potentials known as spike trains [10]. Information
theory addresses issues similar to the ones posed in neural coding such as: how is information
encoded and decoded? and what does a response (output) tell us about a stimulus (input)? It is
therefore used as a general framework in neural coding for measuring how the neural responses
vary with different stimuli ( [2] and [6]). In classical neuroscience experiments, the responses of a
single neuron to several stimuli are recorded and information-theoretic tools are used to quantify
neural code reliability by measuring how much information about the stimuli is contained in neural
responses.

However, new measurement techniques such as implanted tungsten micro-wire arrays and Elec-
troencephalography (EEG) lead to larger datasets by being able to simultaneously measure the neural
activity of multiple neurons. Consequently, on the datasets of this nature, additional questions per-
taining to the network behavior of the neurons can also be asked. Statistical methods based on
information measures such as mutual information and directed information have been used to es-
timate fundamental properties from the data. In [21], the concepts of mutual information were
applied to quantify the redundancy of movement-related information encoded in the motor system
neuron populations of a macaque and [20] provides a modiëed procedure for estimating directed
information in order to obtain accurate and novel insights into the functional connectivity of neural
ensembles that are applicable to data from neurophysiological studies in awake behaving animals.

In this project, another information measure known as the information bottleneck (IB) method
is explored for identifying relationships between the spiking patterns of multiple neurons in the
network. e information bottleneck method is a well known technique for ënding the best trade-
off between complexity and accuracy. e goal is to infer facts about the structure and information
processing in networks of neurons. By analyzing the simultaneously recorded spike train responses
of these neurons, we are interested in identifying neurons in the network which appear to behave in
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1.2. Deínitions  ǫ. 

such a way that the spike train response of a neuron is dependent on the spike train responses of other
neurons in the network. Furthermore, the neurons which we analyze for identifying such a behavior
need not necessarily share common synaptic connections. We would like to ënd such relationships,
if they exist, between any subset of neurons in the network. us, given three neurons and their
spiking signals, we want to be able to answer the following questions: Does one of these neurons
represent a function of the spiking signal of the other two neurons? If so, what kind of function
would that be? At what time instances should we consider these three neurons and for how long, to
infer such a dependency? In order to answer these questions, we treat the spiking signal of a neuron
as a random variable by adopting a binning approach. e problem then amounts to determining
whether these different random variables corresponding to different neural responses are functionally
related or not.

Identifying such functional relationships between random variables is a very fundamental problem
which has received the attention of several research efforts. One recent software tool is Eureqa [11]
which identiëes the simplest mathematical formulas to describe the underlying mechanisms that
produced the data. In this project, instead of using the data directly, we look at the probability dis-
tribution of the data to make an inference about the relationships present. Accordingly, we mainly
investigate the applicability of the information bottleneck method for achieving this task of recog-
nizing functional relationships between random variables. Additionally, clustering approaches based
on the information bottleneck method are also investigated to group the neurons into clusters.

e rest of the report is organized as follows. Section 1.2 states some important information
theoretic deënitions taken from [5] that are necessary to proceed further and mathematically for-
mulate the information bottleneck method and the problem statement of this project. Following
that, Section 1.3 gives the main motivation behind using the IB method. A detailed account of
the IB method and algorithms along with some applications of the IB method in neuroscience is
provided in Chapter 2. In the subsequent chapters, the different ways in which the IB method is
applied in this project are described. e primary goal of this project which is the functional identi-
ëcation between random variables is discussed in Chapter 3 alongside results obtained on artiëcial
data. Chapter 4 focuses on results obtained on real experimental data. Appendix A covers clustering
of neurons using the information bottleneck method and ënally, the report is concluded along with
a brief mention of possible future work in Chapter 5.

1.2 Deínitions

In what follows, uppercase letters denote the names of random variables; lowercase letters and
calligraphic notations respectively denote the realizations and support of the corresponding random
variables. e probability P (X = x) that the random variable X takes on a value of x is denoted
using the shorthand notation p(x). e notation

∑
x is used to denote the summation of x over all

possible values in its support (x ∈ X ) and |X | denotes the cardinality of the random variable X .

2



1.2. Deínitions  ǫ. 

1.2.1 Entropy

Let X be a random variable with support X and a probability distribution p(x). e entropy of
X is a measure of uncertainty associated with it and quantiëes the expected value of its information
content. It is deëned as follows:

H(X) ≡ H[p(x)] = −
∑
x

p(x)log2[p(x)] (1.1)

If X and Y are two random variables given by their joint distribution p(x, y), then the joint
entropy of the two random variables is given by

H(X,Y ) = −
∑
x,y

p(x, y)log2[p(x, y)] (1.2)

and the conditional entropy of Y given X is deëned as

H(Y |X) =
∑
x

p(x)H(Y |X = x) = −
∑
x

∑
y

p(x, y)log2[p(y|x)] (1.3)

H(Y |X) is the expected uncertainty remaining on Y , once the value of the random variable X
is known. ese deënitions of entropy can then be used for deëning mutual information.

1.2.2 Mutual Information

Given two discrete random variables X and Y , the mutual information quantiëes the amount
of informationX contains about Y and vice-versa. If p(x, y) is the joint probability distribution of
the two variables, the marginal distributions of X and Y are given by

p(x) =
∑
y

p(x, y) and p(y) =
∑
x

p(x, y) (1.4)

e mutual information I(X;Y ) between X and Y is then deëned as follows:

I(X;Y ) ≡ I[p(x, y)] =
∑
x

∑
y

p(x, y)log2
p(x, y)

p(x)p(y)
(1.5)

From Equation 1.5, we see that mutual information is symmetric in X and Y and from the
previous Equations 1.1, 1.2 and 1.3, it can be rewritten as follows:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X, Y ) (1.6)

e concept of mutual information has several useful interpretations depending on which for-
mulation we choose from Equation 1.6:

• I(X;Y ) is a measure of the number of bits gained (if the logarithm is in base 2) through a
joint compression of X and Y , instead of compressing X and Y independently. is is due
to the fact that the entropy of a random variable lower bounds its minimal achievable code

3



1.2. Deínitions  ǫ. 

length and encoding X and Y independently, ignores the possible correlations between the
two variables.

• Alternatively, mutual information between X and Y can be seen as the decrease in the uncer-
tainty of Y due to the knowledge of X , as I(X;Y ) is given by the difference of the entropy
H(Y ) and the conditional entropy H(Y |X).

• Suppose the random variableX is compressed using a quantized codebookZ, then the mutual
information between the two variables I(X;Z), gives the extent of compression and the
amount of information Z preserves about X . Smaller the value of I(X;Z), greater is the
extent of compression (a more compact code). In the limiting case, if there is maximum
compression by mapping all the elements of X to a single value of Z, then I(X,Z) = 0 as
both H(Z) = 0 and H(Z|X) = 0. On the other hand, if there is no compression at all,
when X and Z have a one-to-one mapping making H(X|Z) = 0, then I(X;Z) takes its
maximum value: H(X).

• A more formal interpretation of mutual information characterizes I(X;Y ) to the expected
maximal number of bits that can be reliably sent over a discrete memoryless channel with a
probability transition matrix p(y|x).

1.2.3 KL and JS Divergence Measures

e Kullback-Leibler (KL) divergence, also known as relative entropy between two probability
distributions p1(x) and p2(x) gives a measure of distance between the two distributions and is de-
ëned as follows:

DKL[p1||p2] =
∑
x

p1(x)log2
p1(x)

p2(x)
= EX

[
log2

p1(x)

p2(x)

]
(1.7)

e KL divergence is a non-negative quantity and is equal to zero if and only if p1(x) = p2(x), ∀x.
It quantiëes the coding inefficiency of assuming that the distribution is p2(x) when the true dis-
tribution is p1(x). Using this deënition of KL divergence, the mutual information between two
random variables X and Y can be written as:

I(X;Y ) = DKL [p(x, y)||p(x)p(y)] = DKL [p(x|y)||p(x)] (1.8)

e Jensen-Shannon (JS) divergence in an alternative divergence measure between distributions
p1(x) and p2(x) deëned as:

JSΠ[p1, p2] = π1DKL[p1||p̄] + π2DKL[p2||p̄] = H[p̄]− π1H[p1]− π2H[p2] (1.9)

where Π = π1, π2, 0 < π1, π2 < 1, π1 + π2 = 1 and p̄ = π1p1 + π2p2. JS divergence is related to
mutual information. If the weights πi inΠ are taken as the prior probabilities p(x), then the mutual
information I(X;Y ) between X and Y is equal to the JS divergence between all the conditional
distributions, p(y|x).

4



1.3. Problem Statement  ǫ. 

1.3 Problem Statement

Consider the following problem which is the main motivation for this project: Given random
variables X1, X2 and Y characterized by the joint distribution p(x1, x2, y), we are interested in
ënding a functional relationship between the variables {X1, X2} and Y , such that Y ≡ f(X1, X2).

e mutual information I(f(X1, X2);Y ), between f(X1, X2) and Y can be used as a quanti-
tative measure that can be optimized for ënding f , if indeed such a functional relationship exits.

Moreover, we want this function to be as compact as possible. One way of achieving this could
be by imposing a constraint on the cardinality of f(X1, X1) or on the entropy of f(X1, X2) to be
upper bounded by some parameter. is problem can be mathematically formulated as follows:

Problem 1
max
f :

|f(X1,X2)|≤Γ

I (f(X1, X2);Y )

where |f(X1, X2)| denotes the cardinality of f(X1, X2).

