# 5: Emission (Computed) Tomography

- What is a tracer? 1.
- Why is collimation necessary and what are its consequences ? 2.
- 3. How are the effects of attenuation taken into account ?
- 4. What is the principle of x-ray detection ? scintillation
- How are scintillation photons converted to an electrical signal ? 5.
- 6. How can scattered photons be eliminated ?

#### After this course you

- 1. Understand the reason for collimation in imaging  $\gamma$ -emitting tracers and its implication on resolution/sensitivity
- 2. Understand the implications of x-ray absorption on emission tomography
- 3. Understand the basic principle of radiation measurement using scintillation
- 4. Are familiar with the principle/limitations of photomultiplier tube amplification
- 5. Understand the use of energy discrimination for scatter correction

Fund Biolmag 2016

# What is Emission Computed Tomography?

| Until now: CT and x-ray imaging<br>measure attenuation of incident x-ray<br>Emission tomography: X-rays<br>emitted by exogenous substance<br>(tracer) in body are measured                                                                |                              | Two                                                                   | o issues: | ection of r<br>cer | adioactive |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|-----------|--------------------|------------|--|
|                                                                                                                                                                                                                                           | 1. How                       | to determine                                                          | directior | nality of a        | k-rays ?   |  |
|                                                                                                                                                                                                                                           | 2. Absorption is undesirable |                                                                       |           |                    |            |  |
| What is a tracer ?       Typical         Exogenously administered substance (infused into blood vessel) that       (a) alters image contrast (CT, MRI)         (b) has a unique signal (γ emitting)       -> Emission computed tomography |                              | Typical tracers for emission tomography half-life and photon energies |           |                    |            |  |
|                                                                                                                                                                                                                                           |                              |                                                                       | [h]       | [keV]              |            |  |
|                                                                                                                                                                                                                                           |                              | <sup>99m</sup> Tc                                                     | 6         | 140                |            |  |
|                                                                                                                                                                                                                                           |                              | <sup>201</sup> TI                                                     | 73        | 70                 |            |  |
|                                                                                                                                                                                                                                           |                              | 123                                                                   | 13        | 159                |            |  |
|                                                                                                                                                                                                                                           |                              | <sup>133</sup> Xe                                                     | 0.08      | 81                 |            |  |
| ·                                                                                                                                                                                                                                         |                              | ·                                                                     | ŀ         |                    | 5          |  |

Fund Biolmag 2016

5-1

#### What are the basic elements needed for $\gamma$ -emitter imaging ?



Fund Biolmag 2016

5-2. How can directionality of x-rays be established ? Collimation 5-5



Fund Biolmag 2016





### 5-3. How to deal with attenuation of the emitted x-rays ?



## What are the basic steps in attenuation correction ?





Measured

ured Attenuation correction

 $\mu(x,y)$ :

Corrected image



A(x,y) of thorax



How to simplify attenuation correction ?

by measuring at 180° using geometric mean





## What elements characterize scintillation materials ?

|                                                 |                    |                                                            | :                     |           |           |                  |                |       |
|-------------------------------------------------|--------------------|------------------------------------------------------------|-----------------------|-----------|-----------|------------------|----------------|-------|
| Scintillator                                    | Density<br>(g/cm³) | Attenuation<br>Coefficient<br>(cm <sup>-1</sup> @ 511 keV) | Light yield<br>ph/keV | λ<br>(nm) | τ<br>(ns) | Z <sub>eff</sub> | Refr.<br>Index | Yield |
| CdWO <sub>4</sub>                               | 7.90               | 0.886                                                      | 19                    | 495       | ~104      |                  |                |       |
| Bi <sub>4</sub> Ge <sub>3</sub> O <sub>12</sub> | 7.13               | 0.964                                                      | 8,                    | 480       | 300       | 73               | 2.15           | 13%   |
| (Y,Gd)2O3:Eu,Pr                                 | 5.9                | 0.503 - 0.637                                              | 19                    | 610       | ~106      |                  |                |       |
| Gd <sub>2</sub> O <sub>2</sub> S:Pr,Ce,F        | 7.34               | 0.786                                                      | 40                    | 510       | ~103      |                  |                |       |
| NaI:T1                                          | 3.67               | 0.343                                                      | 40                    | 415       | 230       | 51               | 1.85           | 100%  |
| Gd <sub>2</sub> SiO <sub>5</sub> :Ce            | 6.71               | 0.704                                                      | 7,                    | 430       | 300       | 59               |                |       |
| Lu <sub>2</sub> SiO <sub>5</sub> :Ce            | 7.4                | 0.869                                                      | 30                    | 420       | 40        | 66               |                | 79%   |
| LuAlO3:Ce                                       | 8.34               | 0.956                                                      | 11                    | 365       | ~17       |                  |                |       |
| LuPO4:Ce                                        | 6.53               | 0.735                                                      | 17                    | 360       | 25        |                  |                |       |
|                                                 |                    |                                                            |                       |           |           |                  |                |       |

Overview of some crystals

#### **Requirements for scintillator**

High yield

Good linearity

Small time constant  $\tau$ 

Transparent for scintillation light  $\boldsymbol{\lambda}$ 

good mechanical properties

Refraction index close to 1.5 Fund Biolmag 2016

| Most of the energy of the x-ray is los<br>as heat (to lattice), see | t             |
|---------------------------------------------------------------------|---------------|
| e.g. Nal(140keV)≓40 140<br>=5600 photons at λ≅400nm                 | <20keV        |
| E <sub>400nm</sub> [keV] <b>≓hc</b> /λ                              | or <120eV/keV |

5-13

#### 5-5. How is the scintillation light converted to an electrical signal ? Photomultiplier tube (PMT) -Noiseless amplification





## 5-5. How to discriminate scattered photons ?





# SPECT summary Single Photon Emission Computed Tomography

- 1. Measurement of single photon emitters injected into subject
- 2. Collimation ensures x-ray directionality  $(\Rightarrow backprojection)$
- 3. Absorption is undesirable
- 4. Photon energies comparable to CT  $\Rightarrow$  SPECT-CT