
Modeling Online Behavior in Recommender Systems:
The Importance of Temporal Context

Milena Filipovic1∗, Blagoj Mitrevski1∗, Diego Antognini1, Emma Lejal Glaude2, Boi Faltings1,
Claudiu Musat2

1Ecole Polytechnique Fédérale de Lausanne, Switzerland
2 Swisscom, Switzerland

firstname.lastname@{epfl.ch, swisscom.com}

Abstract

Simulating online recommender system performance is no-
toriously difficult and the discrepancy between the online
and offline behaviors is typically not accounted for in offline
evaluations. Recommender systems research tends to evalu-
ate model performance on randomly sampled targets, yet the
same systems are later used to predict user behavior sequen-
tially from a fixed point in time. This disparity permits weak-
nesses to go unnoticed until the model is deployed in a pro-
duction setting. We first demonstrate how omitting temporal
context when evaluating recommender system performance
leads to false confidence. To overcome this, we propose an of-
fline evaluation protocol modeling the real-life use-case that
simultaneously accounts for temporal context.
Next, we propose a training procedure to further embed the
temporal context in existing models: we introduce it in a
multi-objective approach to traditionally time-unaware rec-
ommender systems. We confirm the advantage of adding a
temporal objective via the proposed evaluation protocol. Fi-
nally, we validate that the Pareto Fronts obtained with the
added objective dominate those produced by state-of-the-art
models that are only optimized for accuracy on three real-
world publicly available datasets. The results show that in-
cluding our temporal objective can improve recall@20 by up
to 20%.

1 Introduction
The significance of recommender systems. In an increas-
ingly digital world, institutions must accurately anticipate
the next movie, song, product, or job that a user will interact
with. From YouTube to Netflix, Spotify to Amazon, Face-
book to Linkedin, recommender systems are a staple of our
daily routines. They influence how we perceive our environ-
ment, from media content to human relationships.

Standard evaluation does not reflect real-life use-cases.
Traditional methods of evaluation that entail random sam-
pling over a long period of time are perfect if the system is
designed to remain unchanged for an equally long and pre-
defined period. However, if the system is to be used in a dy-
namic setting, the way it is evaluated must reflect that. Inad-
equate evaluation techniques can lead to a false confidence,
which is especially detrimental in commercial settings.

∗Work done while at EPFL and Swisscom.

Evaluating a recommender system can be done online or
offline. Online evaluation entails deployment of the recom-
mender in a commercial setting. While this may be the best
way to measure the real-life impact of a system, it is also
costly and therefore rarely used in research and benchmark-
ing. Offline evaluation is far more common in recommender
systems research. Here, the model is evaluated on historical
data, by selecting some portion of the data to train on, while
some other subset is used for performance testing.

Many existing recommenders ignore temporal infor-
mation. Most recommender systems fall into one of the two
main categories: content-based and collaborative filtering.
Content-based filtering relies on recommended items hav-
ing similar attributes to those that the user has previously
interacted with. Collaborative filtering methods base the rec-
ommendation on items bought by similar users.

However, most models ignore temporal information, ex-
cept a subtype of recommenders that focuses on the order
of interactions. Time-aware recommender systems – called
sequence-aware recommenders – introduce additional infor-
mation to the interactions: the time at which the users’ deci-
sions were made. Consequently, there is a need to incorpo-
rate the temporal context into traditional recommenders.

In this work, we first focus on the importance of tempo-
ral dynamics in recommender system creation, training, and
offline evaluation. While much effort is directed towards es-
tablishing the importance of proper evaluation design, it is
generally focused on implementing relevant metrics to avoid
under- or over-estimating real-world performance (Aggar-
wal et al. 2016). We draw attention to the lack of standard-
ization in this domain, and the differences between research
settings and the systems’ ultimate applications. Then, we
propose two temporal evaluation protocols and show how
they attain a closer approximation of the real-life conditions
in which recommender systems are deployed.

Second, we present a multi-objective approach to time-
unaware recommender systems to incorporate the temporal
context without any change in the model architecture. We
demonstrate the advantages of such systems. Then, we intro-
duce recency as an objective and as a means to include tem-
poral dynamics in typically time-independent recommender
systems. We also provide a measure of recency in the form
of a performance metric.

