

Solar Photovoltaics & Energy Systems

Lecture 3. Crystalline Semiconductor Based Solar Cells

ChE-600

Wolfgang Tress, March 2018

Photovoltaic Solar Energy Conversion

- Recap: Thermodynamics of semiconductor-based energy conversion
- From chemical to electrical energy
- pn and metal-semiconductor junctions
- Silicon solar cell technology
- Photovoltaic installations

Semiconductor vs. Heat Engine

Band gap:

$$n = N_{\rm C} \exp\left(-\frac{E_{\rm C} - E_{\rm F}^n}{k_{\rm B}T}\right)$$

Quasi-Fermi level splitting \rightarrow chemical energy \rightarrow potential

$$p = N_{\rm V} \exp\left(-\frac{E_{\rm F}^p - E_{\rm V}}{k_{\rm B}T}\right)$$

Charge flow \rightarrow electrical current

→Absorber is at surrounding temperature
→Radiation is converted into chemical energy

Shockley-Queisser Limit

Shockley-Queisser Limit

$$J_{\text{ph,max}} = e \int a(E) \Phi_{\text{AM1,5g}}(E) dE = e \int_{E_g} \Phi_{\text{AM1,5g}}(E) dE$$
$$V_{\text{ph,max}} = ?$$

Detailed Balance Limit

• In the dark: thermal equilibrium between solar cell surroundings: $B_0(E) = a(E) \phi_{BB}(T_0)$

Τ_p

Detailed Balance Limit

$$B(E) = \begin{cases} 0 & \text{for } E \le E_g \\ \frac{2\pi}{c^2 h^3} \frac{E^2}{exp\left(\frac{E-\mu}{k_B T}\right) - 1} & \text{for } E > E_g \end{cases} \qquad \text{Boltzmann approx.} \\ \phi_{BB}(E,T) \exp\left(\frac{eV}{k_B T}\right) & \phi_{BB}(E,T) & \phi_{BB}$$

- In the dark: thermal equilibrium between solar cell surroundings: $B_0(E) = a(E) \phi_{BB}(T_0)$
- Balance under light:

$$J_{\rm ph}(V) = e \int a(E) \Phi_{\rm AM1,5g}(E) dE + e \int B_0(E) dE - e \int B_0(E) dE \exp\left(\frac{eV}{k_{\rm B}T}\right) dE \exp\left(\frac{eV}{k_{\rm B}T}\right)$$

• Open circuit $(J_{\text{ph}}(V) = 0)$: $V_{\text{oc,rad}} = \frac{k_{\text{B}}T}{e} \ln \left(\frac{J_{\text{ph}}}{J_{\text{em},0}} + \frac{k_{\text{B}}T}{e} \right)$

Tp

Detailed Balance Limit

JV-Curve of Ideal Solar Cell with $E_g = 1.6 \text{ eV}$

JV-Curve of Ideal Solar Cell with $E_g = 1.6 \text{ eV}$

 \rightarrow Diode behavior

From Chemical to Electrical Energy

Requirement:

 \rightarrow Charge selective contacts

Ideal solar cell structure (Würfel)

Metal Contacts

When put in contact in equilibrium \rightarrow Fermi levels will align

Doping

Doping → Fermi Level Shift Silicon Electron Phosphorus Boron doped semiconductor

Array of Si atoms

n-type semiconductor

r p-type semiconductor

pn Junction

20

Tunneling junction \rightarrow Ohmic contact, not selective

Diode under Illumination

Superposition of dark and photocurrent $(J_{ph}(V) = J_{sc})$:

$$J(V) = J_0 \left(\exp\left(\frac{eV}{k_BT}\right) - 1 \right) - J_{sc} \qquad V_{oc} = \frac{k_BT}{e} \ln\left(\frac{J_{sc}}{J_0} + 1\right)$$
$$J_{ph}(V) = J_{ph,max} + J_{em,0} \left(\exp\left(\frac{eV}{k_BT}\right) - 1 \right) \qquad V_{oc,rad} = \frac{k_BT}{e} \ln\left(\frac{J_{ph}}{J_{em,0}} + 1\right)$$

- Diode
- Current source controlled by light
- Resistances account for:
 - *R*_s: Voltage loss due to charge transport resistance
 - R_p : Current loss due to shunt paths

voltage

Sketch of a Solar Cell

http://www.redarc.com.au/solar/about/solarpanels/

Silicon: Why?

