9: Relaxation of nuclear magnetization

- 1. How is the MR signal detected?
- 2. What is the quantum-mechanical equivalent of the rotating frame?
- 3. What is the rotating frame description good for?
- 4. How can the return of the magnetization to thermodynamic equilibrium described?
- 5. How is the time-dependent change of magnetization described mathematically ?

After this course you

- 1. Can describe the principle of MR detection and excitation
- 2. Can explain how MR excitation is frequency selective (resonance)
- 3. Understand the principle of relaxation to the equilibrium magnetization
- 4. Know what are the major relaxation times and how they phenomenologically affect magnetization in biological tissue, in particular that of water.
- 5. Can explain the elements of the Bloch equations and FID
- 6. Understand the MR contrast strongly depends on experimental parameters

Fund Biolmag 2016

0 1

What do we know about MR so far?

Need:

Nucleus with non-zero spin

Magnetic field B₀

Get:

Nuclear (equilibrium) magnetization M_{0}

(Magnitude dictated by Boltzmann distribution)

M₀ increases with

- 1. Number of spins in voxel
- 2. Magnetic field B₀
- 3. Gyromagnetic ratio γ

Imaging ¹H in H₂O is most sensitive

Thermodynamic equilibrium magnetization M_0 is $|| B_0$

$$\frac{d\vec{M}_0}{dt} = \vec{M}_0 \times \gamma \vec{B}_0 = 0 \quad M_0 \text{ does not precess}$$

All this does not generate a measurable signal

9-1. How is the MR signal detected?

Faraday's Law of Induction

Lenz's Law

induced voltage $\xi\Rightarrow$ current \to magnetic field opposes the change in the magnetic flux that produces the current (Completely analogous to power generation!)

Biot-Savart Law

magnetic field falls off with \mathbf{r}^2 $\vec{B}(\vec{r}) \propto \int \frac{\mu_0}{4\pi} I \frac{d\vec{l} \times \vec{r}}{r^3}$

Fund Biolmag 2016

Magnetic field of dipole decreases with distance : $\boldsymbol{\xi}$ decreases with distance from magnetization

9-5

9-2. Rotating frame revisited

Equation of motion for M (always valid in any reference frame) in presence of B_0

$$\frac{d\vec{M}}{dt} = -\gamma \Delta \vec{B}^{eff} \times \vec{M}$$

magnetization precesses in xy plane with frequency $\gamma\Delta B^{eff}/2\pi$

Rotating frame: reference frame rotating about z at frequency ω_{RF}

Case I: non-rotating reference frame (ω_{RF} =0)

 \Rightarrow magnetization **precesses** in xy plane with frequency $\gamma B_0/2\pi$

Case II: rotating frame with $\omega_{RF} = \omega_{L}$

⇒magnetization is **stationary** ("precesses" in xy with **zero** frequency)

Equation of motion is still valid, i.e. precession frequency $\gamma\Delta B^{eff}/2\pi$

$$\Rightarrow \Delta B^{\text{eff}} = 0$$

Larmor frequency $\boldsymbol{\Omega}$ in the rotating frame:

$$\Omega = \gamma \Delta B^{eff}$$

$$\Delta B^{\text{eff}} = B_{\text{o}} - \omega_{\text{RF}}/\gamma$$

Fund Biolmag 2016

Supplement: Rotating frame

What are the quantum-mechanical equivalencies?

Schrödinger representation:

$$i\hbar \frac{d}{dt} |\psi_s(t)\rangle = H_s |\psi_s(t)\rangle$$

If H_s=const in t:

$$|\psi_{S}(t)\rangle = e^{-iH_{S}t/\hbar}$$

NB.

$$\langle I_z \rangle \equiv \langle \psi_S(t) | I_z | \psi_S(t) \rangle$$

Quantum mechanical equivalencies:

$$M_z \propto < I_z >$$
, $M_x \propto < I_x >$, $M_y \propto < I_y >$

For one spin-1/2 (¹H), i.e. two energy levels

$$I_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad I_{y} = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \quad I_{z} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$$

How to determine $\langle I_x(t) \rangle$ etc?

 \Rightarrow Split H_S into time-invariant and -dependent terms:

$$i\hbar \frac{d}{dt} |\psi_S(t)\rangle = \left[H_S^0 + V(t)\right] \psi_S(t)\rangle$$

Interaction representation (Higher order perturbation theory)

$$|\psi_{I}(t)\rangle \equiv e^{iH_{S}^{0}t/\hbar}|\psi_{S}(t)\rangle$$

$$i\hbar \frac{d}{dt} |\psi_I(t)\rangle = V_I(t) |\psi_I(t)\rangle$$

$$V_I(t) = e^{iH_S^0/\hbar} V_S(t) e^{-iH_S^0/\hbar}$$

Fund Biolmag 2016

For spin:
$$H_{S}^{0} = \hbar \gamma B_{0} I_{z}$$

$$V(t) = \hbar \gamma B_{1} \left(\cos(\omega_{RF} t) I_{x} + \sin(\omega_{RF} t) I_{y}\right)$$

What is
$$V_I(t) [\omega_{RF} = \gamma B_0]$$
? $V_I(t) = \hbar \gamma B_1 I_x$

Quantum mechanical equivalencies:

$$B_0 \propto I_z$$
, $B_{1x,y} \propto I_{x,y}$

9-8

9-3. What is the motion of magnetization when an RF field induces a flip angle?

