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Abstract
Federated Learning by nature is susceptible to low-
quality, corrupted, or even malicious data that can
severely degrade the quality of the learned model.
Traditional techniques for data valuation cannot be
applied as the data is never revealed. We present a
novel technique for filtering, and scoring data based
on a practical influence approximation (‘lazy’ in-
fluence) that can be implemented in a privacy-
preserving manner. Each participant uses his own
data to evaluate the influence of another partici-
pant’s batch, and reports to the center an obfuscated
score using differential privacy. Our technique al-
lows for highly effective filtering of corrupted data
in a variety of applications. Importantly, we show
that most of the corrupted data can be filtered out
(recall of > 90%, and even up to 100%), even un-
der really strong privacy guarantees (ε ≤ 1).

1 Introduction
The success of Machine Learning (ML) depends to a large
extent on the availability of high-quality data. This is a par-
ticularly important issue in Federated Learning (FL) since
the model is trained without access to raw training data. In-
stead, a single center uses data held by a set of independent
and sometimes self-interested data holders to jointly train a
model. Having the ability to score and filter irrelevant, noisy,
or malicious data can (i) significantly improve model accu-
racy, (ii) speed up training, and even (iii) reduce costs for the
center when it pays for data.

Federated Learning [McMahan et al., 2017a; Kairouz et
al., 2021; Wang et al., 2021] is different from traditional cen-
tralised ML approaches. Challenges such as scalability, com-
munication efficiency, and privacy can no longer be treated
as an afterthought; rather, they are inherent constraints of the
setting. For example, data holders often operate resource-
constrained edge devices, and include businesses and/or med-
ical institutions that must protect the privacy of their data due
to confidentiality or legal constraints.

We are the first to introduce a practical approach
for scoring, and filtering contributed data in a Fed-
erated Learning setting that ensures strong, worst-
case privacy.

Figure 1: Data filtering procedure. A Center heads a federation of
participants A,B1, .., BN−1 that each hold private data relevant to
the joint model. Participant A sends an obfuscated ‘lazy’ (i.e., par-
tial/approximate) parameter update to participants Bi, who evaluate
it using their own testing data, and vote on the quality. Their votes
are aggregated using a differentially private mechanism and used by
the Center C to decide on whether to incorporate A’s data. See Sec-
tion 1.2.

A clean way of quantifying the effect of data point(s) on
the accuracy of a model is via the notion of influence [Koh
and Liang, 2017; Cook and Weisberg, 1980]. Intuitively, in-
fluence quantifies the marginal contribution of a data point
(or batch of points) on a model’s accuracy. One can com-
pute this by comparing the difference in the model’s empiri-
cal risk when trained with and without the point in question.
While the influence metric can be highly informative, it is im-
practical to compute: re-training a model is time-consuming,
costly, and often impossible, as participants do not have ac-
cess to the entire dataset. We propose a simple and practical
approximation of the sign of the exact influence (‘lazy’ in-
fluence approximation), which is based on an estimate of the
direction of the model after a small number of local training
epochs with the new data.

Another challenge is to approximate the influence while
preserving the privacy of the data. Many approaches to
Federated Learning (e.g., [McMahan et al., 2018; Triast-
cyn and Faltings, 2019]) remedy this by combining FL with
Differential Privacy (DP) [Dwork, 2006a; Dwork, 2006b;
Dwork et al., 2006a; Dwork et al., 2006b], a data anonymiza-
tion technique that is viewed by many researchers as the gold
standard [Triastcyn, 2020]. We show how the sign of influ-
ence can be approximated in an FL setting while maintain-
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ing strong differential privacy guarantees. Specifically, there
are two sets of participants’ data that we need to protect: the
training and the test data (see also Section 1.2). For the train-
ing data being evaluated, we clip and add noise to the gradi-
ents according to [McMahan et al., 2017b], which achieves a
local differential privacy guarantee. To ensure the privacy of
the test data and the influence approximation itself, we em-
ploy a differentially private defense mechanism based on the
idea of randomized response [Warner, 1965] (inspired by [Er-
lingsson et al., 2014]). Together the two mechanisms ensure
strong, worst-case privacy guarantees, while allowing for ac-
curate filtering of data.