Experiments on three real-world publicly available



datasets show both improvements in recency and relevance.
Finally, we demonstrate that the Pareto Fronts obtained with
the added objective dominate those produced by state-of-
the-art models.

To the best of our knowledge, this is the first study
quantifying the difference in recommender system perfor-
mance when evaluated using methods that model real-world
environments, as opposed to traditional techniques. After
demonstrating the impact of recency, we show that a rec-
ommender system can be optimized for both the relevance
and recency objectives simultaneously.

To summarize, the main contributions of this paper are as
follows:

• We demonstrate how commonly used evaluation proto-
cols do not provide adequate modeling of real-world de-
ployment settings. To combat this, we propose two eval-
uation techniques to facilitate offline modeling of online
production environments that inherently incorporate tem-
poral dynamics;

• We introduce a recency function that can be utilized to
create a recency objective. We show that optimizing for
both recency and relevance (Milojkovic et al. 2019) leads
to solutions that dominate those optimized just for rele-
vance in both dimensions.

2 Related Work
2.1 Evaluating Recommender Systems
Traditional Recommender Systems. Inputs and outputs
share similarities with classification and regression model-
ing: a class variable is predicted from a set of given features.
Therefore, given that recommendation tasks can be seen as a
generalization of these, some evaluation techniques used for
classification are transferrable to recommender systems.

In collaborative filtering research, recommenders are gen-
erally evaluated either through strong or weak generaliza-
tion, characterized by (Marlin 2004). In both approaches,
models are trained on observed interactions and validated
or tested on those that are held-out. Weak generalization is
introduced in (Breese, Heckerman, and Kadie 1998), where
the held-out set is created through random sampling of the
available interactions. Strong generalization differs by tak-
ing disjoint sets of users for the training, validation, and test-
ing sets. Following this, some interactions are held-out from
the validation and test sets and then approximated using the
recommender. Methods that encode user representation can-
not apply strong generalization, as they cannot generate out-
puts for previously unseen users. An example of the strong
generalization approach can be seen in (Liang et al. 2018),
whereas (Ning and Karypis 2011; Wu et al. 2016; Rendle
et al. 2012) all use weak generalization.

Several of these works emphasize that the application of
their recommender system would be in predicting future
user actions, yet all validation and testing is done with ran-
domly selected interactions. This can break the time linearity
as the knowledge of future interactions can help predict an
anterior interaction.

Temporal Recommender Systems. They denote time-
aware models (TARS), and incorporate time explicitly or im-
plicitly. Temporal recommender systems include, but are not
limited to, sequence-aware recommender systems (SARS).

As previously stated, SARS can be evaluated similarly to
TARS. (Campos, Dı́ez, and Cantador 2014) provide an ex-
tensive overview of possible evaluation techniques, which
served as an inspiration and point of reference for this work.

While traditional evaluation protocols may be used on
temporal recommenders, it is more representative to pre-
serve the temporal ordering between interactions since this
is something that the recommender aims to learn. By exten-
sion, train, validation, and test splits should also be ordered.

(Quadrana, Cremonesi, and Jannach 2018) state that they
were unable to find a consensus among evaluation protocols
used in recent sequence-aware recommender work, which
is mirrored in our findings. Yet we did determine that most
recent SARS focus only on next item prediction, meaning
they output one recommendation. They also typically em-
ploy certain target item conditions to decrease computa-
tional cost (Campos, Dı́ez, and Cantador 2014). The target
item conditions determine the (sub)set of items for which
a recommender should produce predictions and are specific
for top-N recommendation evaluation. The reduction of the
computational costs is generally done through conditions
that rank one ground truth item against a set of other items
false items. Examples can be found in (Sun et al. 2019; Kang
and McAuley 2018; Hidasi and Karatzoglou 2018). We re-
turn to the problem of subsampling in Section 3.

2.2 Temporal Context in Recommender Systems
In this paper, we introduce the concept of recency. An im-
portant note is that there are multiple definitions of recency
in recommender systems literature. In fact, this lack of con-
sensus has persisted for years.

