6: Positron Emission Tomography

- 1. What is the principle of PET imaging ? Positron annihilation
 - Electronic collimation coincidence detection
- 2. How are the effects of scatter and attenuation corrected for ?
- 3. What factors can affect resolution ?
- 4. Examples: PET tracers in oncology and neuroscience

After this course you are capable of

- 1. Describing the essential elements of a PET scan
- 2. Distinguish the principle of PET detection from that of SPECT
- 3. Understand the bases of scatter elimination.
- 4. Understand the factors affecting spatial resolution in PET.

Fund Biolmag 2016

6-1

6-1. What is Positron Emission Tomography ? PET

Positron Emission tomography: measured are x-rays emitted by

annihilation of positrons emitted by exogenous substance (tracer) in body

The principle is as emission tomography, but there is one major difference ... (see later)

Most widely used tracer for PET ¹⁸Fluoro-deoxy-glucose

Fund Biolmag 2016

6-2. What is really measured with PET ?

Why are Random and Scattered Events bad?

mimic a true coincidence

6-8

How can scattered events be distinguished from true coincidence ? Energy discrimination & background subtraction

6-3. How is attenuation correction performed ?

simpler for PET than SPECT

Attenuation :

Probability of detecting the photon pair

$$P_{1}P_{2} = e^{-\mu x} e^{-\mu(d-x)} \qquad S = C_{T}^{*}(x) e^{-\mu d}$$

$$S = P_{1} \cdot P_{2} \cdot C_{T}^{*}$$

Compare to geometric average of SPECT (Lesson 5) Fund Biolmag 2016

6-11

What are the steps in Attenuation Correction for PET ?

6-4. Why is Resolution never perfect ?

Annihilation Range and photon non-collinearity

Range: limits spatial resolution (In air, β^+ range ~ several m)

Isotope	Half-life (min)	Max. Energy (MeV)	Range in H ₂ O (FWHM, mm)
¹⁸ F	110	0.6	1
¹¹ C	21	1.0	1.2
¹⁵ O	2	1.7	1.5
¹³ N	10	1.2	1.4
⁶⁸ Ga	68	1.9	1.7
⁸² Rb	1	3.2	1.7

Fund Biolmag 2016

Background: At time of annihilation, e-p pair has non-zero kinetic energy

\rightarrow conservation of momentum

6-14

How does the detector affect PET spatial resolution ?

Example: BGO Block Detector Coincidence window: 12 ns Energy resolution: ~ 25%

True coincidence count rate R_T

$$R_T = 2C_T^*G\epsilon^2$$

- 1. C_T^* tissue activity of a voxel
- 2. ϵ : the intrinsic detector efficiency (1-e^{-µx})
- 3. G : the geometric efficiency (solid angle defined by the detector surface/ 4π).
- NB. $\varepsilon = 0.9 \rightarrow 81\%$ of photon pairs emitted towards detectors produce coincidence

This is a reason for the 3cm thick crystals used for PET detection.

Fund Biolmag 2016

6-5. What are typical PET tracers ?

Oncology and neuroscience

¹⁸ Fluoroethyl-Tyrosine (FET)Amino acid transportDeoxy-18fluoro-thymidine (FLT)Proliferation18Fluoromisonidazole (FMISO)Hypoxia ¹¹ C-MethionineAmino acid transport and metabolismH215OBlood flow18Fluoro-Deoxyglucose (FDG)Glucose metabolism18FDOPAPresynaptic dopaminergic function15O-ButanolBlood Flow11C-FlumazenilBenzodiazepine-receptor mapping	Oncology			0	HO SAN TH
Deoxy-18fluoro-thymidine (FLT)Proliferation18Fluoromisonidazole (FMISO)HypoxiaFDG11C-MethionineAmino acid transport and metabolismH215OBlood flow18Fluoro-Deoxyglucose (FDG)Glucose metabolism18FDOPAPresynaptic dopaminergic function15O-ButanolBlood Flow11C-FlumazenilBenzodiazepine-receptor mapping	¹⁸ Fluoroethyl-Tyrosine (FET)	Amino acid transport	200	1	OH OH
18Fluoromisonidazole (FMISO)HypoxiaFDGFLT11C-MethionineAmino acid transport and metabolismH215OBlood flow18Fluoro-Deoxyglucose (FDG)Glucose metabolism18FDOPAPresynaptic dopaminergic function15O-ButanolBlood Flow11C-FlumazenilBenzodiazepine-receptor mapping	Deoxy- ¹⁸ fluoro-thymidine (FLT)	Proliferation		-	HO CH LINATO
¹¹ C-MethionineAmino acid transport and metabolismH2Blood flowBlood flowBlood flowBlood flowGlucose metabolismBruoro-Deoxyglucose (FDG)Presynaptic dopaminergic functionBlood FlowBlood FlowBlood FlowBlood FlowBlood FlowBenzodiazepine-receptor mapping	¹⁸ Fluoromisonidazole (FMISO)	Hypoxia	FDG	FLT	:
H215OBlood flow18Fluoro-Deoxyglucose (FDG)Glucose metabolism18FDOPAPresynaptic dopaminergic function15O-ButanolBlood Flow11C-FlumazenilBenzodiazepine-receptor mapping	¹¹ C-Methionine	Amino acid transport and metabolism			
¹⁸ Fluoro-Deoxyglucose (FDG)Glucose metabolism ¹⁸ FDOPAPresynaptic dopaminergic function ¹⁵ O-ButanolBlood Flow ¹¹ C-FlumazenilBenzodiazepine-receptor mapping	H ₂ ¹⁵ O	Blood flow			
¹⁸ FDOPAPresynaptic dopaminergic function ¹⁵ O-ButanolBlood Flow ¹¹ C-FlumazenilBenzodiazepine-receptor mapping	¹⁸ Fluoro-Deoxyglucose (FDG)	Glucose metabolism			
¹⁵ O-ButanolBlood Flow ¹¹ C-FlumazenilBenzodiazepine-receptor mapping	¹⁸ FDOPA	Presynaptic dopamine	rgic fun	ction	
¹¹ C-Flumazenil Benzodiazepine-receptor mapping	¹⁵ O-Butanol	Blood Flow			
	¹¹ C-Flumazenil	Benzodiazepine-receptor mapping			

Fund Biolmag 2016

FDG or

O₁₅ Water

6-16

X-ray imaging modalities. Overview CT, SPECT, PET

Measurement of signa incidence (LOI) (Radon transform) 1.CT: attenuated i (direction of beam g 2.SPECT: emitted (need collimation to 3.PET: annihilatio (directionality by ele	al integrated along line of ncident x-ray beam liven by source) l single photon determine ray direction) n photon pair ectronic collimation)	Apply correction to measured Radon transform (attenuation, scatter, etc.) Backprojection or central slice theorem: Finally an image!			
	СТ	SPECT	PET		
Projection Encoding	Defined by incident x-ray (collimation to reduce scatter)	Collimator essential	Coincidence detection (electronic collimation)		
Spatial Resolution (rodent)	100μm-mm (μm)	Typical 10mm (Variable and complex) (1.5-3 mm)	4.5-5mm at center		
Attenuation	= measurement variable (Varies with energy)	Complex correction (Varies with photon energy)	Accurate correction (transmission method)		
Radionuclides	None (contrast agents)	Any with hv= 60- 200keV	Positron emitters only		

Fund Biolmag 2016

6-20