A function Z = f(X1, X2) can be generalized as a conditional probability p(z|x1, x2). If the
conditional probability distribution p(z|x1, x2) for a given {x1, x2} has a value of 1 for only one
value of z and zeros for rest of the z's, then this constrained conditional probability represents a
function. erefore in the above problem, the function f(X1, X2) can be replaced with another
random variable Z, and instead of optimizing for f , we now optimize for the stochastic mapping
between the pair of variables {X1, X2} and Z, given by the conditional probability distribution
p(z|x1, x2).

As before, in order to make this mapping compact, an upper-bound constraint could be enforced
on the the entropy H(Z|X1, X2) of the mapping p(z|x1, x2). However, this constraint alone is not
sufficient as this leads to the following trivial solution: forZ = {X1, X2}, we haveH(Z|X1, X2) =

0 and I(Z;Y ) = I(X1, X2;Y ) which is its global maximum value. So, an additional constraint
on the entropy H(Z) of Z is necessary in order to avoid this trivial solution and make this a well
deëned optimization problem. Accordingly, the formulation in Problem 1 can be rewritten as:

Problem 2
max

p(z|x1,x2):
H(Z|X1,X2)≤Γ1,

H(Z)≤Γ2

I(Z;Y )

is alternative formulation in Problem 2 closely resembles the Information Bottleneck (IB) dis-
cussed in Chapter 2, which tries to ënd a compressed representation Z of the pair of variables
{X1, X2} that is as informative as possible about the variable Y .

Problem 3
max

p(z|x1,x2):
I(Z;X1,X2)≤Γ

I(Z;Y )

5



1.3. Problem Statement  ǫ. 

Figure 1.1: An illustration of the relation between the compression-information, I(Z;X1, X2)
and the average cardinality of the partition of {X1, X2}.

e only difference between Problem 2 and Problem 3 is the constraint being imposed for maxi-
mizing I(Z;Y ). Problem 2 imposes a constraint on the entropies H(Z) and H(Z|X1, X2) of the
mapping p(z|x1, x2), while the IB method in Problem 3 imposes a constraint on the compression-
information: I(Z;X1, X2) = H(Z)−H(Z|X1, X2).

Intuitively, the quantity I(Z;X1, X2) can be seen as the compactness of Z as discussed previ-
ously in Section 1.2.2. Lower values of I(Z;X1, X2) correspond to a more compact Z and higher
values for I(Z;X1, X2) correspond to higher cardinalities of the functional mapping Z. Using the
Asymptotic Equipartition Property (AEP) [5], the probability p(x1, x2) assigned to an observed in-
put pair will be close to 2−H(X1,X2) and the total number of (typical) input pairs is ≈ 2H(X1,X2).
In that sense, 2H(X1,X2) can be seen as the volume of {X1, X2}. Also, for each (typical) value z of
Z, there are 2H(X1,X2|Z) possible {x1, x2} pairs which map to this z, all of them equally likely. To
ensure that no two input pairs map to the same z, the set of possible input pairs {x1, x2} has to be
divided into subsets of size 2H(X1,X2|Z), where each subset corresponds to some different z. us,
the average cardinality of the mapping (partition) of {X1, X2} is given by the ratio of the volume
of {X1, X2} to that of the mean partition (Figure 1.1):

2H(X1, X2)

2H(X1, X2|Z)
= 2I(Z;X1, X2) (1.10)

As a formal characterization of the optimal solution for the information bottleneck method (Prob-
lem 3) can be given and there exist several algorithms to solve for this mapping p(z|x1, x2), we use
this method for identifying functional relationships between random variables rather than using
Problem 2 which does not have any known algorithms for solving it.

e next chapter gives an overview of the information bottleneck method, along with the solution
characterization and different algorithms to obtain this solution.

6



Chapter 2

e Information Bottleneck method

2.1 Overview

e Information Bottleneck (IB) method, originally introduced by Tishby et al. [22] is an in-
formation theoretic technique for data analysis (compression). e basic idea of this approach is as
follows: assuming that the joint probability distribution p(x, y) of two random variables - X and
Y is known, we are interested in ënding a compressed representation (or quantized codebook) for
X , say Z, which is as informative as possible about the random variable Y . is code Z of X is a
random variable characterized through a conditional probability distribution p(z|x) which effects a
soft partitioning of the values of X . is means that each value of X is associated with all the code-
book elements (Z values), with a normalized probability. Intuitively, this approach can be viewed
as squeezing the information that the random variable X provides about the random variable Y

through a bottleneck formed by a limited set of codewords Z. e IB method offers a fundamental
trade-off between the complexity of a model and its precision which are respectively reìected by the
extent of compression of X and the amount of information the compressed variable Z preserves
about Y . Section 2.2 formally deënes the IB method, Section 2.3 derives a closed form solution to
this problem and Section 2.4 outlines some of the algorithms for achieving this solution.

2.2 Problem Formulation

Formulating the information bottleneck method as an optimization problem can be done along
similar lines to the well known rate distortion function [5]. Both these methods seek to ënd a
compressed representation of a random variable X using a quantized codebook Z by minimizing
the information rate I(Z;X), which measures the compactness of the new representation Z and
characterizes the quality of the quantization. However, this quantity alone is not sufficient to do
any meaningful optimization as the compression-information can always be reduced by throwing
away details in X . erefore, some additional constraints are required. It is in these additional
constraints that are imposed for performing the optimization, that the rate distortion function and
the information bottleneck method differ.

In rate distortion theory, the constraint is imposed by means of a distortion measure d : X×Z :→
R+, which measures the distance between the random variable and its new representation. e

7



2.2. Problem Formulation  Ǭ.    

formulation of the rate distortion function involves the monotonic trade-off between the extent
of compression (compactness of the code) and the expected distortion measure. e greater the
value of the information rate I(Z;X), the smaller the achievable distortion ⟨d(x, z)⟩p(x,z) and
vice-versa. Accordingly, the rate distortion function is deëned as the minimal achievable rate under
a given upper bounding constraint on the expected distortion. e minimization is performed over
all the normalized conditional distributions, p(z|x) for which the distortion constraint is satisëed.
However, choosing an appropriate distortion function is not trivial, as an arbitrary choice of the
distortion function leads to an arbitrary compression.

In contrast to deëning a non-trivial distortion measure to compress X , the IB method looks at
a target variable Y (which is not independent from X) in order to address the same quantization
problem, by preserving the relevant information about Y . In this case, the distortion upper bound
constraint is replaced by a lower bound constraint over the relevant information, given by I(Z;Y ).
In other words, we wish to minimize I(Z;X); while preserving I(Z;Y ) above some minimal
level. Equivalently, the same problem can be formulated as maximizing the relevant information
I(Z;Y ) while constraining the compression-information I(Z;X) below some maximal level. e
IB method can thus be formulated in the following two ways:

max
p(z|x):

I(Z;X)≤Γ1

I(Z;Y ) (2.1)

or min
p(z|x):

I(Z;Y )≥Γ2

I(Z;X) (2.2)

where Γ1 is a parameter which upper bounds the compression-information I(Z;X); while maxi-
mizing the relevant information I(Z;Y ) and Γ2 is a parameter which lower bounds the relevant
information I(Z;Y ) while minimizing the compression-information I(Z;X).

e lossy compression Z cannot convey more information about Y than the original dataX as Z
depends only onX . is comes from the Data Processing inequality [5] which states that I(Z;Y ) ≤
I(X;Y ). In effect, we pass the information that X provides about Y through a bottleneck formed
by the compact summaries in Z. Similar to the rate distortion theory, there is a trade-off between
compressing the representation and preserving meaningful information. e only assumption of
the IB method is that the input is given in the form of the joint distribution p(x, y).

2.2.1 Some Equalities

As Z is a compressed representation of X , it should be completely deëned by X alone. is
means that Z, X and Y form the following Markovian relation:

Z ↔ X ↔ Y (2.3)

is Markovian relation implies that

p(z|x, y) = p(z|x) (2.4)
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Subsequently,

p(x, y, z) = p(x, y)p(z|x, y) = p(x, y)p(z|x) (2.5)

p(z|y) = 1

p(y)

∑
x

p(x, y, z) =
1

p(y)

∑
x

p(x, y)p(z|x) =
∑
x

p(x|y)p(z|x) (2.6)

p(y|z) = 1

p(z)

∑
x

p(x, y, z) =
1

p(z)

∑
x

p(x, y)p(z|x) =
∑
x

p(y|x)p(x|z) (2.7)

Also, from Bayes' rule we have:
p(z) =

∑
x

p(x)p(z|x) (2.8)

Differentiating Equations 2.8 and 2.6 w.r.t. p(z|x) leads to:

δp(z)

p(z|x)
= p(x) (2.9)

δp(z|y)
p(z|x)

= p(x|y) (2.10)

2.3 Solution Characterization

e IB problem of minimizing I(Z;X) is a concave function of p(x) for ëxed p(z|x), and a
convex function of p(z|x) for a ëxed p(x). erefore, this is a constrained minimization problem
of a convex function over the convex set of all p(z|x) which satisfy the lower bound constraint on
the relevant information I(Z;Y ). is is a variational problem that can be solved by introducing
Lagrange multipliers, β for the relevant information constraint and λ(x) for the normalization of
the conditional distributions p(z|x) at each x. Accordingly, the functional to be minimized is given
by:

L[p(z|x)] =I(Z;X)− βI(Z, Y )−
∑
x,z

λ(x)p(z|x) (2.11)

=
∑
x,z

p(z, x)log
[
p(z|x)
p(z)

]
− β

∑
x,z

p(z, y)log
[
p(z|y)
p(z)

]
−
∑
x,z

λ(x)p(z|x)

e solution to this variational problem can then be obtained by taking the derivative ofL[p(z|x)]
w.r.t. p(z|x) and setting it to zero for given x and z. is gives:

δL[p(z|x)]
δp(z|x)