The proposed approach can be used as a ‘right of passage’
every time a participant joins the federation, or periodically
during communication rounds (most resource intensive, but
would provide the best results), or even as a diagnostic tool.
A quality score is useful for various purposes beyond filter-
ing poor data, such as rewarding the data provider, incen-
tivizing users in a crowdsourcing application, assessing a data
provider’s reputation, and so on.

1.1 Our Contributions
There are two major challenges we address in this work: (i)
efficiently estimating the quality of a batch of training data,
and (ii) keeping both the training and test data used for this
estimate private. For the former, we develop a novel metric
called ‘lazy’ influence, while for the latter we add noise to the
gradients, and propose a differentially private voting scheme.
More specifically:

(1) We present a novel technique (‘lazy’ influence approx-
imation) for scoring and filtering data in Federated Learning.

(2) Our proposed distributed influence aggregation scheme
allows for a robust scoring, even under really strict, worst-
case differential privacy guarantees (privacy cost ε < 1). This
is the recommended value in DP literature, and much smaller
than many other AI or ML applications.1 .

(3) We evaluate our approach on two well-established
datasets (CIFAR10, and CIFAR100), and demonstrate that fil-
tering using our scheme can eliminate the negative effects of
inaccurate data.

1.2 High Level Description of Our Setting
A center C coordinates a set of participants to train a single
model (Figure 1). C has a small set of ‘warm-up’ data which
are used to train an initial model M0 that captures the desired
input/output relation. We assume that each data holder has a
set of training points that will be used to improve the model,
and a set of test points that will be used to evaluate the con-
tributions of other participants. To prohibit participants from
tailoring their contributions to the test data, it must be kept
private. For each federated learning round t (modelMt), each
data holder participant will assume two roles: the role of the

1AI or ML applications often assume ε as large as 10 [Triastcyn
and Faltings, 2019] (see e.g., [Tang et al., 2017]). For certain attacks,
ε = 10 means that an adversary can theoretically reach accuracy of
99.99% [Triastcyn and Faltings, 2019]

contributor (A), and the role of the tester (B). As a contrib-
utor, a participant performs a small number of local epochs
to Mt – enough to get an estimate of the gradient2 – using
a batch of his training data zA,t. Subsequently, A sends the
updated partial model Mt,A, with specifically crafted noise
to ensure local DP, to every other participant (which assumes
the role of a tester). The applied noise protects the update
gradient, while still retaining information on the usefulness
of data. Each tester B uses its test dataset to approximate
the empirical risk of A’s training batch (i.e., the approximate
influence). This is done by evaluating each test point and
comparing the loss. In a FL setting, we can not re-train the
model to compute the exact influence; instead, B performs
only a small number of training epochs, enough to estimate
the direction of the model (‘lazy’ influence approximation).
As such, we opt to look at the sign of the approximate in-
fluence (and not the magnitude). Each tester aggregates the
signs of the influence for each test point, applies controlled
noise to ensure DP, and sends this information to the center.
Finally, the center decides to accept A’s training batch if the
majority ofBs report positive influence, and reject otherwise.

2 Related Work and Discussion
Federated Learning Federated Learning (FL) [McMahan
et al., 2017a; Kairouz et al., 2021; Wang et al., 2021;
Li et al., 2020] has emerged as an alternative method to train
ML models on data obtained by many different agents. In
FL a center coordinates agents who acquire data and pro-
vide model updates. FL has been receiving increasing atten-
tion in both academia [Lim et al., 2020; Yang et al., 2019;
He et al., 2020; Caldas et al., 2018] and industry [Hard et
al., 2018; Chen et al., 2019], with a plethora of real-world
applications (e.g., training models from smartphone data, IoT
devices, sensors, etc.). Moreover, clustering techniques have
seen recent usage in Federated Learning [Shu et al., 2022].

