Solar Photovoltaics & Energy Systems

Lecture 7 – Direct Solar-to-fuel Conversion: Photoelectrochemical and Photocatalytic systems

ChE-600

Néstor Guijarro Carratala, Spring 2018

Direct water splitting using Photoelectrochemical cells

Direct water splitting using Photocatalysts

Contents

Direct water splitting using Photoelectrochemical cells

- How does it work?
- Basic metrics
- Limitations of Tandem Cells
- Current approaches to understand and address intrinsic limitations

 $\phi_{sc}, \phi_E = work function of semiconductor(SC) or redox$

Flow of charge between phases to equalibrate the "chemical potential" of electrons in all the phases

5

Semiconductor-liquid junction

electron energy

Semiconductor-liquid junction

 $E_{p,F}^* < qE_{O2/H2O}^0 + \eta_{ox}$ anodic hole transfer proceed $E_{n,F}^* > qE_{H2O/H2}^0 + \eta_{red}$ cathodic hole transfer proceed If bands flatten under illumination (OCP) the E_F will equal the so-called V_{fb}

9

Photocurrent measurements

Photocurrent measurements

n-type photoanode

Photocurrent measurements

n-type photoanode

become available in conduction band.

Photocurrent measurements

n-type photoanode

At the V_{fb} , there is no electric field to separate the photoexcited electron-hole pairs.

Photocurrent measurements

n-type photoanode

Photoexcited electrode reaction can occur at potentials at which the same electrode reactions are impossible in the dark. As soon as the *band bending* is generated, the chargeseparation withing the depletion width is possible and holes are accumulated at the interface (SCLJ).

At potentials more positive than the V_{fb} (if the $E_{p,F}$ is positive enough), photo-induced charge transfer could occur to the electrolyte. 15

Photocurrent measurements

Wavelength-dependent photocurrent response

Complementary light absorption

Record the photocurrent as a function of the wavelength of the incident light

Contains crucial information on the light-response of the sample (*typically agrees with the light-absorption properties*)

Incident photon to current efficiency (IPCE) ((External Quantum Efficiency))

 $IPCE = \frac{(photo)electrons\ measured}{Photons\ incident\ on\ sample}$

Absorbed photon to current efficiency (APCE) ((Internal Quantum Efficiency))

 $APCE = \frac{(photo)electrons\ measured}{Photons\ absorbed\ by\ sample}$

complementary light absorption). Hematite filters useful light for Cu₂O

Bornoz et al. J.Phys. Chem. C. 118, 16959-16966 (2014).

Challenges to address

BULK PROPERTIES

- Bulk defects (recombination)
- Carrier transport
- Doping density (conductivity, W)
- Morphology

SURFACE PROPERTIES (Semiconductor-liquid junction)

- Surface defects (Fermi level pinning)
- Catalytic properties
- Stability

Characterize/understand these parameters to design strategies to enhance the performance of photoelectrodes

Challenges to address

$$\boldsymbol{J_{ph}} = \boldsymbol{G} - J_{br} - J_{dr} - J_{ss} - J_t - J_{te}$$

BULK PROPERTIES

- Bulk defects (recombination)
- Carrier transport
- Doping density (conductivity, W)
- Morphology

SURFACE PROPERTIES (Semiconductor-liquid junction)

- Surface defects (Fermi level pinning)
- Catalytic properties
- Stability

Characterize/understand these parameters to design strategies to enhance the performance of photoelectrodes

(Photo)Electrochemical Impedance Spectroscopy (PEIS)

impedance
$$\equiv Z = \frac{\Delta E(t)}{\Delta I(t)} = \frac{E_0 \sin(\omega t)}{I_0 \sin(\omega t + \phi)} = Z_0 \frac{\sin(\omega t)}{\sin(\omega t + \phi)} = Z_0 e^{i\phi} = Z_0 (\cos\phi + i\sin\phi)$$

$$Z = Z' + iZ''$$

The *impedance at a given frequency* is related to the *processes occurring at the timescales* imposed by the frequency

(Photo)Electrochemical Impedance Spectroscopy (PEIS)

Nyquist Plot

$$Z = Z' + iZ''$$

(Photo)Electrochemical Impedance Spectroscopy (PEIS)

Nyquist Plot

$$Z = Z' + iZ''$$

(Photo)Electrochemical Impedance Spectroscopy (PEIS)

Nyquist Plot

Z = Z' + iZ''

the electrode

Mott-Schottky plot

(Photo)Electrochemical Impedance Spectroscopy (PEIS)

Intensity-Modulated Photocurrent Spectroscopy (IMPS)

- Frequency-domain measurement.
- Small perturbation (small deviation from the equilibrium: *linear response*).
- Sinusoidal (AC) perturbation on the incident light

At a fixed potential, the modulation of the *incident light* modulates the surface concentration of carriers (and the *photocurrent*)

Nyquist plot: Imaginary vs. Real parts of the photocurrent

SIMPLE MODEL

- Extract information on the surface dynamics
- By assuming
- Bulk processes are not detected
- A one-electron transfer process
- Band bending remains constant

Zachaus et al. Chem. Sci. 2017, 8, 3712

Transient Absorption spectroscopy

- Specific information on the kinetics of the intermediates and reaction

In operando XPS

- Probe under operation the **chemical nature** of the surface species and band alignment

Examples of photoelectrodes

Photoanode

Photocathode

α -Fe₂O₃ (hematite) as a promising material

Advantages

- Cheap and abundant
- Stable
- Environmentally benign
- Absorbs over 16 % (AM 1.5 Solar spectrum)

Challenges

Bulk problems

- Short hole diffusion length (L_D = 5 nm)
- Poor conductivity

Surface problems

High overpotential for water oxidation

Bulk problems I – Photocurrent

*Sanchez, et al., J. Electroanal. Chem. 1988, 252, 269-290.

