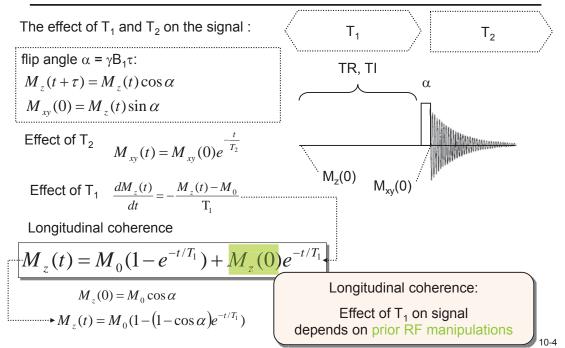
10: (N)MR spectroscopy

- 1. How can the Bloch equations be used to describe the effect of T_1 on the magnetization ?
- 2. How can sensitivity be optimized?
- 3. What nuclear property allows to distinguish the signal from different molecules ?
- 4. How is chemical shift measured?
- 5. What can MR spectroscopy measure?

After this week you

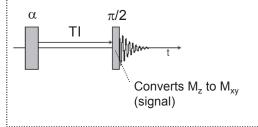

- 1. can calculate the effect of multiple RF pulses on longitudinal magnetization
- 2. know the definition of Ernst angle
- 3. Understand the two basic mechanisms by which electrons influence the precession frequency of nuclear magnetization
- 4. Know the definition of chemical shift
- Know how and under what molecular conditions NMR spectroscopy can provide non-invasive biochemical information

Fund Biolmag 2016

10-

10-1. What is the effect of relaxation on M(t)?

Bloch equations revisited


Fund Biolmag 2016

What are the optimal conditions to measure T_1 ?

Inversion recovery

Inversion-Recovery

Multipulse experiment with two RF pulses Usual experiment to measure T_1 ($\alpha = \pi$)

Measured signal

$$M_{z}(TI) = M_{0}(1 - e^{-TI/T_{1}}) + M_{z}(0)e^{-TI/T_{1}}$$

$$M_{z}(0) = M_{0}\cos\alpha$$

$$M_{z}(TI) = M_{0}(1 - (1 - \cos\alpha)e^{-TI/T_{1}})$$

Fund Biolmag 2016

Optimal choice of α for measuring T₁?

Use noise error propagation calculation (Lesson 1)

$$\frac{\partial M_z(t)}{\partial T_1} = \frac{t}{T_1^2} (1 - \cos \alpha) e^{-t/T_1} \equiv F$$

$$\frac{dF}{d\alpha} = 0 = \frac{t}{T_1^2} \sin \alpha e^{-t/T_1}$$

$$\sinh \alpha = 0 \Rightarrow \alpha = \pi$$

$$M_{z}(TI) = M_{0}(1 - 2e^{-TI/T_{1}})$$

Optimal t=TI to detect changes in T₁?

$$\frac{dF}{dt} = 0 = \frac{1}{T_1^2} (1 - \cos \alpha) e^{-t/T_1} - \frac{t}{T_1^3} (1 - \cos \alpha) e^{-t/T_1}$$

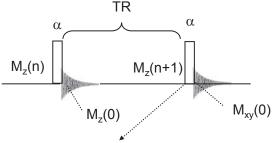
$$0 = \frac{1}{T_1^2} (1 - \cos \alpha) e^{-t/T_1} \left(1 - \frac{t}{T_1} \right)$$

$$TI = T_1$$

10-5

10-2. When is SNR (sensitivity) optimal?

Situation: RF pulses α applied every TR seconds n times


Question: M_{xy} (=signal) maximal ?

⇒ Calculate the optimum *flip angle*

 α =f(TR)

$$M_z(t) = M_0(1 - e^{-t/T_1}) + M_z(0)e^{-t/T_1}$$

Immediately after nth TR: $M_z = M_z(n)$

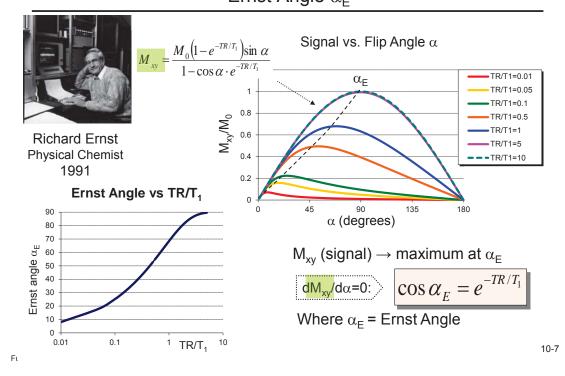
Assume $M_{xy}=M_1 \sim 0$ after TR seconds

