12: MRI contrast mechanisms

- What is of T₂* weighted MRI ?
- 2. What is the biophysical basis of T2* changes (BOLD)?
- 3. How are spin echoes generated?
- 4. What are the standard contrast MR sequences?

 T₁,T₂ and proton-density weighted MRI
- 5. By which mechanism do contrast agents act?

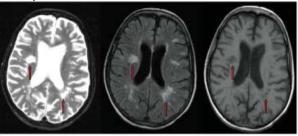
After this course you

- 1. are capable of describing the biophysical basis of BOLD contrast
- 2. Understand the mechanism of spin echo generation
- 3. Know the three contrasts that can be generated by the spin echo imaging sequence and how the timing parameters are optimized for each contrast
- 4. Understand why the same tissue appear bright on T2 weighted images and dark on T1 weighted images
- 5. Understand the mechanism by which the two principal contrast agent mechanisms lead to signal increase or decrease.

Fund Biolmag 2016

12-1

MRI: One magnet, many contrast mechanisms


Examples of proton density, T_1 , and T_2 -weighted images, from the Whole Brain Atlas site at Harvard. Note fluid appearance in all images.

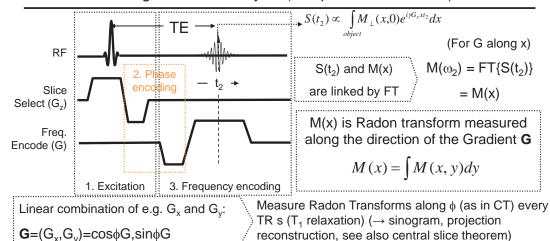
Proton densityweighted

T₁-weighted

T₂-weighted

Multiple sclerosis

 T_2 -weighted [TE= T_2 (CSF)]


FLAIR: T_2 and T_1 weighted (inversion recovery CSF-nulled) $[TI=In2T_1(CSF)]$

T₁-weighted

Fund Biolmag 2016

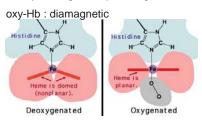
Another view on spatial encoding with MRI

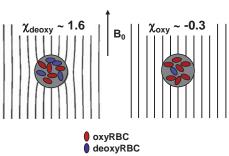
Let's give it another try ... (compare w. Lesson 11)

Phase encoding is just frequency encoding in a 2nd time dimension $M_{\perp}(\tau)|_{n^{th} \, step} = M_{\perp}(0)e^{i\gamma y n\Delta G_y \tau} \qquad \text{Define } t_1 = n\Delta \tau \colon S(t_1,t_2)$ $Q_y = M_{\perp}(0)e^{i\gamma y G_y n\Delta \tau} \qquad Q_y = M_{\perp}(0)e^{i\gamma y G_y n\Delta \tau} \qquad Q_z = M_{\perp}(0$

12-1. What is the contrast in gradient echo imaging?

 $\mathsf{RF} \\ \mathsf{Slice} \\ \mathsf{Select} \ (\mathsf{G_{Z}}) \\ \mathsf{Freq.} \\ \mathsf{Encode} \ (\mathsf{G_{X}}) \\ \mathsf{Phase} \\ \mathsf{Encode} \ (\mathsf{G_{Y}}) \\ \mathsf{Signal} \\ \mathsf{Signal} \\ \mathsf{Signal} \\ \mathsf{NB.} \ _{\mathsf{Y}} \mathsf{AB}(\vec{r}) \mathsf{TE} = \mathbf{1} \\ \mathsf{AB}(\vec{r}) = \mathbf{1} \\$

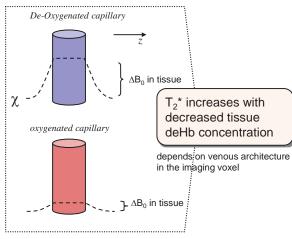

Fund Biolmag 2016


12-2. What is the Biophysical basis of T₂* changes ?