Bulk problems – Photocurrent

*Sanchez, et al., J. Electroanal. Chem. 1988, 252, 269-290.

Surface issues – Overpotential

Surface issues – Overpotential

Surface issues – Overpotential

Coupling with an *electrocatalyst*

Surface recombination. Examining the electrochemical properties of the SCLJ

PEIS

C_{trap} indicate the <u>accumulation of charges at</u> <u>the SCLJ</u> just before the water oxidation starts

Suggests that "the delayed" onset of photocurrent is caused by Fermi Level Pinning (necessary to apply enough potential to overcome the strong surface recombination)

Surface recombination. Examining the electrochemical properties of the SCLJ

Fermi level pinning (band edge unpinning)

- the applied potential drops across the Helmholtz layer (charging-discharging Surface States) shifting the bands with respect the redox, instead of across the space charge region to create the band bending.

Surface recombination. Examining the electrochemical properties of the SCLJ

k'

rec

tran

1.23 VRHE

BiVO₄ as a potential photoanode

Advantages

- Cheap and abundant
- Stable
- Environmentally benign
- Theoretically 7.5 mA cm⁻²

Challenges

Bulk problems

- Short carrier diffusion length (L_D = 70 nm)
 - Typically electrodes very thin (poor light absorption).

Surface problems

Poor kinetics for water oxidation

Bulk problems

Compensate the short *L* using **extremely thinabsorber (ETA) heterojunction** structure

- BiVO₄ thin enough to ensure extraction of carriers
- Nanostructure with high-aspect ratio to ensure high light-absorption

current density (mA cm⁻²)

Surface issues

 O_2/H_2O

k_{wo}

Analysis of carrier dynamics of photogenerated holes in BiVO₄ suggests that CoPi does not function as co-catalyst but reduces recombination of surface-accumulated holes with bulk electrons.

• The formation of a SEMICONDUCTOR-LIQUID JUNCTION (SCLJ) can drive stand-alone photoelectrochemical reactions.

• There is still need for finding NEW MATERIALS for the design of tandem cells (complementary light absorption, robustness, excellent optoelectronic properties)

• Development of NOVEL STRATEGIES to effectively address issues like poor diffusion length, bulk recombination and/or surface recombination.

Direct water splitting using Photocatalysts

- Which is the driving force for charge separation?
- Basic metrics
- Examples on how to improve the performance

Charge separation: drift vs. diffusion

Light-induced charge separation

A. Electron and hole recombine at the surface (traps)

B. Electron and hole could recombine in the bulk.

C. and D. Electron or hole reach the surface and trigger photoreactions

Zhang et al. Chem. Rev. 2012, 112, 5520

If the band bending is small. Charge separation occurs via diffusion

> Typically diffusion can occurs more rapidly than recombination

Random walk model

$$\tau_d = \frac{r_0^2}{\pi^2 D}$$

Average transit time from the interior of the particle to the surface

$$TiO_2 \ 6 \ nm \left(D_e = 2 \times \frac{10^{-2} cm^2}{s} \right) \rightarrow \tau_d = 3 \ ps$$
 47

Gas production over time

- the amount of photocatalyst

- surface area (active sites)
- geometry cell (light path)

Quantum efficiency

conditions to compare between studies

48

Liu et al. Science 2015, 347, 970

Challenge in Photocatalyst systems

Chen et al. Nature Reviews Materials 2017, 2, 17050

Examples improved photocatalytic activity

CdSe Nanocrystals (surface recombination)

Surface engineering of co-catalyst (surface recombination)

 $(Ga_{1-x}Zn_x)(N_{1-x}O_x)$ (x=0.12, E_g = 2.68 eV)

Surface engineering of co-catalyst (surface recombination)

 $(Ga_{1-x}Zn_x)(N_{1-x}O_x)$ (x=0.12, E_g = 2.68 eV)

The selective coating prevents O₂ back reaction to water

O₂ generated in other part of the particle could reach the *Hydrogen evolution catalyst* where it could be reduced to H₂O, reducing overall solar-to-hydrogen yield.

Maeda et al. J. Phys. Chem C. 2007, 111, 7554

⁵² Yoshida et al. J. Phys. Chem C. **2009**, 113, 10151

2 nm

- The POOR LIGHT ABSORPTION and INTENSE RECOMBINATION (surface/bulk) in nanoparticulate photocatalyst limits the achievable STH values.
- Design of NEW PHOTOCATALYTIC MATERIALS is necessary (enhance light harvesting).

 Development of surface engineering approaches to promote a FAST SURFACE CHARGE SEPARATION to mitigate the losses by recombination.