Influence functions Influence functions are a standard
method from robust statistics [Cook and Weisberg, 1980] (see
also Section 3), which were recently used as a method of ex-
plaining the predictions of black-box models [Koh and Liang,
2017]. They have also been used in the context of fast cross-
validation in kernel methods and model robustness [Liu et al.,
2014; Christmann and Steinwart, 2004]. While a powerful
tool, computing the influence involves too much computation
and communication, and it requires access to the training and
testing data (see [Koh and Liang, 2017] and Section 3).

Data Filtering A common but computationally expensive
approach for filtering in ML is to use the Shapley Value of
the Influence to evaluate the quality of data [Jia et al., 2019b;
Ghorbani and Zou, 2019a; Jia et al., 2019a; Yan et al., 2020;
Ghorbani and Zou, 2019b]. Other work includes for example
rule based filtering of least influential points [Ogawa et al.,
2013], or constructing weighted data subsets (corsets) [Das-
gupta et al., 2009]. While data filtering might not always
pose a significant problem in traditional ML, in a FL setting

2The number of local epochs is a hyperparameter. We do not
need to fully train the model. See Section 3.4.
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Figure 2: Model accuracy (relative to the fully trained model on the
entire MNIST dataset) for increasing mislabeling rates. We compare
a centralized model with no filtering of mislabeled data (blue), to a
FL model under perfect (oracle) filtering (orange).

it is more important because even a small percentage of mis-
labeled data can result in a significant drop in the combined
model’s accuracy. As a motivating example, consider Fig-
ure 2. In this scenario, we have participants with corrupted
data (replaced the original label with a random one). Even a
5− 10% of corrupted participants results in a practically un-
usable model. Filtering those corrupted participants (orange
line), restores the model’s performance.

Because of the privacy requirements in FL, contributed
data is not directly accessible for assessing its quality. [Tuor
et al., 2021] propose a decentralized filtering process specific
to federated learning, yet they do not provide any formal pri-
vacy guarantees.

Differential Privacy Differential Privacy (DP) [Dwork,
2006a; Dwork, 2006b; Dwork et al., 2006a; Dwork et al.,
2006b] has emerged as the de facto standard for protecting
the privacy of individuals. Informally, DP captures the in-
creased risk to an individual’s privacy incurred by his par-
ticipation in the learning process. As a simplified intuitive
example, consider a participant being surveyed on a sensi-
tive topic. In order to achieve differential privacy, one needs
a source of randomness, thus the participant decides to flip
a coin. Depending on the result (heads or tails), the partic-
ipant can reply truthfully, or at random. Now an attacker
can not know if the decision was taken based on the partici-
pant’s actual preference, or due to the coin toss. Of course,
to get meaningful results, we need to bias the coin towards
the true data. In this simple example, the logarithm of the
ratio Pr[heads]/Pr[tails] represent the privacy cost (also re-
ferred to as the privacy budget), denoted traditionally by ε.
Yet, one has to be careful in designing a DP mechanism,
as it is often hard to achieve a meaningful privacy guar-
antee in a practical way (i.e., avoid adding a lot of noise
and maintain high accuracy) [Triastcyn and Faltings, 2019;
Danassis et al., 2022]. A variation of DP, especially use-
ful in our context, given the decentralized nature of feder-
ated learning, is Local Differential Privacy (LDP) [Dwork
et al., 2014]. LDP is a generalization of DP that pro-
vides a bound on the outcome probabilities for any pair
of individual participants rather than populations differing
on a single participant. Intuitively, it means that one can-
not hide in the crowd. Another strength of LDP is that it
does not use a centralized model to add noise–participants
sanitize their data themselves– providing privacy protection
against a malicious data curator. For a more comprehen-
sive overview of DP, we refer the reader to [Triastcyn, 2020;

Dwork et al., 2014]. We assume that the participants and the
Center are honest but curious, i.e., they don’t actively attempt
to corrupt the protocol but will try to learn about each other’s
data.