= p(x) [1 + log(p(z|x))]−
∑
x

p(x|z) δp(z)

δp(z|x)
[1 + log(p(z))]

−β
∑
y

p(y)
δp(z|y)
δp(z|x)

[1 + log(p(z|y))] + β
∑
y

p(y|z) δp(z)

δp(z|x)
[1 + log(p(z))]− λ(x)

= p(x) [1 + log(p(z|x))]− p(x) [1 + log(p(z))]− β
∑
y

p(y)p(x|y) [1 + log(p(z|y))]

+βp(x) [1 + log(p(z))]− λ(x) [from Eq. 2.9, 2.10]

= p(x)log
[
p(z|x)
p(z)

]
− β

∑
y

p(x, y) [1 + log(p(z|y))] + β
∑
y

p(x, y) [1 + log(p(z))]− λ(x)

9
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= p(x)log
[
p(z|x)
p(z)

]
− β

∑
y

p(x, y)log
[
p(z|y)
p(z)

]
− λ(x)

= p(x)

{
log
[
p(z|x)
p(z)

]
− β

∑
y

p(y|x)log
[
p(y|z)
p(y)

]
− λ(x)

p(x)

}

e quantity I(x;Y ) ≡
∑

y p(y|x)log[p(y|x)/p(y)] which is the contribution of x towards the
total information I(X;Y ) depends only on x and thus can be absorbed into the multiplier λ(x).
By setting

λ̃(x) =
λ(x)

p(x)
− β

∑
y

p(y|x)log
[
p(y|x)
p(y)

]
,

the ënal variational condition is given according to:

δL[p(z|x)]
δp(z|x)

= p(x)

{
log
[
p(z|x)
p(z)

]
+ β

∑
y

p(y|x)log
[
p(y|x)
p(y|z)

]
− λ̃(x)

}
= 0 (2.12)

By setting logZ(x, β) = βλ̃(x), we obtain:

p(z|x) = p(z)

Z(x, β)
e−βDKL[p(y|x)||p(y|z)], ∀x,∀z (2.13)

is is a formal solution since p(z) and p(y|z) on the right hand side of the equation are implicitly
determined using p(z|x) (Equations 2.8 and 2.7). e ënal solution in Equation 2.13 along with
these two equations, self-consistently determine the optimal solution. Moreover, the KL divergence
DKL[p(y|x)||p(y|z)], emerges as the relevant distortion measure from the IB principle, rather than
having to assume it in advance. erefore, d(x, z) = DKL[p(y|x)||p(y|z)], in this sense, is the
correct compression distortion measure for the IB method.

e parameter β controls the trade-off between the extent of compression of the variable X and
the amount of information retained in Z about Y . As β → ∞, we achieve arbitrarily detailed
quantization, i.e., minimal compression and we are focused only on preserving the relevant infor-
mation. One solution in this case where Z copies X and we have I(Z;Y ) = I(X;Y ). In this
case, as there is no compression, I(Z,X) = H(X) is maximized as well. On the other hand, as
β → 0, we achieve maximum compression and all the values of X are mapped to a single value of
Z. In this case, the compression is optimal, I(Z;X) = 0, but all the relevant information is lost
as well, I(Z;Y ) = 0. us, by varying β, this trade-off between compression and preservation of
meaningful information can be explored at different resolutions.

Figure 2.1 plots this relevance-compression curve obtained by plotting I(Z;Y )/I(X;Y ) versus
I(Z;X)/H(X) computed at different β values ranging from 0 to∞. is is a normalized curve as
I(Z;Y ) and I(Z;X) are upper bounded by I(X;Y ) and H(X) respectively. is curve separates
the plane into two regions: the region below the curve is the achievable region, i.e., any point below
this curve denotes a compression level and relevant information that can be achieved. On the other
hand, the region above this curve is non-achievable.
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Figure 2.1: e information bottleneck relevance-information curve. e dotted curves are a
family of sub-optimal curves obtained by constraining the cardinality of Z.

Another important issue to look at is the set of representatives of the compressed variable Z. e
rate distortion function implicitly deënes the set of representative of Z through the chosen distor-
tion measure. e question of how to choose an optimal set of representatives is disregarded in
rate distortion theory. On the other hand, the information bottleneck method does not make any
assumption on the set of representatives of Z. It simultaneously optimizes for the soft partitioning
probabilities p(z|x), the probability distribution p(z) of the compressed variable and also over the
cluster representatives p(y|z). However, the optimization results only in the above mentioned prob-
ability quantities, and it does not present a way for us to obtain the support Z of the compressed
variableZ. e values z which the compressed variable takes are not part of the IB solution. We will
discuss more on this aspect of the IB method in Chapter 3 which focuses on using the IB method
for functional identiëcation.

2.4 IB Algorithms

ere are four different complementary algorithms for solving the IB variational principle in
an exact or an approximate way. e original paper [22] proposed an iterative algorithm and a
deterministic annealing based algorithm. Other greedy algorithms exist, such as the agglomerative
algorithm [15] and the sequential algorithm [16], that are more suited for clustering applications.
A comparison of these four algorithms and their applications is discussed in detail in [14]. In this
project we use the iterative algorithm for functional identiëcation and the sequential algorithm for
clustering.
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2.4.1 Iterative Algorithm

Algorithm 1 IB Iterative Algorithm: Pseudo-code

Inputs : joint distribution p(x, y), cardinality parameter |Z| of Z, trade-off parameter β and
convergence parameter ϵ.
Output: probability distribution p(z) of Z, soft partitioning p(z|x) into K clusters, representa-
tive distributions p(y|z).
Algorithm:
Randomly initialize p0(z|x).
p0(z)←

∑
x p(x)p

0(z|x).

p0(y|z)←
1

p0(z)

∑
x p(x, y)p

0(z|x).

while true do

pk+1(z|x)←
pk(z)

Zk+1(x, β)
e−βDKL[p(y|x)||pk(y|z)], ∀x, z

pk+1(z)←
∑

x p(x)p
k+1(z|x), ∀z

pk+1(y|z)←
1

pk+1(z)

∑
x p(x, y)p

k+1(z|x), ∀y, z

if ∀x ∈ X , JS{0.5,0.5}[pk+1(x̃|x), pk(x̃|x)] < ϵ then Break.

e self-consistent equations of the IB method derived previously can be used for ënding the
unknown distributions at different values of β. ese self-consistent equations 2.7, 2.8 and 2.13,
are satisëed simultaneously at the minima of the functional,

F [p(z|x); p(z); p(y|z)] = −⟨logZ(x, β)⟩p(x) = I(X;Z) + β⟨DKL[p(y|x)||p(y|z)]⟩p(x,z)

where the minimization is performed independently over the convex sets of the normalized distri-
butions, {p(z)}, {p(z|x)}, {p(y|z)}. Namely,

min
[p(z|x)

min
p(z)

min
p(y|z)

F [p(z|x); p(z); p(y|z)] (2.14)

e minimization is performed by the converging alternating iterations. Algorithm 1 outlines
the pseudo-code of this algorithm for a ëxed value of β. e updates deëned by these equations can
only decrease [22] this functional in Equation 2.14 which is lower bounded by zero and thus, the
algorithm converges to a locally optimum solution. However, this algorithm does not yield a unique
solution, as the functional F [p(z|x); p(z); p(y|z)] is not jointly convex in the three distributions,
but is only convex in each of the distributions independently.

e iterative algorithm requires the cardinality of the compression variable Z to be speciëed as an
input. e relevance-compression curve of Figure 2.1 can be alternatively be interpreted in terms
of the cardinality variable which increases monotonically along the curve [14]. At the maximal
compression, Z is at its most compact representation (|Z| = 1). By gradually increasing β, the
constraint over I(Z;Y ) become more and more demanding until the single value of Z bifurcates
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into two values in order to fulëll the relevant information constraint. is process continues result-
ing in additional splits by successive increases in β. Eventually, at the limit β → ∞, we look only
at retaining all the relevant information and not at compression, thus setting the cardinality |Z| to
its maximum value of |X |.

is means that for practically applying the iterative algorithm, instead of choosing the right
value of β, we could ëx the cardinality of Z to some value less than |X |, and choose a very high
value for β. is behavior is depicted in the relevance compression curves (Figure 2.1) plotted with
a constraint on |Z|, resulting in a family of sub-optimal characteristic curves. Essentially, we are
enforcing the constraint on compression by restricting the cardinality of Z to a value below |X | and
can thus set high value for β while applying this iterative algorithm.

2.4.2 Sequential Algorithm

e sequential algorithm proposed in [16] performs hard mapping between the input variable X
and the compressed variable Z by looking at the following equivalent IB maximization problem:

L′ = I(Z;Y )− β−1I(Z;X) (2.15)

e algorithm begins by randomly partitioning X into K classes. At each step, every x ∈ X is
drawn from its current cluster z and represented as a singleton cluster. It is then merged into znew

that minimizes the merging criterion ∆L′(z, {x}) which is the difference in L′ before and after
merging x into its new cluster. Algorithm 2 gives a pseudo-code of this method.

Algorithm 2 IB Sequential Algorithm: Pseudo-code

Inputs : joint distribution p(x, y), trade-off parameter β and cardinality |Z| of Z
Output: A hard partition Z of X into K clusters.
Algorithm:
while true do

for all x ∈ X do
Remove x from its cluster z
znew = minz ∆L′(z, {x})
Merge x into znew

if ∀x ∈ X, znew = z then Break.

2.5 IB Applications

Most applications of the IB method proposed over the years have been in the domain of clus-
tering. A few of them include using word-clusters for supervised and unsupervised text classiëca-
tion [18], [19], gene expression data analysis [23], galaxy spectra analysis [17] and image cluster-
ing [7] among others.
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Following are a few works in computational neuroscience which use the IB method. All these
works assign particular entities to the input variable X and the target variable Y , and then infer
insights from the data by analyzing the compressed variable Z obtained by the IB method.

