8: Introduction to Magnetic Resonance

1. What are the components of an MR scanner?
2. What is the basis of the MR signal ?
3. How is nuclear magnetization affected by an external magnetic field?
4. What affects the equilibrium magnetization ???
5. How do we best describe the motion of magnetization (in the rotating frame of reference)?

After this week you

1. Are familiar with the prerequisites for nuclear spin
2. know the factors determining nuclear magnetization
3. Can compare magnetizations for different nuclei and magnetic field
4. Know the equation of motion for magnetization
5. Are able to describe the motion of magnetization in lab and rotating frame
6. Understand that MRI has complex mechanisms

8-1. What are the essential components of an MRI scanner ?

What are the risks of the scanner being never off?

Superconducting wires cooled to IHe temperature (4K)

Current stays for 1000 years ...
It's a powerful magnet ...

Magnetic field B_{0} [unit: Tesla, T]
Earth's magnetic field $\sim 50^{-5} \mathrm{~T}$
Electromagnets < 1.5 T
MRI 1-7 T

8-2. What is the basis of Nuclear Magnetism ?

Classical and quantum-mechanical view

Nucleus \rightarrow angular momentum L (here called P)
\Rightarrow Rotation of electrical charge (nucleus)
\Rightarrow Rotating current
\Rightarrow Dipole moment

NMR-active isotopes and their gyromagnetic ratio γ

Even mass \# \& Even atomic \#
No Nuclear spin
$\mathrm{I}=1 / 2\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}\right.$ etc.)
Spherical charge distribution in nucleus
I > $1 / 2\left({ }^{2} \mathrm{H},{ }^{11} \mathrm{~B},{ }^{2} \mathrm{Na}\right.$ etc.)
Odd mass \# \& Odd atomic \# ($I=1 / 2$ integer $)$ Even mass \# \& Odd atomic \# (I=whole integer) Ellipsoidal charge distribution in nucleus gives quadrapolar electric field

Magnetic moment μ of individual spin in induction field $\mathrm{B}_{\circ} \vec{\mu}=\gamma \vec{P}$
γ : gyromagnetic ratio (empirical constant)
The angular momentum P of a nucleus is
quantized: $-\mathrm{l},-\mathrm{l}+1, \ldots \mathrm{I}-1, \mathrm{I}$
P_{z} has $2 I+1$ values (m):

$$
P_{z}=\frac{h}{2 \pi} \cdot m_{I}
$$

$|\vec{P}|=\frac{h}{2 \pi} \cdot \sqrt{I \cdot(I+1)}$

Spin $1 / 2: P=h \sqrt{ } 3 / 4 \pi$
$\left.\left.\begin{array}{|l|l|l|l|}\hline \text { Isotope } & \begin{array}{c}\text { Net Spin } \\ (\mathrm{I})\end{array} & \begin{array}{l}\text { gyromagnetic } \\ \text { ratio } \gamma / 2 \pi \\ {[\mathrm{MHz} \mathrm{T}}\end{array} \\ \left.\hline{ }^{-1}\right]\end{array}\right) \begin{array}{l}\text { Abundance / } \\ \%\end{array}\right]$

What is the basis for nuclear magnetization?

Unequal population of Energy levels

Energy of a magnetic dipole in magnetic field B_{0} (classical)

$$
E=-\vec{\mu} \cdot \vec{B}_{0}=-\mu \cdot \cos \theta \cdot B_{0}=-\mu_{2} \cdot B_{0}
$$

Energy is minimal, when $\mu \| \mathrm{B}_{0}$
(Where is that used ?) $\vec{\tau}=\vec{\mu} \times \vec{B}_{0}$

Quantum mechanical description:

$$
E_{I}=-\gamma \cdot \frac{h}{2 \pi} \cdot m_{I} \cdot B_{0} \quad m_{1}=-\mid, \ldots, l
$$

Boltzmann statistics/distribution: Unequal population of energy levels

$$
\frac{N_{1}}{N_{2}}=e^{-\frac{\Delta E}{k T}}
$$

k : Boltzmann's constant ($1.4 \times 10^{-23} \mathrm{~J} /$ Kelvin $)$ NB. At 310K : ~ 1 in 10^{6} excess protons in low energy state (1Tesla)
$\rightarrow N_{1} \sim N_{2} \sim N / 2$ ($N=$ no of spins)

8-3. How to classically describe the motion of magnetization ?

View each spin as a magnetic dipole μ (a tiny bar magnet).
Classically: torque τ of a dipole μ in B

$$
\vec{\tau}=\vec{\mu} \times \overrightarrow{\mathrm{B}}
$$

$2^{\text {nd }}$ law of rotations (P: angular momentum)

$$
\begin{aligned}
\vec{\tau} & =\frac{d \vec{P}}{d t} \quad \vec{\mu}=\gamma \vec{P} \\
& \frac{d \vec{\mu}}{d t}=\vec{\mu} \times \gamma \overrightarrow{\mathrm{B}} \cdot
\end{aligned}
$$

Sum over all $\mu_{\mathrm{k}} \rightarrow$ Magnetization $\vec{M} \equiv \sum \vec{\mu}_{\mathrm{k}}$

Larmor equation

$$
\frac{d \vec{M}}{d t}=-\gamma \vec{B} \times \vec{M}
$$

What motion does the Larmor equation describe?

