8: Introduction to Magnetic Resonance

- 1. What are the components of an MR scanner?
- 2. What is the basis of the MR signal?
- 3. How is nuclear magnetization affected by an external magnetic field ?
- 4. What affects the equilibrium magnetization ???
- 5. How do we best describe the motion of magnetization (in the rotating frame of reference)?

After this week you

- 1. Are familiar with the prerequisites for nuclear spin
- 2. know the factors determining nuclear magnetization
- 3. Can compare magnetizations for different nuclei and magnetic field
- 4. Know the equation of motion for magnetization
- 5. Are able to describe the motion of magnetization in lab and rotating frame
- 6. Understand that MRI has complex mechanisms

Fund Biolmag 2016

8-1

8-1. What are the essential components of an MRI scanner?

Schematic depiction of all MRI components

8-5

Fund Biolmag 2016

What are the risks of the scanner being never off?

Superconducting wires cooled to IHe temperature (4K)

Current stays for 1000 years ...

It's a powerful magnet ...

Magnetic field B₀ [unit: Tesla, T]

Earth's magnetic field ~ 5 10-5 T

Electromagnets < 1.5 T

MRI 1-7 T

Fund Biolmag 2016

8-6

8-2. What is the basis of Nuclear Magnetism?

Classical and quantum-mechanical view

Nucleus → angular momentum L (here called P)

- ⇒ Rotation of electrical charge (nucleus)
- ⇒ Rotating current
- ⇒ Dipole moment

NMR-active isotopes and their $gyromagnetic\ ratio\ \gamma$

I =	= 0 (¹² C, ¹⁶ O, etc.) Even mass # & Even atomic # No Nuclear spin
I =	² ½ (¹ H, ¹³ C, ¹⁵ N etc.) Spherical charge distribution in nucleus
1>	^{1/2} (² H, ¹¹ B, ²¹ Na etc.) Odd mass # & Odd atomic # (I = ½ integer) Even mass # & Odd atomic # (I=whole integer) Ellipsoidal charge distribution in nucleus gives quadrapolar electric field

Fund Biolmag 2016

Magnetic moment μ of individual spin in induction field ${\rm B_o} \quad \vec{\mu} = \gamma \vec{P}$

γ: gyromagnetic ratio (empirical constant)

The angular momentum P of a nucleus is quantized: -I, -I+1, ... I-1, I

 P_z has 2I + 1 values (m):

$$P_z = \frac{h}{2\pi} \cdot m$$

Spin ½: P=h $\sqrt{3}/4\pi$

Net Spin (I)	gyromagnetic ratio γ/2π [MHz T ⁻¹]	Abundance /	
1/2	42.58	99.98	
1	6.54	0.015	
1/2	17.25	100.0	
3/2	11.27	100.0	
1/2	4.31	0.37	
1/2	10.71	1.108	
1/2	40.08	100.0	
	(I) 1/2 1 1/2 3/2 1/2 1/2	ratio γ/2π [MHz T ⁻¹] 1/2 42.58 1 6.54 1/2 17.25 3/2 11.27 1/2 4.31 1/2 10.71	

8-8

What is the basis for nuclear magnetization?

Unequal population of Energy levels

Energy of a magnetic dipole in magnetic field B₀ (classical)

$$\vec{E} = -\vec{\mu} \cdot \vec{B}_0 = -\mu \cdot \cos \theta \cdot B_0 = -\mu_z \cdot B_0$$

Energy is minimal, when $\mu || B_0$ (Where is that used ?) $\vec{\tau} = \vec{\mu} \times \vec{B}_0$

Quantum mechanical description:

$$E_I = -\gamma \cdot \frac{h}{2\pi} \cdot m_I \cdot B_0$$
 $m_I = -1, ...,$

Boltzmann statistics/distribution: Unequal population of energy levels

$$\frac{N_1}{N_2} = e^{-\frac{\Delta E}{kT}}$$

k : Boltzmann's constant (1.4x10 $^{-23}$ J/Kelvin) NB. At 310K : ~1 in 10 6 excess protons in low energy state (1Tesla)

 \rightarrow N₁~N₂~N/2 (N = no of spins)

Fund Biolmag 2016

8-3. How to classically describe the motion of magnetization?

View each spin as a magnetic dipole μ (a tiny bar magnet).

Classically: torque τ of a dipole μ in B

$$\vec{\tau} = \vec{\mu} \times \mathbf{B}$$

2nd law of rotations (P: angular momentum)

$$\vec{\tau} = \frac{d\vec{P}}{dt} \qquad \vec{\mu} = \gamma \vec{P}$$

$$\rightarrow \frac{d\vec{\mu}}{dt} = \vec{\mu} \times \gamma \vec{B} \blacktriangleleft$$

Sum over all $\mu_{\mathbf{k}} \!\! o \!\! \mathrm{Magnetization} \;\; \vec{M} \equiv \sum \vec{\mu}_{\mathbf{k}}$

Larmor equation

$$\frac{d\vec{M}}{dt} = -\gamma \vec{B} \times \vec{M}$$

Fund Biolmag 2016

What motion does the Larmor equation describe ?

