12: MRI contrast mechanisms

- What is of T_2^* weighted MRI ? 1.
- What is the biophysical basis of T2* changes (BOLD) ? 2.
- How are spin echoes generated ? 3.
- What are the standard contrast MR sequences ? 4. T1 ,T2 and proton-density weighted MRI
- By which mechanism do contrast agents act? 5.

After this course you

- 1. are capable of describing the biophysical basis of BOLD contrast
- 2. Understand the mechanism of spin echo generation
- 3. Know the three contrasts that can be generated by the spin echo imaging sequence and how the timing parameters are optimized for each contrast
- 4. Understand why the same tissue appear bright on T2 weighted images and dark on T1 weighted images
- 5. Understand the mechanism by which the two principal contrast agent mechanisms lead to signal increase or decrease.

Fund Biolmag 2016

MRI: One magnet, many contrast mechanisms

T₁-weighted [TR=T1(GM)]

Examples of proton density, T_1 , and T_2 -weighted images, from the Whole Brain Atlas site at Harvard. Note fluid appearance in all images.

Proton density-T₁-weighted weighted Multiple sclerosis

T₂-weighted

 $\begin{array}{l} T_2\text{-weighted} \\ \text{[TE=T_2(CSF)]} \end{array}$

FLAIR: T_2 and T_1 weighted (inversion recovery CSF-nulled) [TI=In2T₁(CSF)]

2-2

12-1

Fund Biolmag 2016

What does Blood oxygen level dependent (BOLD) contrast measure ? deHb content

How is brain function imaged using functional MRI (fMRI) ? Brain Activation Analysis

12-3. How can a π RF pulse form an echo ? (Hahn) spin echo

Spin echo formation revisited

Mathematical formulation

12-4. How are the basic MRI contrasts generated ?

I. Proton density weighted MRI

II. How is T₂ contrast generated ?

12-13

12-14

contrast based on differences in T_2

Fund Biolmag 2016

III. How is MRI T₁-weighted ?

contrast based on differences in T₁

$$S(TE,TR) \propto \rho(1-e^{-TR/T_1})e^{-TE/T_2}$$

 T_1 weighting: *short* TE \rightarrow minimize T_2 effects

short TR \rightarrow accentuate T₁ effects

- 1. use short TR to maximize the differences in longitudinal magnetization during the return to equilibrium
- 2. Tissues with shorter T₁ have higher image intensity
- **3. Question:** When is the signal maximally sensitive to changes/differences in T₁?

Answer: TR=T₁

(see 9-17)

Fund Biolmag 2016

12-15

12-5. What are the mechanisms of MRI Contrast Agents ?

Relaxation times are shortened by relaxivity r₁, r₂*