(Ding, Li, and Orlowska 2006; Vinagre, Jorge, and Gama
2015) treat the recency of an item as an attribute that is
user-dependent. The value is determined by the last time
the user interacted with a given item. (Chakraborty et al.
2017; Gabriel De Souza, Jannach, and Da Cunha 2019) also
claim to incorporate recency into their research: when rec-
ommending news articles, they measure recency as the age
of the item on the platform. Our analysis will follow the lat-
ter definition.

3 Proposed Evaluation Protocols
We propose that the temporal dimension should be consid-
ered when evaluating the performance of any recommender.

While random sampling may be an appropriate target se-
lection technique for some classification or regression tasks,
we argue that this is not the case when it comes to predicting
a user’s subsequent move.

Unlike the vast majority of evaluation methods applied to
traditional recommenders, temporal recommender systems
literature does model the passage of time. However, as stated
above, the performance is often computed over a subset of
the itemset and the user’s true chosen item. The argument
is that subsampling is necessary due to the complexity of
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Figure 1: Proportional Temporal Selection.
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Figure 2: Strict Temporal Cutoff.

the ranking task. While this has some validity, itemsets of
around 10,000 datapoints can be ranked highly efficiently,
especially when taking into consideration recent advance-
ments in machine learning libraries and GPU programming.
Therefore, we do not utilize subsampling in our work.

The adoption of a recommender system in real scenar-
ios has two major phases. The first, called the development
phase, is purely offline and theoretical. In this part, three
separate sets of data must be created: a training set that
the model will use to learn item and user representations,
a validation set for hyperparameter tuning, and a test set to
evaluate how well the model performs. The second, called
the deployment-ready phase, include interactions with end-
users. The maximum amount of data is leveraged to train
a model with as much information as possible, evaluate its
performance, and then deploy it into production. In this case,
only two sets are needed: a training and a validation set.

One downside of collaborative filtering methods is that
most models are incapable of incorporating new items with-
out retraining. While ways to alleviate this problem have
been explored (Luo, Xia, and Zhu 2012), the issue remains
widespread and worthy of more study, but lies outside the
scope of this paper.

Therefore, we assume an industry-like environment: the
recommender system will be retrained regularly and will be
exposed to clients for a relatively short period, ranging from
a couple of days to a maximum of a few months. We pos-
tulate that the performance of the recommender on the last
portion of historically available data is most indicative of
how it will behave when deployed.

Our protocols focus on set creation. When selecting the
target values in a validation set, we take two possible ap-
proaches. The first, proportional selection, depicted in Fig-
ure 1, selects the final X% of each user’s interactions and
uses these to create target items. Here we preserve the time
ordering of the input and target interactions, maintaining
similarity with the real-life use-case. However, there is no
strict time cutoff, as is the case when we train a system on
data available to a certain point and then deploy it.

The second approach, shown in Figure 2, is precisely
based on a strict time cutoff to select the target items of
the validation set. This method is even closer to the real-

world use case. However, it does suffer from certain draw-
backs as user interactions are not necessarily evenly dis-
tributed through time, leading to some users being more rep-
resented than others in the target set. While these are similar
to the suggestions developed in (Campos, Dı́ez, and Canta-
dor 2014), we underline that these approaches should not be
limited to evaluating TARS. It is crucial to approximate with
maximum precision the performance of a model when devel-
oping a novel system, before it is released into production.
The second approach directly models the real-world context
and contains user-item interaction sequences created after a
specific strict time cutoff.

4 Recency to Improve Recommendation
The main task of a recommender system is to anticipate
users’ future desires and suggest content that they would
find relevant. However, just recommending the most rele-
vant items does not always satisfy all the concerns of those
building the system. The relevance objective is the one that
is most commonly found in recommender systems literature
and accounts for the accuracy or correctness. It actively fo-
cuses the recommender on selecting the item(s) with which
the users will most likely interact.

