3: Interaction of ionizing radiation with tissue

1.	. What is the basis of contrast for x-ray imaging ?						
2.	2. By which mechanisms does ionizing radiation interact with matter ?						
	Rayleigh scattering						
	Compton scattering						
	Photoelectric effect						
	Pair production						
3.	. How does this interaction depend on the tissue ?						
	Energy dependence and effective atomic number Z _{eff}						
4.	. How can we protect ourselves against the biological effects of ionizing						
	radiation ?						
	A radiation protection primer						
	After this course you						
	1. Know the definition of linear and mass attenuation coefficient						
	2. Understand the major mechanism of x-ray absorption in tissue						
	3. Understand the dependence of these mechanisms on photon energy and tissue						
	composition						
	4. Are able to perform contrast-to-noise calculations using effective Z						
	5. Understand and are able to apply the basic principles of radiation protection						

Fund Biolmag 2016

3-1. How can we describe attenuation of x-rays?

Linear attenuation coefficient μ

Consider situation where $\Delta x \rightarrow 0$, and n=f(x) $dn(x) = -\mu n(x) dx$ Solution? $n(x) = N_0 e^{-\mu x}$ (provided μ is constant in x) **Definition** Half value layer (HVL) = The thickness of a material allowing to pass one half of photons: $n(x_{HVL}) = N_0/2$ $N_0/2 = N_0 e^{-\mu(HVL)}$ $HVL = 0.693/\mu$

.[:] 3-1

Typical HVL values: several cm for tissues, 1-2 cm for aluminum, 0.3 cm for lead 3-3

What are typical attenuation coefficients ?

0.000084	5.97		
	5.9/	0.0005	0.000028
0.000598	3.34	0.002	0.000128
0.00129	3.006	0.0038	0.000290
0.91	3.34	3.04	0.193
0.917	3.34	3.06	0.196
1	3.34	3.34	0.214
1.85	3.192	5.91	0.573
	0.00129 0.91 0.917 1	0.00129 3.006 0.91 3.34 0.917 3.34 1 3.34	0.00129 3.006 0.0038 0.91 3.34 3.04 0.917 3.34 3.06 1 3.34 3.34

Definition

Mass attenuation coefficient μ/ρ

Unit : [cm²/g]

(constant for all forms of the same chemical substance, e.g. water)

Fund Biolmag 2016

3-2. What are the 4 basic interactions of x-rays with biological tissue ? I. Rayleigh scattering & Compton

II. Compton scattering

Occurs at the outer shell electrons

 \Rightarrow ionization

Scattered photon: subject to subsequent interactions (Rayleigh, Compton scattering or photoelectric effect)

Fund Biolmag 2016

Probability increases with

photon energy

electron density

Electron/mass density in tissues ~ constant (independent of Z) \rightarrow proportional to the **density of the material**

MPTON ELECTRON

3-6

Arthur Holly Compton

Physics, 1927

Relativistic linear momentum

a brief tour back to 1st year physics

From the definition p=mv (which is true at any velocity) it follows

$$\vec{p} = m(v)\vec{v} = m_0 \frac{\vec{v}}{\sqrt{1 - v^2/c^2}}$$

$$\vec{p} \cdot \vec{p} = m_0^2 \frac{\vec{v} \cdot \vec{v}}{1 - v^2/c^2}$$

The value of p is

Relativistic kinetic energy E=m(v)c²

$$E^{2} - m_{0}^{2}c^{4} = \underbrace{m_{0}^{2} \frac{c^{4}}{1 - v^{2}/c^{2}}}_{m_{0}^{2} \frac{v^{2}}{1 - v^{2}/c^{2}}} - m_{0}^{2} \frac{c^{4}(1 - v^{2}/c^{2})}{1 - v^{2}/c^{2}}$$
$$m_{0}^{2} \frac{v^{2}}{1 - v^{2}/c^{2}}c^{2} = (pc)^{2}$$

$$\vec{p} \cdot \vec{p} = \frac{E^2}{c^2} - m_0^2 c^2$$

0

NB. Light carries energy, but moves at the speed of light (!) c. **Photon with energy E**: particle with rest mass (m₀=0) (otherwise its energy would be infinite, since v=c) : $|\vec{p}| = \frac{E}{c}$

Compton scattering

The basic Equations

A simple elastic collision:

Fund Biolmag 2016

3-8

3-3. Interaction of photons with tissue II

Photoelectric effect, pair production & summary

Inner shell e- is removed \Rightarrow energy of the incident X-ray quantum E_i > ionization energy of an electron I_{K}

$$E_i = E_e^K + I_K$$

Vacancy in K-shell: filled with outer shell e ⇒ cascade of emitting *characteristic* X-ray quanta

(or Auger electrons, but not so frequent in diagnostic imaging of soft tissues with low Z)

Fund Biolmag 2016

Photoelectric absorption effect:

 E_{\cdot}

0.20 0.00

Angle [deg]

Abruptly increases when E is slightly above $I_{\rm K}$ – absorption edges

Absorption edge energy increases with Z (very low for H, C, N, O)

Albert Einstein Physics, 1921

What is the relative contribution of x-ray scattering mechanisms ? in soft tissue

Fund Biolmag 2016

What is the effective atomic number Z_{eff} of biological tissue?

