Solar Photovoltaics & Energy Systems

Lecture 2. Thermodynamics of solar energy conversion and solar thermal energy conversion

ChE-600

Kevin Sivula, Spring 2016

Averaged Solar Radiation 1990-2004

The Müser Engine with a concentrator

Introduction to solar thermal energy

• Low-medium temperature collectors

High temperature collectors

• Thermal mass methods

Low temperature collectors - examples

• Solar air heat

• Solar water heating

Low temperature collectors - examples

- Solar water heating
 - Flat plate collectors
 - Evacuated tube collectors

Solar water heating

Daily energy production (kW _{th} .h) of five solar thermal systems. The evac tube systems used below both have 20 tubes						
Technology	Flat plate	Flat plate	Flat plate	Evac tube	Evac tube	
Configuration	Direct active	Thermosiphon	Indirect active	Indirect active	Direct active	
Overall size (m ²)	2.49	1.98	1.87	2.85	2.97	
Absorber size (m ²)	2.21	1.98	1.72	2.85	2.96	
Maximum efficiency (1 sun)	0.68	0.74	0.61	0.57	0.46	
Energy production* (kW.h/day): – Insolation 3.2 kW.h/m ² /day (temperate, e.g. Zurich, Switzerland)	5.3	3.9	3.3	4.8	4.0	
– Insolation 6.5 kW.h/m²/day (tropical, e.g. Phoenix, USA)	11.2	8.8	7.1	9.9	8.4	

Solar water heating

Top countries using solar thermal power, worldwide (GW_{th})^{[10][69][70][71][72][73][74]}

#	Country	2005	2006	2007	2008	2009	2010	2011	2012	2013
1	China	55.5	67.9	84.0	105.0	101.5	117.6	-	-	262.3 ^[75]
_	EU	11.2	13.5	15.5	20.0	22.8	23.5	25.6	29.7	31.4
2	United States	1.6	1.8	1.7	2.0	14.4	15.3	-	-	16.8 ^[75]
3	Germany	_	_	_	7.8	8.9	9.8	10.5	11.4	12.1
4	C• Turkey	5.7	6.6	7.1	7.5	8.4	9.3	-	-	11.0 ^[75]
5	🔭 Australia	1.2	1.3	1.2	1.3	5.0	5.8	-	-	5.8 ^[75]
6	📀 Brazil	1.6	2.2	2.5	2.4	3.7	4.3	-	-	6.7 ^[75]
7	Japan	5.0	4.7	4.9	4.1	4.3	4.0	-	-	3.2 ^[75]
8	Austria	_	_	_	2.5	3.0	3.2	2.8	3.4	3.5
9	Greece	_	_	_	2.7	2.9	2.9	2.9	2.9	2.9
10	호 Israel	3.3	3.8	3.5	2.6	2.8	2.9	-	-	2.9 ^[75]
	World (GW _{th})	88	105	126	149	172	196	-	-	-

- Mainly used for electricity production in process generally referred to as concentrated solar power (CSP).
- Modern systems continue to use heat to make steam to drive a turbine.

Tower type

Parabolic trough

Fresnel reflectors

Dish Stirling

An example of concentrated solar power

- "Eurelios" at Adrano (Sicily Italy)
- Type: Mirror field/central receiver
- Designed for electricity production (nominal rating 1 MW)
- Completed in 1980

- 182 flat mirrors
- Two axis control
- 55 m tower height
- Cavity type receiver

"Eurelios" at Adrano in detail

Fig. 2 Schematic plant system

- 6216 m² mirror surface
- Aperture of 16 m² on receiver

• C =
$$\frac{6216 \text{ m}^2}{16 \text{ m}^2} = 389$$

•
$$\max(\eta_{solar}) = 63.7\%$$

• $\eta_{solar} = \frac{power \ output}{power \ input} = \frac{750000 \text{ W}}{920 \text{ W} \text{ m}^{-2} \ 6216 \text{ m}^2}$

- $\eta_{solar} = 13.1 \% (14.5 \% \text{ claimed})$
- Based on land area $\eta_{solar} = 4.1~\%$

Solar power tower

Gemasolar near Seville, Spain (19.9 MW_p) Completed 2011 318000 m² mirror surface 140 m tower, molten salt heating $\eta_{solar} = 14 \%$

Ivanpah Solar Power Facility

392 MW_p Completed Feb 2014 2'600'000 m² mirror surface 140 m tower, H₂O heating $\eta_{solar} = 15 \%$

Nathaniel Bullard, a solar analyst at Bloomberg New Energy Finance, has calculated that the cost of electricity at the <u>Ivanpah Solar Power Facility</u>, a project under construction in Southern California, will be lower than that from photovoltaic power and about the same as that from natural gas.