However, relevance is not the only objective used in prac-
tice. We distinguish two types of objectives: correlated and
uncorrelated to relevance. The former ones correspond to
those whose optimization is linked to the relevance ob-
jective. Examples are novelty (Vargas and Castells 2011),
serendipity (Ge, Delgado-Battenfeld, and Jannach 2010),
and utility-based objectives, such as revenue. The latter, not
correlated to relevance, can be diversity and fairness.

We introduce such a utility-based objective used to in-
ject temporal information alongside the relevance objective.
While the exploration of uncorrelated objectives is essential
for the future of recommender systems, we leave it for fu-
ture work.

4.1 Adding Temporal Context
Based on the our experience with real-life use-cases, we dis-
covered that users seem to gravitate towards purchasing con-
tent that had more recently been added to a given platform.
Building on these findings, and works such as (Chakraborty
et al. 2017) and (Gabriel De Souza, Jannach, and Da Cunha
2019), we decided to explore the effects of incorporating re-
cency as an objective during the learning phase. Given an
item x with a timestamp tx, we further define the recency
function f as:

f(x) =

{
1 tx−tmin

tmax−tmin
≥ 0.8

0.3
(0.8− tx−tmin

tmax−tmin
)× 10

3 otherwise
(1)

where tmax and tmin are the maximum (most recent) and
minimum (oldest) timestamps over the itemset. In f , we first
scale all timestamps to [0, 1] using the min-max scaler, and
then apply a transformation inspired by (Huang et al. 2013).
A plot of the function is shown in Figure 3.

The recency objective is formulated as a loss that stimu-
lates the recommendation of recent items. Each item in the
itemset is assigned a recency weight, based on the recency
function. The vector is then used to weigh item importance
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Figure 3: Our proposed recency function (Equation 1).

Algorithm 1 SMSGDA with Gradient Normalization.
1: initialize()
2: for i ∈ 1, ..., n do
3: empirical lossi = Li(w)

4: end for
5: for epoch ∈ 1, ...,M do
6: for batch ∈ 1, ..., B do
7: do forward pass()

8: for i ∈ 1, ..., n do
9: calculate loss Li(w)

10: calculate gradient ∇wLi(w)

11: normalize gradient ˆ∇wLi(w) =
∇wLi(w)

empirical lossi

12: end for
13: α1, . . . , αn = QCOPSolver

(
ˆ∇wL1(w), . . . , ˆ∇wLn(w)

)
14: ∇wL(w) =

∑n
i=1 αi

ˆ∇wLi(w)

15: w = w − η∇wL(w)

16: end for
17: evaluate model()

18: update pareto set()

19: end for

when calculating the loss. Adding weights into a traditional
loss does not affect the differentiability of the function.

To illustrate how our temporal objective can be easily in-
tegrated into a traditionally time-unaware recommender sys-
tem, we take as a use-case the state-of-the-art variational au-
toencoder Mult-VAEPR of (Liang et al. 2018). For the sake
of brevity, we refer the reader to (Liang et al. 2018) for more
details about the model.

We thus propose an extension of Mult-VAEPR, where the
loss function for user u is modified to:

Lβ(xu; θ, φ) = Eqφ(zu|xu) [log pθ(f(xu) ∗ xu|zu)]
−β ·KL(qφ(zu|xu)||p(zu))

where the expected negative log-likelihood is modified to in-
clude the element-wise multiplication of input vector xu by
f(xu), which corresponds to the recency scores of the given
items in xu. β controls how much importance is given to
the KL term, zu is a variational parameter of the variational
distribution θ and φ are model parameters.

4.2 Multi-Objective Optimization
Optimizing a recommender on multiple objectives is non-
trivial. Thanks to the recent work of (Milojkovic et al. 2019),
we employ the proposed multi-gradient descent algorithm

ML-20M Steam Netflix≥4
# of users 46,295 257,775 471,457
# of items 9479 13,018 13,995
# of interactions 3.76M 3.14M 38.87M
% of interactions 0.86% 0.09% 0.59%

Table 1: Statistics of the datasets, after preprocessing.

for multiple objectives to train our recommenders. Addi-
tionally, the authors show that the algorithm is efficient and
does not impact on training time, as it can be seen in Algo-
rithm 1, where n is the number of objectives, M is the num-
ber of epochs, andB the number of batches. After a standard
forward pass (Line 7), the loss and gradient are computed
for each objective (Line 8-10). Then, weights of the gradi-
ents are computing as a Quadratic Constrained Optimization
Problem (Désidéri 2012), which can be solved analytically
for two objectives, or solved as a constrained optimization
problem as proposed in (Sener and Koltun 2018) for more
than two objectives. Solving it allows us to obtain the com-
mon descent vector and update the parameters (Line 14-15).