After RF Flip
$$\alpha$$
 $M_z(0) = M_z(n) \cos \alpha$

After T₁ recovery
$$M_z(n+1) = M_0 - [M_0 - M_z(n)\cos\alpha]e^{-TR/T_1} = M_0[1 - e^{-TR/T_1}] + M_z(n)\cos\alpha e^{-TR/T_1}$$

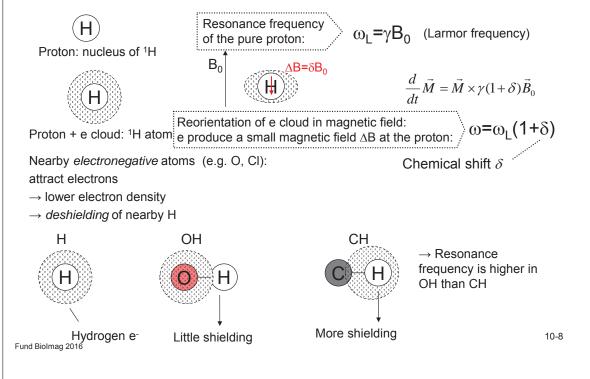
In equilibrium (steady-state condition): $M_z(n+1)=M_z(n)=M_z$

$$M_z \left(1 - \cos \alpha \cdot e^{-TR/T_1} \right) = M_0 \left(1 - e^{-TR/T_1} \right)$$

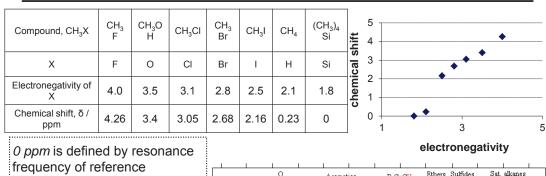

$$\Rightarrow M_z = \frac{M_0 \left(1 - e^{-TR/T_1} \right)}{1 - \cos \alpha \cdot e^{-TR/T_1}}$$

Equilibrium $\it transverse$ Magnetization: $M_{xy}(0) = M_z sin \alpha$

$$M_{xy} = \frac{M_0 (1 - e^{-TR/T_1}) \sin \alpha}{1 - \cos \alpha \cdot e^{-TR/T_1}}$$

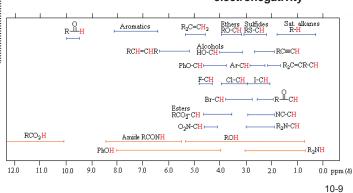

Fund Biolmag 2016

How does the signal depend on TR, T₁ and flip angle ? Ernst Angle α_{E}


10-3. What role does the chemical environment play?

Chemical shift: Effect of B_0 on e-cloud

How is chemical shift δ linked to electronegativity?


Example: Protons

compound ω_{l} ref

(e.g. tetramethylsilane (TMS) for ¹H)

 $\delta = (\omega - \omega_L^{\text{ref}}) 10^6 / \omega_L^{\text{ref}}$

Fund Biolmag 2016

10-4. How can we measure chemical shift?

MR spectroscopy

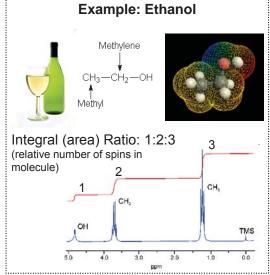
Free induction decay (FID) signal:

$$S(t) \propto M_{\perp}(0)e^{-i\omega t}e^{-t/T^2}$$

distinguish resonance frequency

→ Fourier transformation (real part only):

$$G(\omega) \propto M_{\perp}(0) \frac{1}{(1+x^2)}$$

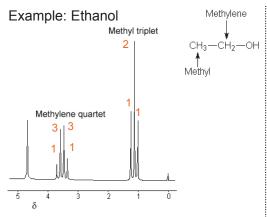

$$X \equiv (\omega - \delta) 2\pi T_2$$

$$m = \delta$$

$$1/\pi T_2$$
Proposed

Area of resonance ∞ M(0) ∞ number of nuclei ∞ concentration (if relaxation can be neglected)

$$S(0) \propto \int_{-\infty}^{\infty} G(\omega) e^{i\omega t} d\omega \Big|_{t=0} = \int_{-\infty}^{\infty} G(\omega) d\omega \propto M_0$$