2.5.1 Other uses of the IB method in Neuroscience

In [13], the variable in consideration is the stimulus presented to a H1 neuron in the visual system
of a ìy. is stimulus is in the form of a long movie, with st being the stimulus portion preceding
time t. e target variable is the neural response in the form of spike trains which are discretized into
time bins of size ∆t. Using the the IB method, they extract stimuli features which are essentially
clusters of times along the stimulus movie, that maximize the information regarding the resulting
spike trains. Similar work is done in [12] on the neural population of a retinal ganglion celles from
a salamander where instead of clustering the stimuli, the neurons are clustered. ey group the
N neurons in the population into classes by mapping: neuron i → class C using the IB method.
To do so, they use the neurons in the population as the original variable and the neural responses
from each neuron in the population as the target variable. Visual stimulus of the spatially uniform
ìicker is presented to the population using a multi-electrode array. e mapping of the neurons
into classes is done to capture as much information as possible about the stimulus-response relation
while constraining the amount of information that class labels provide directly about the identity of
the neuron.

e temporal aspect of the signals is dealt with in [1] where they suggest that the internal represen-
tations that an organism maintains about the outside world are constructed so that the information
about the future of sensory inputs is maximized at a ëxed value of the information about its past.
As an example, if Xpast are the past sensory inputs to a single neuron, for times −T < t ≤ 0 and
Xfuture are its future sensory inputs, then the the goal is to perform neural coding of predictive
information by ënding the internal representation Xint of the neuron (spike train response) using
the IB method. e mapping Xpast → Xint minimizes the information I(Xint;Xpast) about the
past while maintaining information I(Xint;Xfuture) about the future.

IB algorithm is used to propose an online learning rule for the synaptic weights of neurons in [3].
ey consider the synapses, and subsequently the input spike trains from M different subgroups
Gl, each of size N/M to a linear Poisson neuron with N synaptic weights wj, j = 1, ..., N as
the original variable. e spike trains, Gl are generated from Poisson processes which can be of a
constant or a modulated rate. e target signal YT is chosen as the sum of two Poisson trains (two
of the Gls), one with a constant rate and the other with a modulated rate. e goal is to predict the
spike output of the neuron which receives the N input spike trains as inputs. e output spike train
depends on the input synaptic weights and accordingly, they propose an online learning rule which
updates the weights wj(t) at time t by performing gradient ascent on the IB objective function.
In [8], [9], the compressed variable being sought is the output spike train of the learning neuron,
which depends on the synaptic weights. An update rule for the synaptic weights of the learning
neuron is then derived using IB optimization.
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[4] modiëes the IB learning rule from [9] to make it simpler and more transparent. A neuron
that has N synaptic weights w1, ..., wN taking in an input consisting of N spike trains is considered
as a bottleneck since it compresses its high dimensional input history to a single output spike train.
is mapping is parameterized by the weights for which a learning rule is to be found. e main
assumption in this work is that the bottleneck neuron has access to a rich preprocessing of a relevance
signal. An estimation of the gradient of the relevant information w.r.t. to the weights is required for
the optimization and is parameterized with some parameters of the preprocessing of the relevance
signal. e compressed representation, as before is the output of the bottleneck neuron. e weights
are learned such that the relevant information contained in the neuron output is maximal under
some constraints.

Here we attempt to apply the IB method in computational neuroscience in an entirely different
way by using the output Z of the IB algorithms for identifying functional relationships between
different random variables. is is the topic of discussion in the next chapter.
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Chapter 3

e IB method for Functional Identiícation

3.1 Problem Formulation

Let Xi (i = 1, ..., n) be n mutually independent random variables with support Xi and a joint
probability distribution p(x1, ..., xn). Suppose Y is an observed random variable with support Y
that is assumed to be a function F of these n input variables, corrupted by an independent additive
noise W with probability distribution p(w).

Y = F(X1, ..., Xn) +W (3.1)

e goal is to recover the function F using the joint probability distribution p(x1, ..., xn, y) of
the input and the observed variables, if indeed such a function exists. Moreover, we also want to
be able to identify scenarios when such a functional relationship is not possible based on the given
joint distribution. Speciëcally, if the function F is linear, then this problem amounts to estimating
the coefficients αi (i = 1, ..., n) in the below equation:

Y =
n∑

i=1

αiXi +W (3.2)

e rest of this chapter deals with this scenario when the function is assumed to be linear and
proposes an algorithm for estimating these linear coefficients, if a functional relationship exists. Let
the estimated values of the coefficients αi be denoted by α̂i, i = 1, ..., n. erefore, given the joint
probability distribution p(x1, ..., xn, y), we would like recover a Z of the form

Z =
n∑

i=1

α̂iXi (3.3)

which captures the function F .

In order to solve this problem, the information bottleneck (IB) method is a good candidate be-
cause the goal of the IB method is to ënd a compact representation Z of the input variable X that is
as informative as possible about the observed variable Y . If we can force the Z thus obtained from
the IB method to be of the form given in Equation 3.3, we can ënd the estimates α̂i, i = 1, ..., n.
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However, using only information measures for solving this problem leads to an inherent limitation
that prevents us from uniquely estimating these coefficients α̂i. e next section addresses this issue.

3.2 Limitation of Information Measures

Deëne Z ′ as follows:

Z ′ = G

(
n∑

i=1

γα̂iXi

)
= G(γZ)

where G is a uniquely invertible one-to-one mapping and γ ∈ R is a constant.

For a Z ′ deëned in such way, I(Z;Y ) = I(Z ′;Y ). is result is trivial for the case where all
the involved variables are discrete because the computed probabilities p(z′), p(z′|xi, ..., xn) and
p(y|z′) would respectively be equal to p(z), p(z|x1, ..., xn) and p(y|z) as there would be a one-to-
one mapping between Z and Z ′, and thus I(Z;Y ) = I(Z ′;Y ).

is result also holds true for the continuous case due to the following argument: If Z ′ is a
homeomorphism (smooth and uniquely invertible map) of Z and JZ = ||∂Z/∂Z ′|| is the Jacobian
determinant of the transformation, then

p(z′) = JZ(z
′)p(z) and p(z′, y) = JZ(z

′)p(z, y) (3.4)

which gives

I(Z ′;Y ) =

∫ ∫
dz′dyp(z′, y) log

p(z′, y)

p(z′)p(y)

=

∫ ∫
dzdyp(z, y) log

p(z, y)

p(z)p(y)

= I(Z;Y ) (3.5)

erefore, the estimates α̂i of the coefficients αi cannot be uniquely determined and can only be
estimated up to a scale factor γ. As a result, there will be ambiguity in the scale γ of these estimates.
It should be noted that this is not a limitation caused by using the IB method, but is an inherent
limitation of using only information measures for solving this problem. One can only expect to
estimate the ratios - α1

αk
, α2

αk
, ..., αn

αk
, for any k ∈ {1, ..., n}, αk ̸= 0. However, this limitation is not

a serious one as in most real life applications, it is these ratios that are more intuitive to interpret
rather than the actual values themselves. For instance, in the neuroscience setting, we would be more
interested in the ratios of contributions from different neurons rather than the absolute contribution
of each particular neuron which may not add much meaning.

Before we go further and attempt to use the IB method to identify this linear functional relation-
ship between Y and {X1, ..., Xn}, let us consider the case when the inputs are Gaussian random
variables so that we can analytically compute the various information quantities which we deal with
in the IB method.
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3.3 Gaussian Case

Consider the case where the inputs are mutually independent jointly Gaussian distributed random
variables with Xi ∼ N (0, P ), i = 1, ..., n. Let Y be a linear combination of these input Xi's with
an additive independent noise which is also a Gaussian variable with W ∼ N (0, N) and Z be the
variable to be estimated:

Y =
n∑

i=1

αiXi +W and Z =
n∑

i=1

α̂iXi (3.6)

Additionally, let us artiëcially restrict to a scalar Z which is jointly Gaussian with Xi's and Y . en,
deëne a quantity ρ(Z) as follows:

ρ(Z) =
I(Z;Y )

I(X1, ..., Xn;Y )
(3.7)

As mentioned previously in Chapter 2, because of the data processing inequality, this quantity
ρ(Z) is upper bounded by 1 which is attained when Z = {X1, ..., Xn}. If we denote the vectors
[α1...α2]

T and [α̂1...α̂2]
T by α and α̂ respectively, then we have:

I(X1, ..., Xn;Y ) =
1

2
ln
[
1 + ||α||2 P

N

]
(3.8)

I(Z;Y ) =
1

2
ln

 1 + ||α||2 P
N

1 +
||α||2||α̂||2 − ⟨α̂,α⟩2

||α̂||2
P

N

 (3.9)

From the above two equations we get,

ρ(Z) = 1−
ln
[
1 +
||α||2||α̂||2 − ⟨α̂,α⟩2

||α̂||2
P

N

]
ln
[
1 + ||α||2 P

N

] (3.10)

is expression attains its maximum value of 1, when

||α||2||α̂||2 − ⟨α̂,α⟩2 = 0

i.e. α̂ = γα, for some γ (3.11)

From this equation we see that I(Z;Y ) becomes equal to I(X1, ..., Xn;Y ) for all estimates α̂
that are multiples of the original coefficients α. is result is consistent with the discussion in
the preceding section (Section 3.2). For the two input Gaussian case (n = 2), Figure 3.1 depicts
ρ(Z) computed according to Equation 3.10 as a function of the ratios of the estimated coefficients
α̂1/α̂2 and α̂2/α̂1. From these plots we see that if the computed α̂ are such that, I(Z;Y ) is close
to I(X1, ..., Xn;Y ), then these estimated coefficients are also close to the original coefficients α up
to a scale factor, due to the sharp peaks in the plots at these points.
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(a) ρ
(
α̂1
α̂2

)
(b) ρ

(
α̂2
α̂1

)
Figure 3.1: ρ

(
α̂1

α̂2

)
and ρ

(
α̂2

α̂1

)
for 2 Gaussian inputs at different SNR levels. We see sharp peaks

where the coefficients of Z are equal to the actual coefficients of Y up to a scale factor.

erefore, by using the information bottleneck if we are able to ënd a compact Z such that
I(Z;Y ) is as close a possible to I(X1, ..., Xn;Y ), then the computed coefficients from this Z
reìect the original functional relationship between {X1, ..., Xn} and Y up to a scale factor. e next
section discusses different methods for estimating these coefficients once the IB algorithm outputs
a compact Z.