This training procedure enables us to incorporate both
our temporal context and the relevance objectives to retrieve
time-aware recommendations. The algorithm adapts the
weight repartition between the two objectives in an ad-
vanced manner to optimize both during training.

5 Experiments
5.1 Datasets
We study the performance of various models on three real-
world publicly available datasets. The characteristics of the
preprocessed datasets are summarized in Table 1.

MovieLens-20M contains about 20 million ratings1, with
values between 1 and 5. To transform it into implicit feed-
back, we binarize the user-item interaction matrix, keeping
ratings of 4 and above as positive feedback. We filter out
all users with less than five ratings, and all movies rated by
less than five users. Since this dataset contains entries from
1999 up to 2015, we chose to focus on the last ten years of
available data.

Steam has review information from the gaming platform
Steam2. We converted user-item interactions into a positive
feedback signals. The dataset contains reviews from 2010
to 2018; however, the platform only sees an uptick in review
activity after 2014, which is why we select the last four years
available for further analysis.

Netflix is the well-known Netflix Prize Competition
dataset3. It consists of over 100 million ratings. The ratings
are on a scale from 1 to 5 and were collected between 1998
and 2005. We filter these ratings in the same way as the
MovieLens ratings, and take the last two years of activity.
Because of low performance on certain baselines, we denote
two variants for the implicit feedback: one with threshold

1https://grouplens.org/datasets/movielens/20m/.
2https://cseweb.ucsd.edu/∼jmcauley/datasets.html.
3https://www.kaggle.com/netflix-inc/netflix-prize-data.



of 4 and above (Netflix≥4), the other one with a threshold
of 5 (Netflix≥5).

5.2 Recommendation Techniques
For all models, we ensured that the items that the user had
previously interacted with were removed from the output be-
fore the top-k results were selected for metric calculation.
All models were trained with the Adam optimizer, with a
learning rate of 0.001.

Mult-VAEPR: All experiments with the Mult-VAEPR

(Liang et al. 2018) were conducted using the implementa-
tion from the MAMO framework4. We used the same setup
as in the original paper.

SVD: We utilize the PyTorch implementation5 of the Sin-
gular Value Decomposition (Sarwar et al. 2000), taking only
the top 100 dimensions.

NCF: For Neural Collaborative Filtering (He et al. 2017),
we take the implementation from 6, sample four negative in-
stances for every existing user-item interaction, set the pre-
dictive factor of 64, and the number of hidden layers for the
multilayer perceptron (MLP) to three. We do not present re-
sults obtained using pre-trained NeuMF, as they exhibited
the same patterns as generalized matrix factorizaion (GMF)
and MLP, but did not give a significant improvement.

To resolve the difficulties to obtain good results with the
Netflix≥4 dataset for GMF and MLP models, we used in-
stead the Netflix≥5 dataset. The main difference being that
only ratings of five and above are considered as positive.

BERT4Rec: This sequence-aware recommender system
was introduced in (Sun et al. 2019). We implemented it in
PyTorch and integrated it with the MAMO framework. Most
of the hyperparameters used were taken from the original
paper. The number of transformer layers is set to 2, the head
number is 4, head dimensionality is 64, and the dropout is
0.1. We use a sequence length of 100, while the proportion
of masked inputs is 0.2. The model is trained using the Adam
optimizer with a learning rate of 1e-4.