Blood Oxygenation Level Dependent (BOLD)

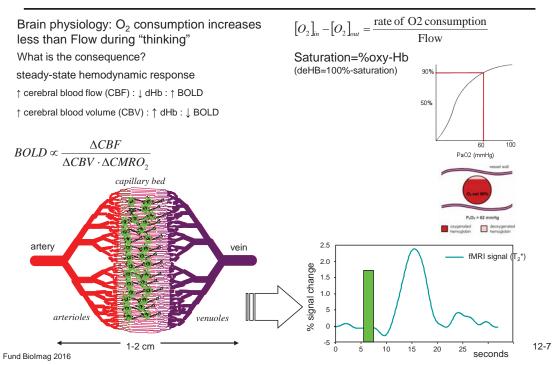
Magnetic susceptibility χ : magnetic field in object depends on object properties

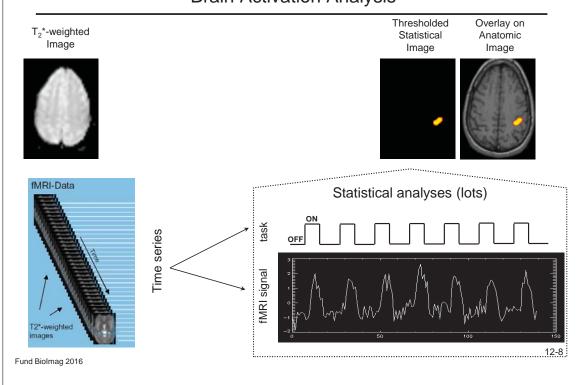
Deoxy-hemoglobin: paramagnetic



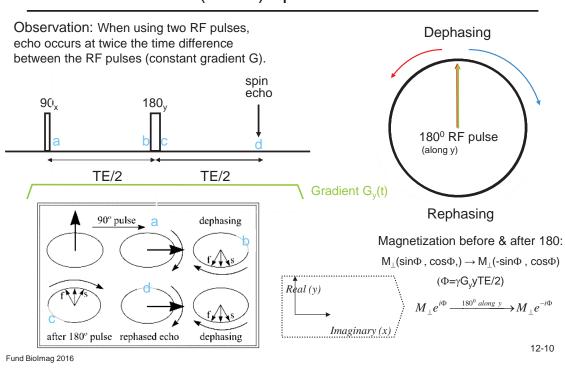
$$B(\vec{r}) = (1 + \chi(\vec{r}) \cdot 10^{-6}) B_0$$

χ<0: diamagnetism (repelling force)

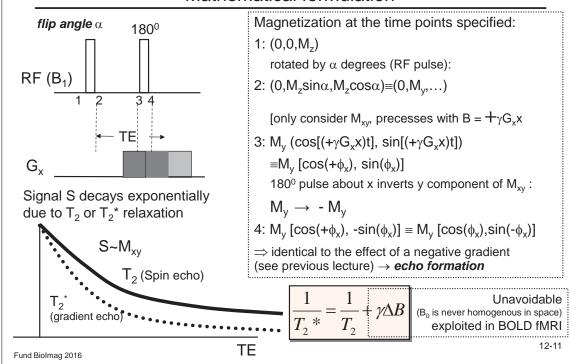

 χ >0: paramagnetism (attracting force)


Fund Biolmag 2016

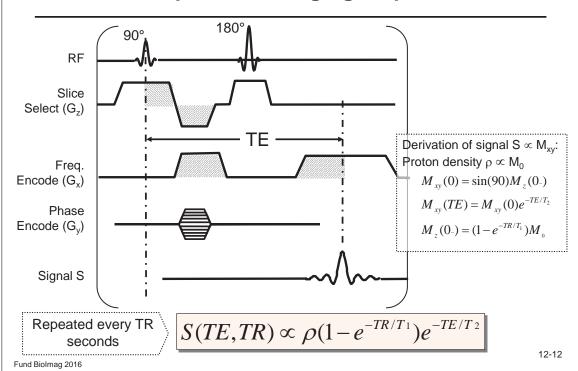
12-6


What does Blood oxygen level dependent (BOLD) contrast measure? deHb content

How is brain function imaged using functional MRI (fMRI)? Brain Activation Analysis