3 Methodology
We aim to address two challenges: approximating the influ-
ence of a (batch of) datapoint(s) without having to re-train the
entire model from scratch, and doing so while protecting pri-
vacy of training and testing data. The latter is important not
only to protect the sensitive information of users, but also to
ensure that malicious participants can not tailor their contri-
butions to the test data.

In what follows, we first introduce the notion of influ-
ence [Cook and Weisberg, 1980], and our proposed ‘lazy’
approximation. Second, we describe a differentially private
reporting scheme for crowdsourcing the approximate influ-
ence values.

3.1 Setting
We consider a classification problem from some input space
X (e.g., features, images, etc.) to an output space Y (e.g.,
labels). In a Federated Learning setting, there is a center C
that wants to learn a model M(θ) parameterized by θ ∈ Θ,
with a non-negative loss function L(z, θ) on a sample z =
(x̄, y) ∈ X × Y . Let R(Z, θ) = 1

n

∑n
i=1 L(zi, θ) denote the

empirical risk, given a set of data Z = {zi}ni=1. We assume
that the empirical risk is differentiable in θ.The training data
are supplied by a set of data holders.

3.2 Exact Influence
In simple terms, influence measures the marginal contribution
of a data point on a model’s accuracy. A positive influence
value indicates that a data point improves model accuracy,
and vice-versa. More specifically, let Z = {zi}ni=1, Z+j =
Z ∪ zj where zj 6∈ Z, and let

R̂ = min
θ
R(Z, θ) and R̂+j = min

θ
R(Z+j , θ)

where, R̂ and R̂+j denote the minimum empirical risk their
respective set of data. The influence of datapoint zj on Z is
defined as:

I(zj , Z) , R̂− R̂+j (1)
Despite being highly informative, influence functions have

not achieved widespread use in Federated Learning (or Ma-
chine Learning in general). This is mainly due to the com-
putational cost. Equation 1 requires a complete retrain of the
model, which is time-consuming, and very costly; especially
for state-of-the-art, large ML models. Moreover, specifically
in our setting, we do not have direct access to the training
data. In the following section, we will introduce a practi-
cal approximation of the influence, applicable in Federated
Learning scenarios.

3.3 Influence Approximation
Koh and Liang [2017] adopted the first order Taylor approxi-
mation of influence (based on [Cook and Weisberg, 1982]) to
understand the effects of training points on the predictions of



a centralised ML model. To the best of our knowledge, this is
the current state-of-the-art approach to utilizing the influence
function in ML, thus it is worth taking the time to understand
the challenges that arise if we try to adopt this approximation
in the Federated Learning setting.

Let θ̂ = arg minθ R(Z, θ) denote the empirical risk min-
imizer. The approximate influence of a training point zj on
the test point ztest can be computed without having to re-train
the model, according to the following equation:

Iappr(zj , ztest) , −∇θL(ztest, θ̂)H
−1
θ̂
∇θL(zj , θ̂) (2)

where H−1
θ̂

is the inverse Hessian computed on all the
model’s training data. The advantage of Equation 2 is that we
can answer counterfactuals on the effects of up/down-scaling
a training point, without having to re-train the model. One can
potentially average over the test points of a tester participant,
and/or across the training points in a batch of a contributor
participant, to get the total influence.

Challenges
While Equation 2 can be an effective tool in understanding
centralised machine learning systems, it is ill-matched for
Federated Learning models, for several key reasons.

To begin with, evaluating Equation 2 requires forming and
inverting the Hessian of the empirical risk. With n train-
ing points and θ ∈ Rm, this requires O(nm2 + m3) oper-
ations [Koh and Liang, 2017], which is impractical for mod-
ern day deep neural networks with millions of parameters. To
overcome these challenges, Koh and Liang [2017] used im-
plicit Hessian-vector products (HVPs) to more efficiently ap-
proximate ∇θL(ztest, θ̂)H

−1
θ̂

, which typically requires O(p)

[Koh and Liang, 2017]. While this is a somewhat more ef-
ficient computation, it is communication-intensive, as it re-
quires transferring all of the (either training or test) data at
each FL round. Most importantly, it can not provide any
privacy to the users’ data; an important, inherent require-
ment/constraint in FL.