3.4 Estimating coefficients from Z

e information bottleneck method ënds a compressed representation Z of (X1, ..., Xn) which
is as informative as possible about a target variable Y . e iterative IB algorithm takes in the joint
probability distribution p(x1, ..., xn, y), the cardinality |Z| of Z and the Lagrange multiplier β
which controls the extent to which the information about Y is preserved in Z . e estimates α̂i of
the coefficients αi, can then be obtained by casting the obtained Z into the form:

Z =
n∑

i=1

α̂iXi

However, by using the IB method as mentioned earlier in Chapter 2, the actual support Z of Z
cannot be determined; instead,Z is characterized only through the distributions p(z), p(z|x1, ..., xn)

and p(y|z) which are iteratively solved for by the algorithm. e values z which the compressed
variable takes are not part of the IB solution returned by this iterative algorithm. erefore, certain
heuristics need to be used in order to ënd the z values so that the α̂i's can be estimated. In this
project three methods are proposed to estimate these coefficients using the output variable Z from
the IB method.
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e ërst method does not make any assumptions on the support of Z and just uses the labels of
Z for which each input value (x1, ..., xn) has a mapping, in order to compute the coefficients. is
method is computationally expensive because we analyze each pair of inputs which lead to the same
mapping to the compressed variable and solve the resulting system of linear equations. e other
two methods try to associate the support Z to some values in the support of Y and then solve the
resulting over-determined system of equations in a least squares sense. ese three approaches for
estimate these coefficients are elaborated below:

3.4.1 Method 1

Solve the below system of equations for
(

α̂1

α̂n
, α̂2

α̂n
, ..., α̂n

α̂n

)
:

n∑
i=1

α̂i

α̂n

xi −
n∑

i=1

α̂i

α̂n

x′
i = 0,

∀(x1, ..., xn) ∈ (X1 × ...×Xn), and (x′
1, ..., x

′
n) ∈ (X1 × ...×Xn),

such that max
z

p(z|x1, ..., xn) = max
z

p(z|x′
1, ..., x

′
n) (3.12)

3.4.2 Method 2

Solve the below system of equations for (α̂1, ..., α̂n):

n∑
i=1

α̂ixi = E[p(y|z∗)] ∀(x1, ..., xn) ∈ (X1 × ...×Xn)

where z∗ = max
z
{p(z|x1, ..., xn)} (3.13)

3.4.3 Method 3

Solve the below system of equations for (α̂1, ..., α̂n):

n∑
i=1

α̂ixi = max
y
{p(y|z∗)} ∀(x1, ..., xn) ∈ (X1 × ...×Xn)

where z∗ = max
z
{p(z|x1, ..., xn)} (3.14)

Although, methods 2 and 3 solve explicitly for (α̂1, ..., α̂n), it is only the ratios
(

α̂1

α̂k
, α̂2

α̂k
, ..., α̂n

α̂k

)
which have to be considered as those are the best one could expect to be able to retrieve in this setup.
ese two methods only give an appropriate scaling for the possible values of Z.

e nature of these three methods is such that they will always output some coefficients irrespective
of whether a functional relationship exists between the input and observed random variables or not.
erefore, an additional ënal check needs to be performed to ensure that the coefficients obtained
from these three methods actually correspond to a compact function. e next section describes
how this ënal test can be performed.
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Figure 3.2: Overall Functional Identiëcation Algorithm.

3.4.4 Function or not ?

Given the joint distribution between the input and observed random variables p(x1, ..., xn, y),
the preceding subsections give algorithms to always estimate some linear coefficients {α̂1, α̂2, ..., α̂n},
up to a scale factor. From now on let us assume that these coefficients are normalized with respect
to one of the non-zero coefficients α̂k and rounded to the nearest integer (denoted by [.]) as follows:

{α̂1, ..., α̂k, ..., α̂n} ,
{[

α̂1

α̂k

]
, ...,

[
α̂k

α̂k

]
, ...,

[
α̂n

α̂k

]}
(3.15)

Once we have these normalized coefficients {α̂1, ..., α̂n}, we need to decide whether these coef-
ëcients should be accepted or discarded, i.e., decide the validity of our obtained results. In order to
do this, consider the random variable Ỹ deëned using these normalized coefficients as follows:

Ỹ =
n∑

i=1

α̂iXi (3.16)

Compute p(ỹ, y) according to the below equation:

p(ỹ, y) =
∑

x1,...,xn:
ỹ=α̂1x1+...+α̂nxn

p(x1, ..., xn, y, ỹ) (3.17)

Subsequently compute the quantity Θ deëned by:

Θ =
I(Ỹ ;Y )/I(X;Y )

I(Ỹ ;X)/H(X)
(3.18)

Accept the normalized coefficients if this so computedΘ is greater than some threshold θ (Θ > θ).
A typical value for this threshold could be 1, as in this indicates that the coefficients represent a
compact random variable which has more normalized information about Y than the normalized
information about X . e greater the value of this Θ, the greater the conëdence with which we can
accept the estimated coefficients. e ìowchart of the entire procedure is given in Figure 3.2.
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(a) Estimating α̂1 and α̂2 using Method 2 when
α1 = 1, α2 = 2.

(b) Estimating α̂1 and α̂2 using Method 3 when
α1 = 1, α2 = 2.

Figure 3.3: Estimating coefficients using Methods 2 and 3 on artiëcial data with 2 inputs of
support {−5, ..., 5}. Here [α1 = 1;α2 = 2], |Y| = 31 and |Z| = 5.

A special case in this setup is when some of the α̂i's are rounded to 0's which seems to suggest
that the corresponding Xi's do not contribute to the function Y . For instance, in the two input
case, if one of α̂1 or α̂2 is 0, then we could be tempted to conclude that only one of X1 or X2

dominates in the relationship with Y , thus not making it a function at all. However, it could also
happen that these variables are related in a more complex way and our algorithm fails to identify it.
It is difficult to make a judgment either way with our method in such cases and it is best to pursue
other approaches to analyze those cases where some variables seem to dominate the rest. On the
other hand, in the normal scenarios where we obtain all non zero α̂i's, we can conclude deënitively
that a linear functional relationship exists between Xi's and Y using the method proposed in this
project.

3.5 Test on Artiícial Data

Consider each input Xi and also the noise W to be randomly distributed with support Xi =

{−M, ..., 0, ...,M}, where M ∈ Z. Assume all Xi's and W to be mutually independent. Let the
coefficients αi ∈ Z be randomly selected from the interval {−M, ..., 0, ...,M} as well. en Y

is a random variable deëned as before according to Equation 3.2. e algorithms outlined in the
previous section for estimating linear functional relationship between input and observed random
variables are then applied on this artiëcially generated data. Here we set the cardinality |Z| of
the compressed variable required for the iterative IB algorithm, to be much smaller than the true
cardinality |Y| of Y .

For example, consider the case when we have two inputs (n = 2) with M = 5 and the actual
coefficients α1 = 1 and α2 = 2. en the support ofX1 andX2 becomes {−5, ..., 0, ..., 5}. In this
scenario the true cardinality |Y| = 31. We then run our algorithm for estimating the coefficients
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(a) Estimating α̂1, α̂2 and α̂3 using Method 2
when α1 = 1, α2 = 5, α3 = −2.

(b) Estimating α̂1, α̂2 and α̂3 using Method 3
when α1 = 1, α2 = 5, α3 = −2.

Figure 3.4: Estimating coefficients using Methods 2 and 3 on artiëcial data with 3 inputs of
support {−5, ..., 5}. Here [α1 = 1;α2 = 5;α3 = −2], |Y| = 81 and |Z| = 10.

by setting |Z| = 5. As Methods 2 and 3 are more computationally efficient than Method 1, we
focus on these two methods in the rest of the report. Figure 3.3 plots the estimated normalized
coefficients α̂1 and α̂2 for two inputs using both Method 2 and Method 3 at different values of the
trade-off parameter β. Similar plots are also depicted in Figure 3.4 for three inputs with the same
support and the actual coefficients set as α1 = 1, α2 = 5 and α3 = −2. In this case, the true
cardinality |Y| = 81 and the cardinality set in the IB algorithm |Z| = 10.

From these plots (Figures 3.3 and 3.4) we observe that at relatively small β values, the estimated
α̂i's converge to the actual coefficients αi's even when the cardinality is set such that |Z| ≪ |Y|.
Moreover, Method 2 and Method 3 converge to the actual coefficients in different ways. Method
2 ìuctuates greatly at very small β values before it converges to the actual coefficient values. On
the other hand, Method 3 is stable at small β values and at a particular β value, it converges to the
actual coefficients.

erefore, this approach is able to recover a compact function to explain the linear function
dependence of Y on Xi's for this artiëcial data. Next, we need to try and see if we can obtain some
meaningful results on real experimental data. While working with experimental data, we assume
that the data follows a linear model, and look at the conëdence parameter Θ obtained by applying
the algorithm proposed in this project. By setting a suitable threshold θ, we can apply this algorithm
even on real data, which is the focus of the next chapter.
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Chapter 4

Experimental Results

In this project, the proposed algorithm is tested on experimental data obtained from a brain inter-
face experiment performed on a monkey. e data is courtesy of Prof. J. M. Carmena, University of
California, Berkeley. e next subsection brieìy outlines the experimental setup used for obtaining
the neural data.