Laboratory frame of reference

 B_1 radiofrequency field at Larmor frequency ω_L applied in transverse (xy) plane for duration τ

 \Rightarrow **nutation** (at ω_L) of M as it tips away from the *z*-axis.

Rotating frame of reference

RF field rotates M towards xy plane

Amplitude B₁ determines how quickly the magnetization is rotated.

flip angle
$$\alpha = \gamma B_1 \tau$$
 [rad] $M_z = M_0 \cos \alpha$
 $M_{xy} = M_0 \sin \alpha$

In MRI typically $\gamma B_1/2\pi \sim 0.1\text{-1kHz}$ ($\tau \sim 1\text{ms}$)

9-9

Fund Biolmag 2016

What is "resonance"?

What range of frequencies can be excited with a given RF pulse?

At $\Delta\omega$ = ω_L - ω_{RF} (from ω_L) magnetization experiences effective field strength B^{eff}

$$\gamma B^{eff} = \sqrt{(\gamma B_1)^2 + (\Delta \omega)^2}$$

Rotation axis : tilted by θ .

"on resonance":

 $\gamma B_1 >> \Delta \omega \rightarrow$ effective field || B_1

 \Rightarrow short RF pulses (τ <1ms)

RF field with amplitude B_1 can excite a range of frequencies on the order of $\pm \gamma B_1$

Quantum mechanical "resonance" Transition probability highest : $hv = h\gamma B_0/2\pi$

 $\begin{array}{c} \gamma B \text{eff} \\ \theta \end{array} \Delta \omega \\ \gamma B_1 \\ \text{Magnetization (tip)} \\ B \text{eff} \\ \Delta \omega / \gamma \\ \Delta \omega / \gamma \\ \\ \text{Soff resonance} \\ B_1 << \Delta B \rightarrow B \text{eff} \parallel z \\ \end{array}$

Fund Biolmag 2016

9-10

9-4. How is the return to equilibrium M₀ governed ? Relaxation

Transverse magnetization:

(along x and y-axis, on resonance)

$$\frac{dM_x(t)}{dt} = -\frac{M_x(t)}{T_2}$$

$$\frac{dM_y}{dt}$$

Fund Biolmag 2016

$$\frac{dM_{y}(t)}{dt} = -\frac{M_{y}(t)}{T_{2}}$$

Exponential decay of $\mathbf{M}_{\mathbf{x}\mathbf{y}}$

$$M_{xy}(t) = M_{xy}(0)e^{-\frac{t}{T_2}}$$

Equations formally equivalent to linear attenuation coefficient (x-ray) (same solution)

9-11

What are the mechanisms of relaxation?

Tumbling of Molecule (Brownian motion) Creates local oscillating/fluctuating magnetic field

Fluctuating magnetic field

depends on orientation of the whole molecule & correlation time τ_c (=time for molecule to rotate 1 rad)

Sources of fluctuating magnetic field:

Dipolar coupling between nuclei and solvent

interaction between nuclear magnetic dipoles

Correlation function G

$$G(t) \propto e^{-t/\tau_c}$$

Describes degree of correlation of motion t sec apart

Correlation time τ_c : $\tau_c = \frac{4\pi\eta r^3}{3kT}$

 η : viscosity

k: Boltzmann constant

r: size of molecule

9-12

Fund Biolmag 2016

What is the cause of loss of transverse Magnetization?

fluctuating microscopic magnetic fields δB

T₂: phenomenological time constant

Range 10µs (bone)... several s (water)

"transverse relaxation", "T2 relaxation"

Cause:

Molecular dynamics and spin-spin interactions

Historically: "spin-spin" relaxation

→ loss of signal in xy plane "Memory" relaxation

Rule of thumb for tissue water:

The less "tissue" (bone, solutes, proteins, membranes) is in contact with bulk water, the longer bulk water T₂

 $M_{xy}(t) = M_{xy}(0)e^{-\frac{t}{T_2}}$

After excitation

M_{xy}

random precession of nuclei

→ dephasing of spins with
time constant 'T₂'

Phase ϕ accrued over τ_c :

 ϕ =δBτ_c $\iiint \rho(\vec{r})e^{i\partial B(\vec{r},t)\tau_c}dV \rightarrow 0$

 τ_c large (immobile spins):

large phase differences ⇒ short T₂

bone, membranes, proteins are MR-"invisible" 9-13

How does M_z return to equilibrium?