Finally, to be able to compute Equation 2, the loss func-
tion has to be strictly convex and twice differentiable (which
is not always the case in modern ML applications). Koh and
Liang [2017] propose to swap out non-differentiable compo-
nents for smoothed approximations, but there is no quality
guarantee of the influence calculated in this way.

3.4 ‘Lazy’ Influence: A Practical Influence Metric
for Filtering Data in FL Applications

The key idea is that we do not need to approximate the influ-
ence value to filter data; we only need an accurate estimate
of its sign (in expectation). Recall that a positive influence
value indicates that a data point improves model accuracy,
and vice-versa, thus we only need to approximate the sign of
Equation 1, and use that information to filter out data whose
influence falls below a certain threshold.

Our proposed approach works as follows (recall that each
data holder participant assumes two roles: the role of the con-
tributor (A), and the role of the tester (B)):

(i) For each federated learning round t (model Mt(θt)),
the contributor participant A performs a small number k of

Algorithm 1: Filtering Poor Data Using Influence
Approximation in Federated Learning

Data: θ0, Zi, Ztest, Zinit
Result: θT

1 C: The center (C) initializes the model M0(θ0)
2 for t ∈ T rounds of Federated Learning do
3 C: Broadcasts θt
4 for Pi in Participants do
5 Pi: Acts as a contributor (A). Performs k local

epochs with ZA,t on the partially-frozen
model θ̃At .

6 Pi: Applies DP noise to θ̃At .
7 Pi: sends last layer of θ̃At to Participants−i.
8 for Pj in Participants−i do
9 Pj : Acts as a tester (B). Evaluates the loss

of ZBtest on θt
10 Pj : Evaluates the loss of ZBtest on θ̃At
11 Pj : Calculates vote v (sign of influence),

according to Equation 3
12 Pj : Applies noise to v according to his

privacy parameter p to get v′
13 Pj : Sends v′ to C
14 C: Filters out Pi’s data based on the votes

from Participants−i (i.e., if∑
∀B Iproposed(Z

B
test) < T ).

15 C: Updates θt using data from unfiltered
Participants;

local epochs to Mt using a batch of his training data ZA,t,
resulting in θ̃At . k is a hyperparameter. θ̃At is the partially
trained model of participant A, where most of the layers, ex-
cept the last one have been frozen. The model should not
be fully trained for two key reasons: efficiency, and avoiding
over-fitting (e.g., in our simulations we only performed 1-9
epochs). Furthermore, A adds noise to θ̃At (see Section 3.5)
to ensure strong, worst-case local differential privacy. Finally,
A sends only the last layer (to reduce communication cost) of
θ̃At to every other participant.

(ii) Each tester B uses his test dataset ZBtest to esti-
mate the sign of the influence using Equation 3. Next, the
tester applies noise to Iproposed(ZBtest), as will be explained
in Section 3.6, to ensure strong, worst-case differential pri-
vacy guarantees (i.e., keep his test dataset private).

Iproposed(ZB
test) , sign

 ∑
ztest∈ZB

test

L(ztest, θt)− L(ztest, θAt )


(3)

(iii) Finally, the center C aggregates the obfus-
cated votes Iproposed(Z

B
test) from all testers, and fil-

ters out data with cumulative score below a threshold
(
∑
∀B Iproposed(Z

B
test) < T ). Specifically, we cluster the

votes into two clusters (using k-means), and use the arith-
metic mean of the cluster centers as the filtration threshold.

The pseudo-code of the proposed approach is presented in
Algorithm 1.



Advantages of the proposed ‘lazy’ influence
The designer may select any optimizer to perform the model
updates, depending on the application at hand. We do not re-
quire the loss function to be twice differentiable and convex;
only once differentiable. It is significantly more computa-
tion and communication efficient; an important prerequisite
for any FL application. This is because participant A only
needs to send (a small part of) the model parameters θ, and
not his training data. Moreover, computing a few model up-
dates (using e.g., SGD, or any other optimizer) is significantly
faster than computing either the exact influence or an approx-
imation, due to the challenges mentioned in Sections 3.2 and
3.3. Finally, and importantly, we ensure the privacy of both
the train and test dataset of every participant.