4.1 Data Description

In this experiment, a monkey performs a behavioral task for a duration of about 15 minutes
(1080353 milliseconds, to be precise) while the resulting voltage traces are measured simultaneously
across 64 sites in the brain using a multi-electrode array. e task consists of holding the hand in
the center of a switchboard with eight light bulbs arranged in a circle around the center. When one
of the eight light bulbs lit up, the monkey has to move the hand to the light bulb, and then back to
the center of the board. is is often referred to as a reaching task. During the entire 15 minutes,
the voltage traces thus measured are not fully stored and instead, we have access to a low-pass ëltered
version of the voltage of each of the 64 electrodes, ëltered up to 500Hz. ese signals are called
LFP signals, for local ëeld potentials. Subsequently, an intricate algorithm searches through all 64
electrodes to identify spike times of individual neurons. is spike sorting algorithm located 184
individual neurons, and for each neuron, spike times are recorded in seconds.

Additionally, we also have access to the precise timings of occurrences of all the corresponding
actions. An action can be a light bulb that is lighting up, or the moment when the hand leaves
the center of the switchboard, or the moment when the hand reaches the correct light bulb, or the
moment when the hand is back in the center. Over the course of the entire experiment, the reaching
task is performed in different directions: 0◦, 45◦, 90◦, 180◦, etc. Moreover, each experiment is also
repeated several times; for example, the 180◦ experiment is repeated 36 times at different starting
points in the entire duration of 15 minutes.

e functional identiëcation algorithm outlined in Section 3.4.4 is applied on this dataset to
infer some structure present in the data. Before doing that, we ërst need to decide how to estimate
the required probability distributions p(x1, ..., xn, y) from the data. Additionally, we also need to
decide a way to deal with the temporal aspect of the neural spike trains from different neurons. e
following sections discuss these issues.

24



4.2. Setup  Ǯ.  

Figure 4.1: Estimating joint histograms from spike trains, where we consider overlapping bins
using a sliding window.

4.2 Setup

Let St
i (∆) denote the spike train of neuron i starting from time t and lasting for ∆ milliseconds,

i.e, we are looking at the neural response of neuron with id i from time t ms to (t+∆) ms with a
millisecond precision. St

i (∆) can be seen as a vector of length ∆ comprising of 0's and 1's where 0
represents no spike and 1 represents a spike. e number of spikes we have in this time window is
denoted by |St

i (∆)|.

en a random variable denoted by Rt
i(∆, b), is estimated from St

i (∆) in the following way (b
here, is a binning parameter): Compute the histogram of the realizations rti(∆, b) given by:

rti(∆, b) = |St′

i (b)|, ∀t′ ∈ {t, ...,∆− b} (4.1)

and normalize this histogram to get the probability distribution p(Rt
i(∆, b) = rti(∆, b)). In other

words, this procedure maintains a sliding window of length b ms starting from the beginning of the
spike train St

i (∆), counts the number of spikes in this window while stepping this window to the
right until we reach the end of the spike train St

i (∆) and normalizes this binned histogram to obtain
the probability distribution of the random variable Rt

i(∆, b) (Figure 4.1). Accordingly, the support
of this random variable is the number of spikes observed in any contiguous segment of length b ms
of the spike train St

i (∆).

e above procedure can be extended for estimating the joint probability distribution from mul-
tiple spike trains. In this project, we restrict ourselves to the case where given two spike train
segments St1

a (∆) and St2
b (∆), we want to know if there exists a linear functional relationship
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between these two spike train segments in order to explain a third spike train segment St3
c (∆).

erefore, we need to estimate the joint probability distribution of the three random variables
Rt1

a (∆, b), Rt1
a (∆, b) and Rt1

c (∆, b) associated with these three spike train segments. To do this
we ensure that the sliding window is appropriately aligned across all these three spike trains while
obtaining the joint histogram. is procedure is illustrated in Figure 4.1. Once we have this joint
histogram we can use the procedure outlined earlier in this chapter to estimate α1 and α2 such that
the below functional relationship holds:

α1R
t1
a (∆, b) + α2R

t2
b (∆, b) = Rt3

c (∆, b) (4.2)

Rt1
a (∆, b) and Rt2

b (∆, b) are the input random variables (X1, X2, as in the notation used in
Section 3.1) and Rt3

c (∆, b) is the output random variable (Y ). It should be noted that we should
expect to be able to identify such a relationship only occasionally from the data, as neurons generally
do not behave in a predictable and deterministic way. We need to perform an exhaustive search
to ënd the right neurons (a, b, c), the time frames (t1, t2, t3) when these neurons have interesting
behaviors and also the suitable parameters ∆ and b for which such relationships exist and can be
identiëed by our method. Accordingly, in order to reduce the search space, we assume that the two
inputs neuron spike trains are aligned and start at the same time, i.e., t1 = t2. We then try different
delays δ in the output spike neuron spike, i.e., t3 > t1 = t2 and δ = t3 − t1.

4.3 Example

Consider a concrete example where we observe neurons 141, 63 and 139 in an experiment in-
volving a manual reaching task at a 180◦ angle lasting for about 3 seconds (let us call this experiment
E180). Overall, there are 36 such trial of this 180◦ experiment over the course of the entire 15 minute
experimental time. One particular trial of this experiment E180 starts at time 40718 ms and ends
at 43457 ms. e various times when events occur during this trail of E180 are listed below:

Time (ms) Event

40718 center appears
40719 manual target 180 degrees

...
...

41080 hand enters center
...

...
42130 go cue
42362 hand leaves center

...
...

42705 hand enters target
...

...
43206 force code 51
43207 reward on
43457 successful trial end
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(a) ∆ = 2000ms, b = 50ms (b) ∆ = 200ms, b = 10ms

Figure 4.2: Plotting I(X1, X2;Y (δ)), I(X1;Y (δ)) and I(X2;Y (δ)) versus the delay δ in Y for
different values of ∆ and b. (Here, X1 ≡ R40718

141 (∆, b), X2 ≡ R40718
63 (∆, b) and

Y (δ) ≡ R40718+δ
139 (∆, b)).

If we take the input neuron spike trains to start at the beginning of the experiment, we have
the following spike trains S40718

141 (∆), S40718
63 (∆), S40718+δ

139 (∆) and the resulting random variables
R40718

141 (∆, b), R40718
63 (∆, b), R40718+δ

139 (∆, b). We then need to choose the parameters ∆ and b de-
pending on whether we want to observe longer spike trains or shorter ones and at what resolution.
It should be noted that choosing∆ too large (compared to δ) would not be such a good idea as there
would be a large overlap between output spike trains which do not differ much in their delays with
respect to the input neurons. For convenience let us denoteX1 ≡ R40718

141 (∆, b),X2 ≡ R40718
63 (∆, b)

and Y (δ) ≡ R40718+δ
139 (∆, b).

Figure 4.2 plots the quantities I(X1, X2;Y (δ)), I(X1;Y (δ)) and I(X2;Y (δ)) as a function of
the delay δ of the spike train of neuron 139, for parameter values of {∆ = 200 ms , b = 10 ms}
and {∆ = 2000 ms , b = 50 ms}. From these plots we notice that I(X1, X2;Y (δ)) is signiëcantly
larger than I(X1;Y (δ)) and I(X2;Y (δ)) meaning that the two input neurons contribute more
together towards the information with respect to the output neuron than separately on their own.
Also, we observe that by taking longer ∆, we see more structure in the plots than by taking shorter
∆. e information plots are more smoother because as mentioned before, due to the large value
of ∆, the output neurons which do not differ much in delay look similar and so I(X1, X2;Y (δ))

and I(X1, X2;Y (δ + 1)) are close for large ∆ values. We see that there is a peak in I(X1, X2;Y )

around the time when the monkey starts to perform the moving action at a delay of 0.5 seconds
when we choose {∆ = 2000 ms , b = 50 ms}, and this is not so obvious in the other conëguration
{∆ = 200 ms , b = 10 ms}.

However, this structure in the information plots does not necessarily lead to identifying func-
tional relationships between the involved variables as can be seen from Figure 4.3. is ëgure
plots I(Ỹ (δ);Y (δ))/I(X1, X2;Y (δ)) versus (Ỹ (δ);X1, X2)/H(X1, X2) for both these parame-
ter conëgurations. Ỹ (δ) is deëned in a similar way as before using the coefficients α̂1(δ) and α̂2(δ)

27



4.3. Example  Ǯ.  

(a) ∆ = 2000 ms , b = 50 ms. No functions
identiëed at a threshold of θ = 1.

(b) ∆ = 200 ms , b = 10 ms. A few functions
identiëed at a threshold of θ = 1.

Figure 4.3: Plotting I(Ỹ (δ);X)/I(X1, X2;Y (δ)) versus I(Ỹ (δ);X)/H(X1, X2). Points
which lie above the 45◦(Θ > 1) are candidates for functions.

estimated from Y (δ) with X1 and X2 as the inputs. In this case, Ỹ (δ) becomes:

Ỹ (δ) = α̂1(δ)R
40718
141 (∆, b) + α̂2(δ)R

40718
63 (∆, b) (4.3)

From this plot we see that all the points for {∆ = 2000 ms , b = 50 ms}, lie below the 45◦

line indicating the absence of any functions. On the other hand, for the parameter conëguration of
{∆ = 200 ms , b = 10 ms}, a few points lie above the 45◦ line (i.e., Θ > 1 for these points) which
are candidates for functional relationships between the input neurons neurons and the appropriately
delayed output neuron. Larger ∆ values seem to average the behavior of the neurons over a big
window, while smaller ∆ values seem to capture local ìuctuations occurring in the neural responses
as the experiment progresses.