BERT4Rec Extension: We propose an extension to
BERT4Rec. BERT4Rec consumes sequences of items. The
positions in the sequence that the user wishes to predict are
filled with a special mask identifier. When predicting the
next item(s) in a sequence, (Sun et al. 2019) place a mask
on the last position in the sequence, and then take the top-
k items from the probability distribution of this position, as
generated by the model. Instead of selecting the top-k items
from the last (masked) position in the sequence, we suggest
to select them from the last-p positions, all of which are
masked in the input sequence. From each position in p we
select the top-bkp c items, making sure that there are no re-
peated items. If k is not divisible by p, the leftover elements
are selected from the first masked position.

5.3 Experimental Setup
The experiments conducted show how an inadequate manner
of creating the validation sets in the deployment-ready phase

4https://github.com/swisscom/ai-research-mamo-framework.
5https://pytorch.org/docs/stable/generated/torch.svd.html.
6https://github.com/guoyang9/NCF.

leads to false confidence in the performance of the evaluated
model. In the deployment-ready phase, what we call the val-
idation set is not necessarily used for hyperparameter tun-
ing, but to assess the performance of the model before it is
deployed. There are minor differences in the datasets used
for the models with and without user representation. Models
without user representation require some input interactions
to be able to predict targets, while those without simply need
to be passed a user identifier.

We divide our experiments into three sets, corresponding
to the type of evaluation.

Traditional Evaluation. Similarly to (Liang et al. 2018),
we divide the data into a train set with 80% of users, valida-
tion set with 10% and test set with 10%. The target user-item
interactions are selected by randomly sampling 20% of the
user-item interactions in the validation and test sets.

We show that if a model is evaluated on and later ap-
plied to a task that entails predicting randomly held-out in-
teractions, the performance achieved on both validation and
test sets is comparable. This traditional approach is typically
used to report model performance.

We then contrast performance on randomly held-out in-
teractions in the validation set against temporally held-out
interactions in the test set. We take 5% of the users from
the train set to create the validation set and hold-out 20% of
their interactions. The test set contains the interactions and
users from the train and validation sets as inputs, and the
temporally held-out interactions are targets.

Temporal Evaluation. We show that when evaluated with
either a proportional or hard temporal cutoff, the model’s
performance is closer to what would be observed in a real-
life setting. However, it is important to note the ideal evalu-
ation technique is heavily domain dependent.

First, we hold out the last 20% of user-item interactions
from each user in the validation set. In the second approach,
we hold out the last couple of months of activity and evaluate
the model’s ability to predict these interactions. We create
the validation and test sets as before.

Temporal Evaluation with Added Temporal Context.
We introduce temporal context into the traditionally time-
independent Mult-VAEPR by using the work from (Milo-
jkovic et al. 2019) to optimize the model for accuracy and
recency. To calculate the recency score we must determine a
timestamp for every item in the itemset. We take the times-
tamp of the moment that the item first became available, or
the first recorded instance of any user interacting with the
given item. The strict temporal cutoff validation set is uti-
lized, as well as the temporal test set described previously.

5.4 Evaluation Metrics
We evaluate models using three ranking metrics, as recom-
menders can often only show a predefined number of rec-
ommendations.
• Precision@K: calculates how many of the recommended

items are relevant to the user;
• Recall@K: quantifies the proportion of relevant items in

the top-k recommended items by calculating how many of



Dataset Model Valtrad Valprop Valcutoff Testtemp

ML-20M

Mult-VAEPR 0.32 / 0.18 0.26 / 0.13 0.11 / 0.06 0.11 / 0.07
SVD 0.25 / 0.22 0.14 / 0.11 0.07 / 0.03 0.11 / 0.07
GMF 0.25 / 0.22 0.11/ 0.10 0.08 / 0.03 0.10 / 0.07
MLP 0.25 / 0.23 0.12 / 0.10 0.07 / 0.03 0.11 / 0.07

Steam Mult-VAEPR 0.20 / 0.02 0.14 / 0.02 0.11 / 0.01 0.13 / 0.01
SVD 0.10 / 0.02 0.10 / 0.02 0.09 / 0.01 0.08 / 0.01

Netflix≥4 Mult-VAEPR 0.35 / 0.18 0.22 / 0.10 0.12 / 0.05 0.10 / 0.05
SVD 0.23 / 0.16 0.23 / 0.16 0.09 / 0.05 0.07 / 0.04

Netflix≥5
SVD 0.23 / 0.10 0.23 / 0.11 0.12 / 0.05 0.09 / 0.03
GMF 0.31 / 0.14 0.30 / 0.14 0.14 / 0.05 0.12 / 0.04
MLP 0.31 / 0.14 0.30 / 0.14 0.14 / 0.05 0.12 / 0.04

Table 2: Results of the Mult-VAEPR, SVD, GMF, and MLP evaluated on a traditional, proportionally selected temporal, and
strict cutoff validation set, as well as on a temporally shifted test set. We report Recall / Precision at k = 20.