Longitudinal relaxation T₁

After decay of M_{xy} by T_2 : $M_z \rightarrow M_0$ **Longitudinal Relaxation**

 $\frac{dM_z(t)}{dt} = \frac{M_z(t) - M_0}{dt}$ (along z-axis)

$$M_z(t) = M_0(1 - e^{-t/T_1}) + M_z(0)e^{-t/T_1}$$

Mechanisms: Incoherent molecular fluctuations on the order of the Larmor frequency ω_{l} possibility of energy transfer → matching frequency

The less "tissue" is in contact with bulk

membranes), the longer bulk water T₁

Historically: spin-lattice relaxation (heat lost to the surroundings)

Rule of thumb for water:

water (bone, solutes, proteins,

 $T_1 \sim 0.5-5s$ (water)

Boltzmann distribution re-established by energy (photon) transfer from spins to system (lattice).

 \Rightarrow population distribution corresponds to T= ∞ :

Most efficient when energy levels of system and nuclear spins match, i.e.

 $\omega \tau_c \sim 1 \Rightarrow T_1 \text{ minimal}$

After T_2 relaxation z

After 900 excitation: M₂=0

(bone: $\omega \tau_c >> 1 \Rightarrow T_1 \sim s$ to min)

Fund Biolmag 2016

9-14

9-5. What equations describe the change in magnetization? **Bloch Equations**

add relaxation terms (T₁, T₂) to the fundamental Eq of motion of magnetization:

$$\frac{dM_z(t)}{dt} = \begin{bmatrix} \gamma[M_x(t)B_y(t) - M_y(t)B_x(t)] & -\frac{M_z(t) - M_0}{T_1} \text{ along z} \\ \frac{dM_x(t)}{dt} = & \gamma[M_y(t)B_z(t) - M_z(t)B_y(t)] & -\frac{M_x(t)}{T_2} & \text{along x} \\ \frac{dM_y(t)}{dt} = & \gamma[M_z(t)B_x(t) - M_x(t)B_z(t)] & -\frac{M_y(t)}{T_2} & \text{along y} \end{bmatrix}$$

$$\begin{array}{l} \frac{M_z(t) - M_0}{T_1} \text{ along z} \\ -\frac{M_x(t)}{T_2} \quad \text{along x} \\ -\frac{M_y(t)}{T_2} \quad \text{along y} \end{array}$$

Felix Bloch **Physics** 1952

- $\gamma \vec{B} \times \vec{M}$

Substituting $\Omega = -\gamma B_0 + \omega_{RF}$ (B₀=B₇ is not time-dependent) yields:

Rotating reference frame $\gamma [M_x(t)B_1^y(t) - M_y B_1^x(t)]$

 $-\Omega M_{y}(t) - \gamma M_{z}B_{1}^{y}(t)$

 $\gamma M_{\tau}(t)B_1^{x}(t) + \Omega M_{\tau}$

 $(\gamma \vec{B}_1 + \vec{\Omega}) \times \vec{M}$

B₁: RF field in rotating frame

What characterizes the basic MR signal?

Free induction decay: Precession and relaxation (after RF pulse)

Transverse magnetization

$$M_{xy}(t) = M_{xy}(0)e^{-i\omega t}e^{-t/T_2}$$

Longitudinal magnetization (after 90° RF excitation)

NB. M can never exceed $M_0 \Rightarrow T_2 \le T_1$

9-16

How can T₁ changes be measured?

repetitive pulsing

Multipulse experiment with RF pulses applied every TR seconds

$$M_z(TR) = M_0(1 - e^{-TR/T_1})$$

The effect of T_1 (and T_2) on the signal depends on how it is measured

$$M_{z}(t) = M_{0}(1 - e^{-t/T_{1}}) + M(0)e^{-t/T_{1}}$$

$$M(0) = M_{0} \cos \alpha$$

$$M_{z}(t) = M_{0}(1 - e^{-t/T_{1}})$$

Fund Biolmag 2016

Use noise error propagation calculation (Lesson 1) F=max:

(Lesson 1) F=max:
$$\frac{\partial M_z(t)}{\partial T_1} = \frac{t}{T_1^2} e^{-t/T_1} \equiv F \frac{dF}{dt} = 0 = \frac{1}{T_1^2} e^{-t/T_1} - \frac{t}{T_1^3} e^{-t/T_1}$$

$$0 = \frac{1}{T_1^2} e^{-t/T_1} \left(1 - \frac{t}{T_1} \right) \text{ t=TR}_{opt}: \frac{\text{TR}_{opt} = T_1}{9.17}$$

Summary

Magnetic resonance so far

Magnetic field B₀

Equilibrium magnetization $M_0||z$ proportional to

1. number of spins in voxel

2. Static magnetic field B₀

3. gyromagnetic ratio γ

RF field B_1 (applied on-resonance i.e. ω_L)

tilts magnetization M into transverse plane xy

Precession of M_{xy} is detected

T₂ and T₁ relaxation

exponential decay of M_{xy} exp. return of M_z to M_0

reflect molecular environment

source of contrast

- 1. Only mobile spins (e.g. water) are detected
- 2. M₀ reflects amount of nuclei and thus water content [Water content varies 70-100ml/100g in body (poor contrast)]
- 3. Effect of T₁ and T₂ changes on image contrast depend strongly on experimental parameters (RF pulse timing and flip angle)

9-19

Fund Biolmag 2016