A brief tour back to rotational kinematics

Describes a rotation of \mathbf{r} about ω with frequency $f=\omega / 2 \pi$
\Rightarrow valid for any vector entity M,L instead of \mathbf{r}

Precession of \mathbf{M} about \mathbf{B} with frequency $\gamma B / 2 \pi$

Observation: The motion of the axis of the wheel with mass M_{w} is circular about O with constant angular velocity $\Omega \perp$ to L dictated by τ

$$
\frac{d \vec{L}}{d t}=\vec{\Omega} \times \vec{L}
$$

What is the value of Ω ?

From Newton's $2^{\text {nd }}$ law (rotations):
$\frac{d \vec{L}}{d t}=\vec{\tau}=-M_{W} \vec{g} \times \vec{r}=-M_{W} r \vec{g} \times \frac{\vec{r}}{r}=-M_{W} r \vec{g} \times \frac{\vec{L}}{L}$
$\frac{d \vec{L}}{d t}=-\frac{M_{W} r \vec{g}}{L} \times \vec{L} \cdots \quad L=I \omega$
\Rightarrow Precession frequency $\Omega=\frac{r}{I \omega} M_{W} g$
Precession frequency increases with

1. mass M_{w} of the wheel
\rightarrow gyromagnetic ratio γ
2. gravitational pull g
\rightarrow magnetic field B_{0}
Just like a spinning Gyroscope in gravity

$$
\frac{\mathrm{d} \overrightarrow{\mathrm{M}}}{d t}=-\gamma \overrightarrow{\mathrm{B}}_{0} \times \overrightarrow{\mathrm{M}}
$$

8-11

8-4. What are the essentials of Magnetic Resonance ?

nucleus \& magnetic field

Nucleus with non-zero spin and high gyromagnetic ratio γ : ${ }^{1} \mathrm{H}$

[^0]

Convention in magnetic resonance:
Static magnetic field $\mathrm{B}_{0} \| \mathrm{z}$

\Rightarrow thermodynamic equilibrium: $\mathrm{M}_{0} \| \mathrm{z}$
MR is safe, but insensitive

How can the sensitivity be increased?

magnetic field strength B_{0}

$8-5$. Why use a Rotating frame of reference to describe the motion of magnetization?

Rotating frame: A reference frame which rotate about z of the laboratory frame at frequency $\omega_{\text {RF }}$

Why use a rotating reference frame?

$$
\frac{d}{d t} \overrightarrow{\mathrm{M}}=\overrightarrow{\mathrm{M}} \times \gamma \overrightarrow{\mathrm{B}}
$$

Lab

Rotating
Frame

What is the equation of motion for magnetization in the rotating reference frame?

Larmor frequency in reference frame

 rotating with $\omega_{\mathrm{RF}}: \Omega=\omega_{\mathrm{L}}-\omega_{\mathrm{RF}}$$$
\Omega=\gamma \Delta \mathrm{B}
$$

$\Rightarrow \Delta \mathrm{B}=\Omega / \gamma=\mathrm{B}_{\mathrm{o}}-\omega_{\mathrm{RF}} / \gamma$
[lab frame: $\omega_{R F}=0 \Rightarrow \Omega=\omega_{\mathrm{L}}\left(\Delta \mathrm{B}=\mathrm{B}_{0}\right)$]

Ex. Flipping magnetization over

in the rotating reference frame

Start with thermodynamic equilibrium magnetization M_{0}
Reference frame rotating with ω_{L} (onresonance)
Apply additional, constant magnetic field with magnitude B_{1} (in xy plane) for time τ

What motion can be observed for M ? $\frac{d \vec{M}}{d t}=-\gamma \vec{B}_{1} \times \vec{M} \quad \mathrm{M}_{0}$ precesses about B_{1}

Magnetization rotates about B_{1} with angular velocity $\gamma \mathrm{B}_{1}$
Frequency $\gamma \mathrm{B}_{1} / 2 \pi$
\rightarrow period $\mathrm{T}=2 \pi / \gamma \mathrm{B}_{1}$

Definition Flip angle $=$ angle of rotation α induced by B_{1} applied for τ seconds

Special cases of α :
90° : Full excitation (all M_{0} is rotated into transverse plane, $x y$, i.e. $M_{0} \rightarrow M_{x y}$)
180 ${ }^{\circ}$: Inversion $\left(M_{z} \rightarrow-M_{z}\right)$
$B_{1}=$ radiofrequency (RF) field (why?)
Lab frame: ध $B_{1}(t)=B_{1}\left(\cos \omega_{\llcorner } t, \sin \omega_{\llcorner } t\right)$
$\gamma \sim 42 \mathrm{MHz} /$ Tesla $\rightarrow \omega_{\mathrm{L}} / 2 \pi \sim 100 \mathrm{MHz} \quad 8-17$

Supplement: Why there is only equilibrium magnetization along B_{0} ?
Random Phase approximation

[^0]: Magnet to create magnetic field $B_{0} \| z$
 $\left(N_{2}-N_{1}\right) \mu_{z}$ results in equilibrium magnetization M_{0} $\Delta \mathrm{E}$ is small $(\sim \mu \mathrm{VV})$
 \Rightarrow Non-ionizing e.m. fields