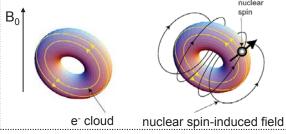
10-10

Fund Biolmag 2016

Ex. illustration of chemical proximity

(triplet & quartet)

Nearby spin-1/2: ¹H resonance will split into two of equal magnitude (doublet)



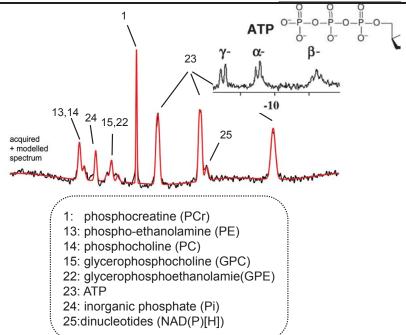
Fund Biolmag 2016

Hyperfine splitting

nucleus ⇒ tiny magnetic field linked to its dipole: changes polarity if spin is "up" or "down"

⇒ affects the e cloud in the molecule→ alters the magnetic field at a nearby nucleus:

 CH_2 group \rightarrow four combinations (with equal probability):


up-up, down-down, up-down, down-up

(The latter two produce the same magnetic field)

 \rightarrow methyl **triplet** (relative intensity ratio 1:2:1)¹⁰⁻¹¹

Ex. ³¹P NMR spectroscopy

Phosphate metabolism is at the heart of cellular energetics

Fund Biolmag 2016 10-12

10-5. What can MR spectroscopy measure?

Concentration of biochemical compounds

signal is proportional to the number of spins present,
 i.e. concentration

After FT, integrate (measure the area of the peak).

Rules for a compound to be detectable:

- 1. Concentration > 1mM
- 2. Water-soluble compounds (mobile)
- 3. ¹H is most sensitive nucleus (gyromagnetic ratio)

Spatial Resolution

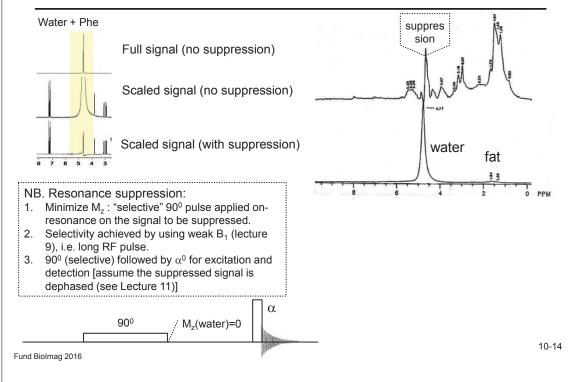
Voxel volume ~ 1/Signal

Water (80M ¹H concentration)

~1mm (human)

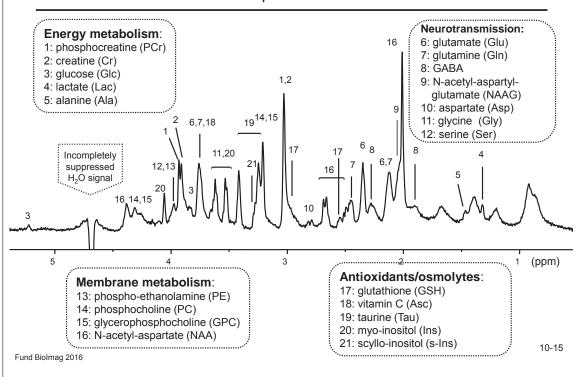
~50µm (rodent)

Biochemical compounds (~mM concentration)

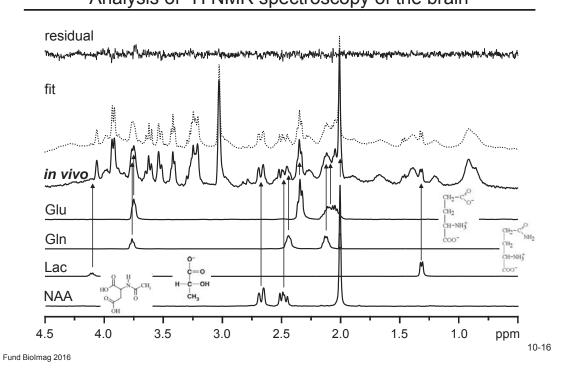

~ cm (human)

~ mm (rodent)

Fund Biolmag 2016


10-13

How can the huge water signal be suppressed in ¹H NMR ?



Ex. Proton spectroscopy of the brain

Biochemical compounds detectable in vivo

How can biochemical compounds be measured in vivo? Analysis of ¹H NMR spectroscopy of the brain