Necessary for estimating μ of the photoelectric effect

Empirical relationship for compound materials such as biological tissue:

Example: Estimation of $Z_{\rm eff}$ for water ¹H: Z=A=1, P=11%, ¹⁶O: **Z**=8, A=16, P=89% Denominator of λ : $\sum P_j \frac{Z_j}{A_j} = 11\frac{1}{1} + 89\frac{8}{16} = 55.5$ Protons: $\lambda = 11/55.5=0.20$ Oxygen: $\lambda = 44.5/55.5=0.80$. $Z_{\text{eff}} = (0.2 \cdot 1^{3.4} + 0.8 \cdot 8^{3.4})^{1/3.4}$ =(0.2+1180.0.8) 1/3.4 =944^{1/3.4}=7.5 How good were we? -

Z : atomic number

A : atomic weight

Fund Biolmag 2016

3-12

What is the % mass composition P_i of select biological tissues ?

% Composition (by Mass)	n Adipose Tissue	Muscle (Striated)	Water	Bone (Femur)
Hydrogen	11.2	10.2	11.2	8.4
Carbon	57.3	12.3		27.6
Nitrogen	1.1	3.5		2.7
Oxygen	30.3	72.9	88.8	41.0
Sodium		0.08		
Magnesium		0.02		7.0
Phosphorus		0.2		7.0
Sulfur	0.06	0.5		0.2
Potassium		0.3		
Calcium		0.007		14.7
	Z _{eff} ~ 6	7.4		12
	Carbon:			
	Z/A=6/12			
	(same for O, 8/16)			

What are X-ray contrast agents ?

Exogenously administered substance (by infusion/ingestion)

3-5. What are the biological effects of ionizing radiation ?

Ionization effects: instantaneous (10⁻¹⁷-10⁻⁵s)

- 1. Produce free radicals
- 2. Break chemical bonds
- 3. Produce new chemical bonds and crosslinkage between macromolecules
- 4. Damage molecules that regulate vital cell processes (e.g. DNA, RNA, proteins)

Radicals (unpaired valence e-) and reactive oxygen species, e.g. 2 OH -> H₂O₂ Biological effects are delayed:

Cataract (months to years)

Cancer (years-decades)

Tissue sensitivity to radiation proportional: rate of cell proliferation inversely prop .: degree of cell differentiation

Pregnancy vs. old age ...

produced by the body (e.g. oxygen consumption)

How does the tissue defend itself against radiation damage ? DNA repair

Alkylating Agents Aging Radiation Direct REPAIR !! Cancer Oxidizing Agents Heritable Replication Diseases Errors Indirect Healing Repair Regeneration Replace damaged cells by same Replace damaged cells with different cell type (fibrosis) Organ returned to original state Organ not returned to original state Radiosensitive tissues (skin, digestive Radioresistant tissues (muscle, brain): system, bone marrow) only repair possible

Fund Biolmag 2016

How are the effects of ionizing radiation quantified ?

Three forms of radiation dose

Absorbed dose D: Absorbed dose D depends on energy deposited by ionizing radiation per unit mass of material: D = Energy/massUnits: [Gray[Gy]=1J/kg] Equivalent dose H: = D corrected for effectiveness of radiation to produce biological damage $(w_{\rm R}$ = radiation weighting factor) $H = Dw_R$ Units: [Sievert[Sv] = 1J/kg] 0.2 Effective dose E: tissue weightin factor 0.12 H corrected for sensitivity of tissue T 0.12 0.12 0.12 $(w_{\rm T}$ = tissue weighting factor) w_T gonads $E(Sv) = \sum w_{T}H_{T}(Sv)$ MON colon ung Fund Biolmag 2016

3.6 How can we protect ourselves against x-rays ? Exposure time, distance and HVL

What are typical radiation exposures ?

Natural, artificial and some examples

								Autificial			
Natural	mrem/yr	mSv/yr	%total					Artificial			
				Other				Medical X	39	0.20	11%
Radon	200	2.0	55%	Occupational	0.	<0.01	<0.3	ray	39	0.39	11%
Cosmic	27	0.27	8%	occupational	9	0.01	0.0	Nuclear			
COSITIC	21	0.27	0 /0	Nuclear Fuel	<1	<0.01	<0.03	Med.	14	0.14	4%
Terrestrial	28	0.28	8%	Cycle	~1	<0.01	<0.03				
Internal	39	0.39	11%	Fallout	<1	<0.01	<0.03	Consumer products	10	0.1	3%
Total	300	3	82%	Misc.	<1	<0.01	<0.03	Total	63	0.63	18%

Source of Exposure				
X-rays from TV set (3 cm)	0.500 mrem/hour			
Airplane ride (12km)	0.500 mrem/hour			
Radionuclides in the body (i.e., K)	39 mrem/year			
Building materials (concrete)	3 mrem/year			
Drinking Water	5 mrem/year			
Pocket watch (radium dial)	6 mrem/year			
Eyeglasses (containing thorium)	6 - 11 mrem/year			
Transatlantic Airplane roundtrip	5 mrem			
http://newnet.lanl.gov/info/dosecalc.asp				

<0.01	<0.03	Total	63	0.63	18%			
Chest	x-ray, d	5-20 mrem						
Lumba	ar spinal	130 mrem						
Pelvis	x-ray	44 mrem						
Hip x-r	ay	83 mrem						
CT (he	ead and	1,100 m	rem					

Useful to know:				
100 Röntgen equiva 1 Sie	, ,			

http://www.epa.gov/radiation/understand/calculate.html

Appendix: Derivation of the Compton Relationship

Situation: A photon with energy E_i collides with e of mass m_e at rest. One wants to know the energy of the photon after the collision.