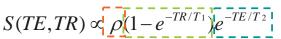


12-3. How can a π RF pulse form an echo ? (Hahn) spin echo



Spin echo formation revisited

Mathematical formulation


The spin echo imaging sequence

12-4. How are the basic MRI contrasts generated?

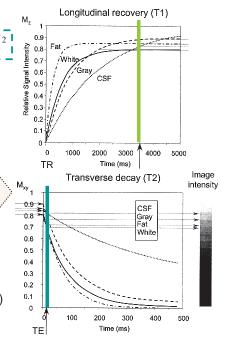
I. Proton density weighted MRI

Minimize effects of relaxation:

long TR:

minimize effect of T₁ differences

Short TE:


minimize influence of T₂

Imaging the number of protons per voxel

⇒ Tissues with higher spin density (e.g., fat, CSF) have higher image intensity

Water content: only ~70-100% (poor contrast)

Fund Biolmag 2016

12-13

12-14

II. How is T₂ contrast generated?

contrast based on differences in T₂

0.9-0.8 Fat 0.6

0.5

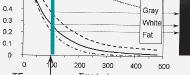
 $S(TE,TR) \propto \rho(1-e^{-\frac{\pi}{2}})$

 T_2 weighting: long $TR \rightarrow reduced T_1$ effects

longer TE : accentuate T₂ differences

What TE is optimal?

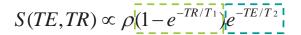
- Find TE at which M_{xy} is most strongly affected by T2 differences
- Solution (variational calculus, Lecture 1):
- Find TE at which dM_{xy}/dT₂=maximal


$$TE = T_2$$

Use TE between the two T_2 values.

For tissues with different T_{2a} and T_{2b} :

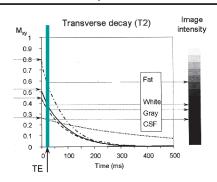
0.4 0.3 0.2 0.1 3000 4000 Transverse decay (T2) M_{xy}₁ intensity 0.9 0.8 CSF 0.7 0.6 0.5 0.4

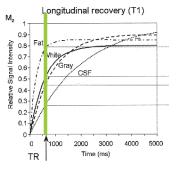

Longitudinal recovery (T1)

TE Fund Biolmag 2016

III. How is MRI T₁-weighted?

contrast based on differences in T₁

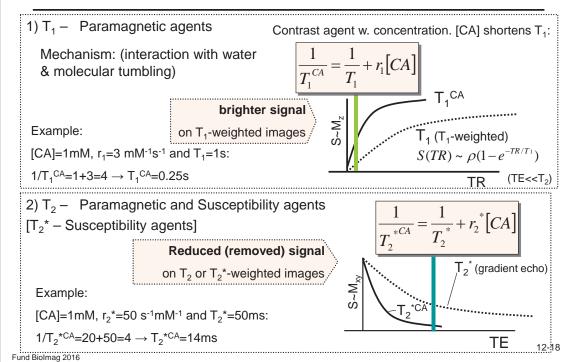

 T_1 weighting: short $TE \rightarrow minimize T_2$ effects


short $TR \rightarrow$ accentuate T_1 effects

- use short TR to maximize the differences in longitudinal magnetization during the return to equilibrium
- Tissues with shorter T₁ have higher image intensity
- **3. Question:** When is the signal maximally sensitive to changes/differences in T₁?

Answer: $TR=T_1$ (see 9-17)

Fund Biolmag 2016



12-15

12-5. What are the mechanisms of MRI Contrast Agents?

Relaxation times are shortened by relaxivity r₁, r₂*