Dataset Valtrad Testtrad

ML-20M 0.31 / 0.17 0.31 / 0.17
Steam 0.20 / 0.02 0.20 / 0.02
Netflix≥4 0.35 / 0.19 0.35 / 0.19

Table 3: Results of initial Mult-VAEPR experiments, evalu-
ated on a traditional evaluation protocol. We report Recall /
Precision at k = 20.

the desirable items are are suggested to the end-user. We
take our definition from (Liang et al. 2018);

• Recency@K: assigns a recency score to each item, calcu-
lating the rating of the top-k recommended and relevant
items. For user u with relevant items Iu we define ω(k)
as the item at rank k, where I is the indicator function:

Recency@K(u, ω, f) =

K∑
k=1

I[ω(k) ∈ Iu]× f(ω(k))

(2)

6 Results
Traditional Evaluation. This experiment aims to show
that the traditional way of evaluation recommender systems,
shown in Table 3, is not a faithful representation of the en-
vironments in which they are actually deployed. The good
performance achieved by evaluating in this way can provide
a false sense of security.

Our claim is supported by the values highlighted by Ta-
ble 2. Even though the validation sets are not identical to the
ones before, the performance observed is very similar. How-
ever, it degrades on the time delayed test set, or to be more
precise, when it simulates what would happen in a produc-
tion setting. Drops in performance of -65.63%, -35.00%, and
-71.43% can be observed, on the Recall@20 values.

We postulate that this discrepancy leads to significant dis-
sonance between the results of certain recommenders as re-
ported in literature, and those observed in their real-life ap-
plication.

Temporal Evaluation. The results shown in Table 2 de-
pict what happens when using traditional validation as ap-
posed to our proposed evaluation sets. The table illustrates
how the strict cutoff validation set approximates the deploy-
ment behavior. For all datasets, this approach seems to be
a closer estimation of the “real-life” performance. For ex-
ample, the drop in performance is reduced from -71.43%
to -16.67% on the Netflix≥4 dataset. The proportionally
selected validation sets seems to work well for the Steam
dataset, and we know from industry experience that it can
be good on others. However, it seems to be highly dataset
specific and is something that should be kept in mind.

Table 2 also shows that this phenomenon is not isolated to
the Mult-VAEPR, but can be repeated with the SVD, GMF,
and MLP models. As mentioned before, we were unable to
conduct experiments on Netflix≥4 with the GMF and MLP
models; therefore we report their results on Netflix≥5.

The most severe drop in performance is in the case of tra-
ditional evaluation on the GMF and MLP on the Netflix≥5
dataset, where the Recall@20 decreases by -61.29%.

It is important to note that simpler methods, especially
those based on matrix factorization, do not deal well with
the Steam dataset. This is the sparsest dataset that we work
with, as shown in Table 1, and this seems to make it difficult
to learn anything meaningful. Following this conclusion, we
exclude the Steam dataset results for GMF and MLP. How-
ever, we keep the results for SVD.

We strongly recommend that these evaluation methods be
taken into account when presenting novel achievements in
the field. When feasible, we recommend to apply both eval-
uation protocols.

Temporal Evaluation and Temporal Models. The re-
sults presented so far were achieved using traditional rec-
ommender architectures, with no way of learning temporal
dynamics. Our next contribution is to integrate the temporal
dynamic in the training process. Table 4 shows the results
obtained with BERT4Rec and BERT4Rec(5). We apply this
extension in the testing phase only. The results show that
while it boosts the predictive power of the model in some



0.3 0.4 0.5 0.6 0.7
Recency@20

0.11

0.12

0.13

0.14

0.15
Re

ca
ll@

20
Single-Objective
Multi-Objective

(a) ML20m dataset.
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(b) Steam dataset.
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Figure 4: Pareto Fronts obtained through optimizing on one objective (accuracy), and two objectives (accuracy and recency).