 $v = \omega r = |\Delta r_1/\Delta t|$

A brief tour back to rotational kinematics

$$\vec{v} = \vec{\omega} \times \vec{r}$$

$$\frac{d\vec{r}}{dt} = \vec{\omega} \times \vec{r}$$

$$\vec{r}$$

Precession of **M** about **B** with frequency $\gamma B/2\pi$

instead of r

8-10

What is precession?

string

Observation: The motion of the axis of the wheel with mass M_W is circular about O with constant angular velocity $\mathbf{\Omega} \perp$ to L dictated by τ

$$\frac{d\vec{L}}{dt} = \vec{\Omega} \times \vec{L}$$

What is the value of Ω ?

Fund Biolmag 2016

Precession frequency increases with

- 1. mass M_W of the wheel \rightarrow **gyro**magnetic ratio γ
- $\begin{array}{ll} \text{2.} & \text{gravitational pull g} \\ & \rightarrow \text{magnetic field B}_0 \end{array}$

Just like a spinning **Gyro**scope in gravity

$$\frac{d\vec{M}}{dt} = -\gamma \vec{B}_0 \times \vec{M}$$

8-11

8-4. What are the essentials of Magnetic Resonance? nucleus & magnetic field

Nuclear equilibrium magnetization M_0 $M_0 = (N_2 - N_1)\mu \qquad N_2 \left(1 - \frac{N_1}{N_2}\right)\mu = N_2 \left(1 - e^{\frac{\Delta E}{kT}}\right)\mu \dots$ $N_2 \sim N/2$ $M_0 = \frac{h\mu}{4\pi kT} \gamma B_0 N$

Magnetization is prop. to

- 1. No. of spins N (molecules)
- 2. magnetic field B₀
- 3. gyromagnetic ratio γ

Nucleus with non-zero spin and high gyromagnetic ratio γ : ¹H

Magnet to create magnetic field $B_0 \parallel z$ $(N_2-N_1)\mu_z$ results in equilibrium magnetization M_0 ΔE is small (~ μeV)

⇒ Non-ionizing e.m. fields

Convention in magnetic resonance: Static magnetic field $B_0 \parallel z$ $z \uparrow B_0 \downarrow M_0$ $\Rightarrow \text{thermodynamic equilibrium: } M_0 \parallel z$

Larmor frequency

MR is safe, but insensitive

How can the sensitivity be increased?

magnetic field strength B_0

MRI of the spine

MRI of the lower abdomen

maximum possible MR signal: determined by equilibrium nuclear magnetization M₀

Fund Biolmag 2016

8-5. Why use a Rotating frame of reference to describe the motion of magnetization?

Rotating frame: A reference frame which rotate about z of the laboratory frame at frequency ω_{RF}

Why use a rotating reference frame?

$$\frac{d}{dt}\vec{\mathbf{M}} = \vec{\mathbf{M}} \times \gamma \vec{\mathbf{B}}$$

Fund Biolmag 2016

What is the equation of motion for magnetization in the rotating reference frame ?

Fund Biolmag 2016

8-16

Ex. Flipping magnetization over

in the rotating reference frame

Start with thermodynamic equilibrium magnetization \mathbf{M}_0

Reference frame rotating with ω_{L} (onresonance)

Apply additional, constant magnetic field with magnitude B_1 (in xy plane) for time τ

What motion can be observed for M?

$$\frac{d\vec{M}}{dt} = -\gamma \vec{B}_1 \times \vec{M}$$
 M₀ precesses about B₁

Magnetization rotates about B_1 with angular velocity γB_1

Frequency $\gamma B_1/2\pi$

$$\rightarrow$$
 period T = $2\pi/\gamma B_1$

Fund Biolmag 2016

Definition **Flip angle** = angle of rotation α induced by B₁ applied for τ seconds

Special cases of α :

90°: Full **excitation** (all M_0 is rotated into transverse plane, xy, i.e. $M_0 \rightarrow M_{xy}$)

180°: Inversion $(M_z \rightarrow -M_z)$

B₁ = radiofrequency (RF) field (why?)

Lab frame:
$$\mathbf{B}_1(t) = \mathbf{B}_1(\cos\omega_L t, \sin\omega_L t)$$

$$\gamma \sim 42 \text{MHz/Tesla} \rightarrow \omega_1/2\pi \sim 100 \text{MHz}$$
 8-17

Supplement: Why there is only equilibrium magnetization along B_0 ?

Random Phase approximation

$$\mu_z = \gamma \frac{h}{2\pi} \cdot m_I$$

 μ_z < μ_{tot}

Individual spin is never aligned with B₀ ...

But ... Equilibrium $M_0 \parallel B_0$

Phase φ of μ_{xy} is random (random phase approximation):

No net μ_{xy}

Fund Biolmag 2016