Google invested US\$168 million on BrightSource

However, in November 2011, Google announced that they would not invest further in CSP projects due to the rapid price decline of <u>photovoltaics</u>. Google invested US\$168 million on BrightSource.... There are insufficient installations to clearly establish the learning curve

As of March 2012, there were 1.9 GW of CSP installed, with 1.8 GW of that being parabolic trough

https://en.wikipedia.org/wiki/Concentrated_solar_power

Parabolic trough

- Concentration factor = 30
- Collection of radiation can be up to 73% (typically about 60%)
- $\eta_{solar} = 15\%$
- Heat transfer fluid is oil (up to 400°C)

Parabolic trough

Power plants	Installed capacity (MW)	Yearly production (GWh)	Country	Developer/ Owner	Completed
Solar Energy Generating Systems	354	2037	United States	NextEra Energy Resources	1990
Nevada solar one	64	134	United States	SolarReserve	2007
Andasol Solar Power Station	150	180	Spain	ACS Group	2009

https://en.wikipedia.org/wiki/List_of_solar_thermal_power_stations

Compact linear Fresnel reflector

• Concentration factor = 40

• Reduced cost over parabolic trough

Power plants	Installed capacity (MW)	Yearly production (GWh)	Country	Developer/ Owner	Completed
PE1	1.4		Germany	Novatec Biosol	2009
PE2	30		Spain	Novatec Biosol	2014
Kimberlina Solar Thermal	5		USA	AREVA Solar	2008

Dish sterling

- high efficiency η_{solar} =29.4%
- autonomous operation
- modularity

- Total solar thermal energy:
 - ≈200 GW_{th} installed
- Concentrated solar power for electricity production:
 - 4.9 GW installed
 - 1.23 GW under construction
 - 3.4 GW planned (announced projects)

http://www.iea.org/papers/2010/csp roadmap.pdf

The Müser Engine with a concentrator

The Müser Engine with a band gap

The Müser Engine with a band gap

Then:

J. Phys. C: Solid State Phys., 15 (1982) 3967-3985. Printed in Great Britain

The chemical potential of radiation

P Würfel

Institut für Angewandte Physik, University of Karlsruhe, 7500 Karlsruhe, West Germany

Received 3 September 1981, in final form 18 January 1982

Abstract. In a thermodynamic treatment electromagnetic radiation of any kind is described. The difference between thermal and non-thermal radiation is accounted for by introducing the chemical potential of photons. Instead of an effective temperature all kinds of radiation have the real temperature of the emitting material. As a result Planck's law for thermal radiation is extended to radiation of any kind. The concept of the chemical potential of radiation is discussed in detail in conjunction with light-emitting diodes, two-level systems, and lasers. It allows the calculation of absorption coefficients, of emission spectra of luminescent materials, and of radiative recombination lifetimes of electrons and holes in semiconductors. Theoretical emission spectra are compared with experimental data on GaAs light-emitting diodes and excellent agreement is obtained.

Description of a semiconductor

[Ne] 3s² 3p²

Model of a silicon crystal seen along the <100> direction.

Description of a semiconductor

Band structure and density of states

Localized density of states as a function of energy

Number of states available for an electron in volume V:

 $N_e(|p_e|) = \frac{8\pi |p_e|^3 V}{3h^3}$

Approximation of electron kinetic energy:

$$E_{e,kin} = E_e - E_C = \frac{|p_e|^2}{2m_e^*}$$

Density of states as a function of energy:

$$D_e(E_e) = \frac{1}{V} \frac{dN_e}{dE_e} = 4\pi \left(\frac{2m_e^*}{h^2}\right)^{3/2} (E_e - E_C)^{1/2}$$

The number of electrons in the conduction band:

$$m_e = \int_{E_C}^{\infty} D_e(E_e) f_e(E_e) dE_e = N_C \exp\left(-\frac{E_C - E_f}{k_B T}\right)$$
$$N_C = 2\left(\frac{2\pi m_e^* k_B T}{h^2}\right)^{3/2}$$

Deviations from global equilibrium

Global equilibrium situations only:

The number of electrons in the conduction band:

$$n_e = N_C \exp\left(-\frac{E_C - E_f}{k_B T}\right)$$

Similarly for holes:

$$n_h = N_V exp\left(-\frac{E_f - E_V}{k_B T}\right)$$

For non-equilibrium situations (globally) local equilibrium can be described:

$$n_e = N_C^{eff} exp\left(-\frac{E_C - E_f^e}{k_B T}\right)$$

Description of a semiconductor

Semiconductor

Description of a semiconductor

Emission from an ohmic diode

Emission spectrum from *an idealized* semiconductor (at Temp T and with a chemical potential μ)

$$B(E,T,\mu) = \begin{cases} 0 & for E \le E_g \\ \frac{2\pi}{c^2 h^3} \frac{E^2}{exp(\frac{E-\mu}{k_B T}) - 1} for E > E_g \\ T = 300 \text{ K} & T = 100 \text{ K} \\ E_g & 1.05E_g & E_g & 1.05E_g \\ \hline & & \mu = 99.9 \% E_g \\ & & -\mu = 99.0 \% E_g \\ & & -\mu = 90.0 \% E_g \\ & & -\mu = 90.0 \% E_g \end{cases}$$

Total Number of photons emitted per unit area:

$$\Phi(T,\mu,E_g) = \int_{E_g}^{\infty} B(E)dE$$

Net electron flux through device: $J = -q\Phi$

 $T_1 \mu_1 E_{g1}$

V

Photon exchange between biased semiconductors

Net photon Flux

$$\Phi = \int_{E_{g_1}}^{\infty} B_1(E) dE - \int_{E_{g_2}}^{\infty} B_2(E) dE = k \left[\int_{E_{g_1}}^{\infty} \frac{E^2 dE}{exp\left(\frac{E-\mu_1}{k_B T_1}\right) - 1} - \int_{E_{g_2}}^{\infty} \frac{E^2 dE}{exp\left(\frac{E-\mu_2}{k_B T_2}\right) - 1} \right] \qquad k = \frac{2\pi}{c^2 h^3}$$

Net electron flux through device:

 $J = -q\Phi$

Recall that

 $\mu = qV$

$$J(V_1, V_2, T_1, T_2) = -q\Phi = -qk \left[\int_{E_{g_1}}^{\infty} \frac{E^2 dE}{exp\left(\frac{E - qV_1}{k_B T_1}\right) - 1} - \int_{E_{g_2}}^{\infty} \frac{E^2 dE}{exp\left(\frac{E - qV_2}{k_B T_2}\right) - 1} \right]$$

Building a photovoltaic device

Net electron flux through device:

 $J=-q\Phi$

Recall that

$$\mu = qV$$

Then:

$$J(V) = -qk \left[Cf \int_{E_g}^{\infty} \frac{E^2 dE}{exp\left(\frac{E}{k_B T_s}\right) - 1} \right]$$

Also the electrical power can be defined:

W(V) = V|J(V)|

Maximum solar energy conversion efficiency for planet earth with a semiconductor of band gap $\rm E_{g}$

Building a photovoltaic device

Losses in semiconductor solar cells

Single absorber conversion

Individual cell characteristics

Connection	Independent Band gaps (eV)	Independent Max. efficiency	Series Band gaps (eV)	Series Max. efficiency
n = 1	1.06	40.6	1.06	40.6
n = 2	1.63		1.49	
	0.74	55.6	0.74	55.3
n = 3	2.02		1.75	
	1.21		1.10	
	0.59	63.6	0.58	63.0
n = 4	2.31		1.94	
	1.55		1.34	
	0.99		0.90	
	0.50	68.5	0.49	67.7

I. Tobias, A. Luque, Prog. Photovolt: Res. Appl. 2002; 10:323–329

- Semiconductors are special because they can have local equilibriums (within bands) and global imbalance (between bands)
- This property leads to the concept of quasi Fermi levels and a "chemical potential"
- Creating a simple diode device and investigating in the framework of a photovoltaic device gives us the "Shockley–Queisser limit" for solar energy conversion by a photovoltaic device
- Higher solar energy conversion can be achieved by using "multicolor" converters.

- PowerPoint (or equivalent) based presentation
 - In groups of two 20-25 min total
- Focused on one of the publications provided
- Your presentation should contain:
 - Extensive background/motivation for the work
 - Introduce the general field (e.g. hot carrier cells, or, 2D semiconductors, etc...)
 - Summarize previous main results in that general field.
 - Clearly define the motivation for the paper and hypothesis tested
 - Describe the concept/methodology/results in detail
 - Critically comment on the work
 - Significance of the result and impact on the field
 - Other similar/competing approaches?
 - Follow-up work needed (or already performed) to fulfill the promise of the concept