- E_{g} is suitable
- Doping is possible
- Mostly used in microelectronics
- Native oxide as passivation layer

Crystalline Silicon Solar Cells

unit.

http://www.mdpi.com/1996-1944/7/2/1318/htm

From Sand to Solar: The Ingot

From Sand to Solar: The Ingot

From Sand to Solar: The Wafer

From Sand to Solar: The Solar Cell

Multicrystalline Solar Cell

Martin Green

Poly-Crystalline Solar Cell 34

From Sand to Solar: The Module

Modules

	SW 260	SW 285			a Te
Maximum power	260 Wp	285 Wp			
Open circuit voltage	38.4 V	39.7 V			North New York
Maximum power point voltage	31.4 V	31.3 V	6	1	1
Short circuit current	8.94 A	9.84 A			
Maximum power point current	8.37 A	9.2 A			
Module efficiency	15.51 %	17.0 %		1	

DIMENSIONS / WEIGHT

1675 mm
1001 mm
33 mm
18.0 kg

SolarWorld

From Sand to Solar: The PV Installation

Different Architectures: PERC

Different Architectures: PERC

www.pv-magazine.com/news/details/beitrag/unsw-hits-194-percent-on-massproduced-solar-cell---what-next 100003631/#axzz47sdUyPzSa Internal quantum efficiency [%] Reflectivity [%] PERC Standard Wavelength [nm]

Different Architectures: Bifacial Module

Different Architectures

History and Record Lab Efficiencies

Technical Breakthroughs Reduce Costs

PV Installations Worldwide

PV Installations Worldwide

Vergleich von Photovoltaikanlagen unterschiedlicher Ausrichtung an einem Sonnentag (8. July 2013)

ISE Freiburg, 2018

PV Installations Worldwide

ISE Freiburg, 2018

ISE Freiburg, 2018

PV Production

Price

Source: Bloomberg New Energy Finance & pv.energytrend.com

Costs and Prices: The Learning Curve

http://solarcellcentral.com/cost_page.html

5000 4500 29% 4000 26% 26% 3500 Average Price (€/kWp) 3000 **BOS** incl. Inverter 71% 36% 2500 74% 74% 37% Modules 2000 46% 1500 64% 48% 51% 52% 63% 52% 53% 1000 54% Percentage of the Total Cost 54% 52% 500

49%

Q4

2013

49%

Q4

2014

48%

Q4

2015

47%

Q4

2016

46%

Q4

2017

Historical Price Development Germany for 10 to 100 kWp roof-top PV-Systems

Q4

2012

© Fraunhofer ISE

Q4

2007

Q4

2008

Q4

2009

Q4

2010

Q4

2011

0

Q4

2006

51

Incentives in Germany

Data: BSW-Solar, BNA. Graph: PSE AG 2015

Electricity Costs: Feed in Tariffs in D

Energy Payback Time (EPBT)

Data: M.J. de Wild-Scholten 2013. Image: JRC European Commision. Graph: PSE AG 2014 (Modified scale with updated data from PSE AG and FraunhoferISE)

Energy Payback Time (EPBT)

Data: M.J. de Wild-Scholten 2013; CPV data: "Environmental Sustainability of Concentrator PV Systems: Preliminary LCA Results of the Apollon Project" 5th World Conference on PV Energy Conversion. Valencia, Spain, 6-10 September 2010. Graph: PSE AG 2014

ISE Freiburg, 2016

- Irradiation: 1200 kWh/m²a
- 20% module \rightarrow 240 kWh/m²a \rightarrow 0.2 kW_p/m²
- 20 m² \rightarrow 4800 kWh/a \rightarrow 4 kW_p (20 modules)
- Investment costs 5200 Euro
- Household electricity cost 1600 Euro/a
- 4 kW continuous power \rightarrow 34176 kWh/a
 - \rightarrow 14% capacity factor
 - \rightarrow volatile

(storage capacity and costs)