As described earlier in Section 4.1, we have access to the neural activity of 184 neurons for a
duration of about 15 minutes. Performing an exhaustive search across all neurons triplets {a, b, c} at
all time frames {t1, t2, t3} and at different resolutions {∆, b} for obtaining functional relationships
would be an extremely task difficult due to the sheer magnitude of the possibilities. Here we focus
on different trials of experiments E180 and E90 and look at neurons which have reasonable spiking
activities for the duration of these different trials to cut down on the number of possibilities. We
set t1 = t2 at the start of different events in the experiment and set t3 = t1 + δ with the resolution
parameter set as ∆ = 200 ms and b = 10 ms. Also, we limit the delay parameter δ to be less than
1 seconds as it is hard to justify the occurrences of functional relationships between neurons after a
delay of more than 1 second, given that the whole duration of the experiment is less than 3 seconds.

e next section discusses a few case studies obtained by running our algorithm on different
scenarios and searching for functions between neurons.
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4.4 Case Study I: E180

4.4.1 A Particular Trial

Consider a particular trial of experiment E180 which lasts from t = 40718 ms to t = 43457

ms. e two input neuron spike trains are set to start at the advent of different events (like: center
appears, hand enters center, go cue, hand enters target, etc.) and the output neuron spike train is
set to start at different delay values with respect to the input neurons with a maximum delay of 800
ms. We set the parameters for obtaining the joint histograms as ∆ = 200 ms, b = 10 ms and the
threshold θ is set to 1.25. Below are a few functions obtained at different events of this experimental
trial. As it turned out, all the functions we found were direct, unweighted sums. e functions are
sorted in the descending order of the conëdence parameter Θ.

Center appears: t = 40719 ms

• R40719
141 +R40719

63 = R40719+440
114 with Θ = 1.477.

• R40719
139 +R40719

141 = R40719+750
28 with Θ = 1.338.

• R40719
141 +R40719

63 = R40719+270
98 with Θ = 1.272.

• R40719
63 +R40719

28 = R40719+230
98 with Θ = 1.256.

Hand enters center: t = 41080 ms

• R41080
139 +R41080

114 = R41080+250
98 with Θ = 1.456.

• R41080
28 +R41080

114 = R41080+370
98 with Θ = 1.321. ←

• R41080
139 +R41080

98 = R41080+310
28 with Θ = 1.278.

• R41080
139 +R41080

28 = R41080+750
114 with Θ = 1.273.

• R41080
114 +R41080

28 = R41080+450
63 with Θ = 1.267.

Go cue: t = 42130 ms

• R42130
141 +R42130

98 = R42130+700
114 with Θ = 1.261.

• R42130
139 +R42130

98 = R42130+510
114 with Θ = 1.256.

Hand enters target: t = 42707 ms

• R42705
98 +R42705

114 = R42705+670
63 with Θ = 1.493.

• R42705
114 +R42705

28 = R42705+360
141 with Θ = 1.356.

• R42705
114 +R42705

63 = R42705+170
139 with Θ = 1.332.

• R42705
141 +R42705

63 = R42705+540
28 with Θ = 1.308.

• R42705
63 + 2R42705

114 = R42705+570
28 with Θ = 1.303.

• R42705
63 +R42705

114 = R42705+110
98 with Θ = 1.271.

Reward on: t = 43206 ms

• R43206
141 +R43206

114 = R43206+660
28 with Θ = 1.306.

• R43206
139 +R43206

114 = R43206+130
28 with Θ = 1.281.

• R43206
114 +R43206

141 = R43206+370
139 with Θ = 1.231.
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Figure 4.4: e sum of neuron 28 and neuron 114 at time 41080 (which corresponds to the
action of the hand entering center) is equal to neuron 98 after a delay of 370 ms.

We observe that most of the normalized linear coefficients estimated by our method on this dataset
are equal to 1, with rare occurrences of 2, and no values greater than 2. is can be explained by
looking at the support of the different random variables estimated from the spike trains. ese
supports are compact and concentrated in a particular range for most of the spike trains. erefore,
we do not observe higher normalized coefficient estimates such as 3 or 4.

In order to better validate the results obtained using our proposed algorithm, we need to verify
whether the functional relationships listed above are replicated in different trials of the same ex-
periment. e next section goes through a particular case study where the functional relationships
between a particular triplet of neurons are analyzed over different trails of the same experiment.

4.4.2 Behavior across trials

Consider the following three neurons: 28, 114 and 98, with neurons 28 and 114 as the input
neurons and neuron 98 as the output neuron. We want to observe the behavior of these three
neurons across all 36 trials of the E180 experiments. Out of these 36 trials, only 26 are as successful
and the rest are considered unsuccessful as the monkey's hand leaves the center before the go cue
is given. e functional relationships obtained from one of the 26 successful trials that lasts from
t = 40718 ms to t = 43457 ms were listed in the previous subsection. Let us look at one particular
function which is marked in the previous list:

R41080
28 +R41080

114 = R41080+370
98 (4.4)

e functional relationship in this equation implies that the sum of neuron 28 and neuron 114
at time 41080 (which corresponds to the action of the hand entering center) is equal to neu-
ron 98 after a delay of 370 ms (Figure 4.4). In order to check if similar relationship exists be-
tween these neurons at identical stages of different trials of the same E180 experiment, we plot
I(Ỹ k(370);Y k)/I(Xk

1 , X
k
2 ;Y

k(370)) versus (I(Ỹ k(370);Xk
1 , X

k
2 )/H(Xk

1 , X
k
2 )) as before, for

all these scenarios (Figure 4.5). Here Xk
1 ≡ Rt

28(200, 10), Xk
2 ≡ Rt

114(200, 10) and Y k ≡
Rt+370

98 (200, 10), where t is the time where the hand enters the center for trial k.
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Figure 4.5: We apply the function (Equation 4.4) obtained between neurons 28, 114 and 98 in
the reference trial (t = 40718) across all 36 trials and plot (I(Ỹ k(370);Xk

1 , X
k
2 )/H(Xk

1 , X
k
2 ))

versus I(Ỹ k(370);Y k)/I(Xk
1 , X

k
2 ;Y

k(370)) for these different trials of E180. Here
Xk

1 ≡ Rt
28(200, 10), Xk

2 ≡ Rt
114(200, 10) and Y k ≡ Rt+370

98 (200, 10), where t is the time where
the hand enters the center for trial k. We observe that 11 out of the 26 successful trials satisfy the
function obtained from the reference trial and most of the unsuccessful trials do not follow this

relationship.
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Figure 4.5 implies that in 13 out of the 36 different trials of E180, the sum of neurons 28 and
114 is equal to the response of neuron 98 as the points corresponding to these trials lie above the
45◦ line (here we set the threshold θ = 1). In one-third of the experimental trials, the functional
relationship given in Equation 4.4 holds. Moreover, if we exclude the unsuccessful trials, then 10
out of 26 of the successful trials follow the above functional relationship between neurons 28, 114
and 98. Most of the unsuccessful trials lie below the 45◦ line (Θ < 1) which indicates that these
neurons behave in a different manner during an unsuccessful trial. e below table lists theΘ values
corresponding to all the trials (we exclude 5 trials which give Θ of the form 0/0 and 1/0):

Successful Trials Unsuccessful Trials
Θ ≥ 1 Θ < 1 Θ ≥ 1 Θ < 1

1.331
1.321
1.229
1.114
1.109
1.102
1.091
1.000
1.000
1.000

0.947
0.811
0.758
0.739
0.676
0.647
0.601
0.574
0.427
0.341
0.283
0.000

1.000
1.052
1.293

0.197
0.513
0.555
0.685
0.787
0.865

For successful trials, we can consider the cases when Θ ≥ θ as true positives (TP) and the cases
when Θ < θ as false negatives (FN). Similarly for the unsuccessful trials, we can consider the cases
when Θ ≥ θ as false positives (FP) and the case when Θ < θ as true negatives (TN). en, at this
value of the threshold θ = 1 we can compute the following quantities:

• True Positive Rate (TPR) = TP/(TP+FP) = 76.92%
• True Negative Rate (TNR) = TN/((TN+FN) = 33.33%
• Sensitivity = TP/(TP+FN) = 45.45%
• Speciëcity = TN/(TN+FP) = 66.67%

We achieve high TPR but not such a high TNR as there are many false negatives. It should be noted
that these values depend on the value of the threshold θ.

4.5 Case Study II: E90

Below are the functions identiëed for a particular trial of experimentE90 starting from t = 80599

ms to t = 83242 ms, at the advent of different events. All these results are obtained by setting
∆ = 200 ms, b = 10 ms and setting the threshold θ to decide whether we have a function or not to
be equal to 1.25. We again found mostly direct, unweighted sums, like in the previous case except
for two occurrences of weighted sums.
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4.5.1 A particular trial

Center appears: t = 80600 ms

• 2R80600
65 +R80600

161 = R80600+590
141 with Θ = 1.408. ←

• R80600
65 +R80600

161 = R80600+320
163 with Θ = 1.387.

• R80600
63 +R80600

161 = R80600+50
65 with Θ = 1.341.

• R80600
65 +R80600

163 = R80600+290
161 with Θ = 1.323.