Dataset Model Valcutoff Testtemp

ML-20M BERT4Rec 0.20 / 0.09 0.15 / 0.08
BERT4Rec(5) - 0.15 / 0.08

Steam BERT4Rec 0.21 / 0.02 0.17 / 0.02
BERT4Rec(5) - 0.18 / 0.02

Netflix≥4 BERT4Rec 0.24 / 0.13 0.20 / 0.05
BERT4Rec(5) - 0.21 / 0.06

Table 4: Results of BERT4Rec and BERT4Rec(5) evaluated
on a strict cutoff validation set and a time delayed test set.
BERT4Rec(5) is only applied on the test set. We report Recall
/ Precision at k = 20.

Dataset Model R P Re

ML-20M Mult-VAEPR 0.11 0.07 0.23
MOREVAE 0.13 0.08 0.47

Steam Mult-VAEPR 0.13 0.01 0.15
MOREVAE 0.13 0.01 0.18

Netflix≥4 Mult-VAEPR 0.10 0.04 0.34
MOREVAE 0.12 0.05 0.66

Table 5: Comparison of Mult-VAEPR and MOREVAE re-
sults obtained on temporally shifted test sets. We report
Recall, Precision, and Recency at k = 20.

cases, the benefits vary from case to case.
By comparing Table 4 and Table 2 (that contain results

achieved with traditional, time-independent recommenders),
BERT4Rec achieves the best performance on the test set.
This confirms our hypothesis that temporal dynamics should
be accounted for in both evaluation design and model archi-
tecture in order to attain the best possible recommenders.

Temporal Evaluation with Added Temporal Context.
To further integrate the temporal context, our following
contribution has the recency included as an objective in-
fluencing the optimization. We refer to the multi-objective
Mult-VAEPR as the Multi-Objective Recency Enriched mult-
VAEPR(MOREVAE).

We present both the Pareto Fronts obtained during train-

ing and the results of the best models on the test sets. Those
results were obtained through more intense training than
those shown in the previous sections. The Pareto Fronts were
generated by evaluating on the strict cutoff validation sets
during training, and the best models were chosen by select-
ing those with the highest Recall@20 and applying them to
the time delayed test sets. Figure 4 shows that the multi-
objective approach not only dominates the single objective
one in terms of recency, but that optimizing for recency also
increases the relevance of the recommendations, validating
our initial intuition. The results of the best models over
the test sets are shown in Table 5. The improvements ob-
tained are 18.18%, 0.00%, and 20% for Recall@20; 14.29%,
0.00%, and 25.00% for Precision@20. The improvements
seen in Recency@20 are 104.35%, 20.00%, and 94.12%.

7 Conclusion
Following standard offline recommendation evaluations dur-
ing development, based on random sampling of user-item
interactions as held-out data, leads to false confidence when
deploying models in real-life scenarios. Previous research
generally focused on developing better metrics to reflect
real-world performance, but still omitted temporal context.
We highlighted the lack of standardization and proposed
two temporal evaluation protocols that empirically better ap-
proximate real-life conditions.

Our second contribution is a novel recency objective,
that can be used to integrate temporal information in exist-
ing time-unaware recommenders. We propose to leverage a
multi-objective approach and train models on relevance and
recency simultaneously. Experiments on three real-world
publicly available datasets showed that our method produced
solutions that strictly dominate those obtained with a model
trained on a single-objective optimization.

We explored datasets that are frequently used in recom-
mender systems research, all related to digital media con-
tent. Digital media content is consumed frequently and gen-
erally without much repetition. The importance of recency
and capturing transient behavioral trends may not be equiv-
alent in other recommender systems applications, such as
grocery or clothes shopping. The influence of temporal dy-
namics on these sectors is an exciting topic, and we leave it
to future academic and commercial research.
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