• 2R80600
65 +R80600

161 = R80600+620
139 with Θ = 1.293.

Hand enters center: t = 80912 ms

• R80912
65 +R80912

139 = R80912+130
163 with Θ = 1.479.

• R80912
65 +R80912

63 = R80912+300
161 with Θ = 1.356.

• R80912
65 +R80912

139 = R80912+290
161 with Θ = 1.353.

• R80912
163 +R80912

63 = R80912+350
161 with Θ = 1.321.

• R80912
63 +R80912

161 = R80912+400
65 with Θ = 1.312.

Hand enters target: t = 82491 ms

• R82491
65 +R82491

63 = R82491+600
163 with Θ = 1.319.

• R82491
65 +R82491

163 = R82491+490
141 with Θ = 1.286.

• R82491
161 +R82491

139 = R82491+350
65 with Θ = 1.261.

• R82491
139 +R82491

141 = R82491+130
161 with Θ = 1.256.

• R82491
63 +R82491

139 = R82491+720
65 with Θ = 1.254.

Reward on: t = 82991 ms

• R82991
63 +R82991

141 = R82991+340
65 with Θ = 1.524.

• R82991
65 +R82991

63 = R82991+380
163 with Θ = 1.304.

• R82991
163 +R82991

63 = R82991+480
161 with Θ = 1.251.

4.5.2 Behavior across trials

Results similar to the E180 experiments are obtained even for these E90 experiments if we analyze
the functional behavior of a particular neuron triplet across different trials. Consider the function
marked in the above list where one of the coefficients obtained is 2. By applying this function to all
the 76 E90 experiments (out of which only 26 are successful) we have the following results with the
threshold θ = 0.9:

• True Positive Rate (TPR) = 38.46%
• True Negative Rate (TNR) = 75%
• Sensitivity = 76.92%
• Speciëcity = 36%

ese numbers seem to indicate that successful trials and unsuccessful trials result in different rela-
tionships between the spiking patterns of the neurons.
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Chapter 5

Conclusion

is project explores the applicability of the Information Bottleneck (IB) method in the context
of neuroscience. While most direct practical applications of the IB method are in the domain of
supervised and unsupervised clustering, we use the IB method in an entirely different way for identi-
fying compact linear functional relationships between different random variables. is project tries
to answer the following questions: When can we say that a functional relationship exists between
random variables? How can we estimate these coefficients that explain linear dependencies between
random variables? How reliable are these estimates? is approach is then tested on artiëcial data
to investigate the performance of the proposed algorithm. We then also run it on experimental data
involving neural activity of several neurons recorded during a brain-interface experiment on a mon-
key while it performs some behavioral tasks. As the huge amount of possibilities prevented us from
performing exhaustive simulations on the data, we conëned ourselves to run this algorithm on a
small subset of the data. In particular, we were able to identify a few neurons which seem to exhibit
linear relationships towards other neurons. Additionally, we also investigated if the relationships
obtained from a particular trial of an experiment are replicated in other trials of the same experi-
ment. It was observed that in one-third of the trails, the relationships are consistent. Finally, we
also explored approaches to cluster neurons using the IB method, based on their neural responses at
different stages of an experiment. Some directions for future work could be as follows:

• Extend the algorithm for estimating coefficients with more than one output random variable.
at would lead to solving the problem of the following structure:

n∑
i=1

αiXi =
m∑
i=1

βiYi (5.1)

• In this project, while applying our algorithm on experimental data, we conëned ourselves to
just two inputs (neurons). It would be interesting to identify linear relationships between n

input neurons and m output neurons.
• To reduce the search space for identifying the function, we assumed that the two input neuron

spike trains are aligned. But this need not be the case. Additional experiments could be
performed to identify functions of this nature as well.

• Analysis of the heuristics employed in this project (method 2 and method 3) for estimating
the coefficients.
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Appendix A

e IB method for Clustering

In this chapter we discuss another way of applying the Information Bottleneck (IB) method in
neuroscience. We attempt to perform clustering of the neurons based on their spike trains responses.

A.1 Problem Statement

e IB method discussed in Chapter 2 solves the following minimization problem:

min
p(z|x):

I(Z;Y )≥Γ2

I(Z;X) (A.1)

Now in the clustering context, we set the random variableX to be the neuron id and Y to be the
random variable obtained by binning the spike trains like before. Z then is the number of clusters
we want to partition the values of X (i.e, the neurons). e IB method assigns each neuron to a
cluster z so that these clusters contain as much information as possible about the neural responses Y .
If we are interested in performing a hard clustering (H(Z|X) = 0), then the set of self-consistent
equations derived as a solution for the IB method in Section 2.3 can be rewritten as follows:

p(z|x) =

{
1 if x ∈ z

0 otherwise

p(y|z) = 1

p(z)

∑
x∈z

p(x)p(y|x) and p(z) =
∑
x∈z

p(x)

In this context, the IB problem reduces to the following problem:

min
p(z|x):

I(Z;Y )≥Γ2

H(Z) (A.2)

If we assign all the neurons (support of X) to the same cluster, then H(Z) = 0. In this case,
I(Z;Y ) = H(Y ) − H(Y |Z) also become 0 because when there is only one cluster, H(Y |Z) =
H(Y ). Hence, there is a trade-off between H(Z) and I(Z;Y ) depending on how we cluster the
neurons. e IB method clusters these neurons in such a way that for a ëxed H(Z), we retain
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Figure A.1: e information bottleneck relevance-information curve, where X are the neuron ids
and Y are the spike counts in a 10 ms window.

as much information I(Z;Y ) these clusters contain about the neural responses of all the neurons.
e sequential algorithm outlined in Section 2.4.2 is better suited than the iterative algorithm for
obtaining these hard partitioning of X values into clusters. e next section gives some results
obtained by applying the IB method for clustering neurons in the above mentioned way on the
brain-machine interface experiment data.

A.2 Experimental Results

Consider the neural responses of all 184 neurons from the brain-interface experiment dataset mea-
sured during a particular trial of E180 (say the one beginning at time t = 40718 ms). We compute
the joint histogram of the neural responses to obtain the random variables R40718

i (200, 10), (i =

1, ..., 184) with parameters ∆ = 200 ms and b = 10 ms. In this example following the IB notation
we have, X = {1, ..., 184}, Y = {0, 1, 2, 3}, i.e., these 184 neurons have 0, 1, 2 or 3 spikes in a
window of 10 ms over the time interval [40718, 40718+200]. Also, we assume uniform probability
distribution of the neurons: p(x) = 1/184.

Once we have this joint distribution p(x, y), we can then apply the sequential IB algorithm with
4 clusters. Figure A.1 plots the relevance-compression curve obtained by applying the sequential
IB algorithm on this p(x, y) at different β values. is plot shows that by using just 4 clusters, we
can achieve I(Z;Y ) (which is the information all the clusters contain about the neural responses)
close to I(X;Y ) (which is the information all the neurons contain about the neural responses) at
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a high compression of X indicated by the ratio I(Z;X)/H(X) ≈ 0.3. e below table indicates
the cardinalities of these 4 clusters at different values of β−1.

β−1 |z1| |z2| |z3| |z4|

1 0 0 184 0
0.1 182 0 0 2
0.01 8 23 47 106
0.001 12 75 68 29
0 27 68 42 47

As expected from the IB method, at lower values for β−1 (i.e., high β) we obtain clusters which
are more balanced and at higher values for β−1 (i.e., low β) we obtain very dominant clusters.
Let the cluster mapping i → z between neuron i ∈ {1, ..., 184} and cluster z ∈ {z1, z2, z3, z4}
obtained by considering spike responses starting from time t, be denoted as Ct. In what follows, we
use ∆ = 200 ms, b = 10 ms and β = 0 for obtaining cluster Ct. Once we have these clusters, we
can then try to compare clusters obtained at different points of time during the experiment. is is
discussed in the next section.

A.3 Comparing Clusters

Let the 184 neurons be clustered into two different clusters Ca and Cb by applying the above IB
algorithm for clustering at different times a and b. e extent of similarity between these two clusters
Ca and Cb can be obtained by computing the normalized mutual information adjusted to chance
between these two clusters [24]. Let this quantity be denoted by I(Ca, Cb). is is a normalized
quantity which lies between 0 and 1. If the clusters Ca and Cb are the same, irrespective of the order
of the labels, I(Ca, Cb) = 1.

We then compare clusters obtained at different times during theE180 experimental trial discussed
in the previous section. If C40718 is the cluster obtained at the start of experiment and C40718+δ is
the cluster obtained at after a delay of δ ms, we look at the following quantities:

F1(δ) = I(C40718, C40718+δ) and (A.3)
F2(δ) = I(Ct, Ct+1), ∀t ∈ [40718, 43457] (A.4)

e ërst quantityF1(δ)measures how the clusters evolve as the experiment progresses with respect
to the initial cluster and the second quantity F2(δ) measures how the clusters evolve with respect to
the preceding cluster. Figure A.2 plots both these quantities as a function of the delay δ. By looking
at the F1(δ) trace we see that the clusters keep gradually moving away from the initial cluster and
after the monkey performs an action ( δ ≈ 1200), the clusters start to slightly resemble the initial
cluster as F1(δ) increases from this point onwards. Additionally, by looking at the F2(δ) trace, we
notice that in general, there is very high ìuctuation in successive clusters as indicated by the high
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Figure A.2: F1(δ) and F2(δ) as a function of the delay δ. F1(δ) starts to increase around the time
(δ ≈ 1200 ms) F2(δ) remains constant for a while, indicating the time when the clusters stabilize

momentarily.

frequency of the signal. However, around the time F1(δ) starts to increase, F2(δ) does not ìuctuate
much indicating that the clusters do not change much during this period.
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