3.5 Sharing the Partially Updated Joint Model:
Privacy and Communication Cost

Each contributor participant A shares a partially trained
model θ̃At (see step (i) of Section 3.4). It is important to
stress that A only sends the last layer of the model. This has
two significant benefits: it reduces the communication over-
head (in our simulations, we only send 0.009% of the model’s
weights),3 and minimize the impact of the differential privacy
noise. We follow [McMahan et al., 2017b] to ensure strong
local differential privacy guarantees by (i) imposing a bound
on the gradient (using a clipping threshold ∆), and (ii) adding
carefully crafted Gaussian noise (parameterised by σ). For
more details, please see [McMahan et al., 2017b].

3.6 Differentially Private Reporting of the
Influence

Along with the training data, we need to also ensure the pri-
vacy of the test data used to calculate the influence. Protect-
ing the test data in a FL setting is critical since (i) it is an
important constraint of the FL setting, (ii) participants want
to keep their sensitive information (and potential means of in-
come, e.g., in a crowdsourcing application) private, and (iii)
the center wants to ensure that malicious participants can not
tailor their contributions to the test set.

We proposed to obfuscate the influence reports using
RAPPOR [Erlingsson et al., 2014], which results in an ε-
differential privacy guarantee [Dwork et al., 2006b]. The ob-
fuscation process (permanent randomized response [Warner,
1965]) takes as input the participant’s true influence value v
(binary) and privacy parameter p, and creates an obfuscated
(noisy) reporting value v′, according to Equation 4. Subse-
quently, v′ is memorized and reused for all future reports on
this distinct value v.

v′ =


+1, with probability 1

2p

−1, with probability 1
2p

v, with probability 1− p
(4)

p is a user-tunable parameter that allows the participants
themselves to choose their desired level of privacy, while

3Moreover, as explained in the Introduction, this communication
cost will be incurred as little as one time, when we use our approach
as a ‘right of passage’ every time a participant joins the federation.

maintaining reliable filtering. The worst-case privacy guar-
antee can be computed by each participant a priori, using the
following formula [Erlingsson et al., 2014]:

ε = 2 ln

(
1− 1

2p
1
2p

)
(5)

It is important to note that in a Federated Learning ap-
plication, the center C aggregates the influence sign from a
large number of participants. This means that even under re-
ally strict privacy guarantees, the aggregated influence signs
(which is exactly what we use for filtering), will match the true
value in expectation. This results in high quality filtering, as
we will demonstrate in Section 4.

To demonstrate the effect of Equation 4, we visualize the
obfuscation process in Figure 3. Figure 3a shows us the sum
of true votes (y-axis) for the test data of each contributor
participant (x-axis). Here we can see a clear distinction in
votes between corrupted and correct batches. Most of the cor-
rupted batches (corrupted contributor participant) take neg-
ative values, meaning that the majority of the testers voted
against them, while the correct batches are close to the up-
per bound. Figure 3b demonstrates the effect of applying DP
noise (ε = 1) to the votes. Due to the noise, differentiating
between the two groups becomes more challenging. To find
an effective decision threshold, we use k-means to cluster the
votes into two clusters and use the arithmetic mean of the
cluster centers as the filtration threshold (Figure 3c).

4 Evaluation Results
We evaluated the proposed approach on two well-established
datasets:

1. CIFAR10 32x32 images, 10 classes [Krizhevsky, 2009].

2. CIFAR100 A dataset similar to the previous one,
where the number of classes has been expanded to
100 [Krizhevsky, 2009].

Setup
Our evaluation involves a single round of Federated Learn-
ing. A small portion of every dataset (around 1%) is selected
as the ‘warm-up’ data used by the center C to train the ini-
tial model M0. Each participant has two datasets: a train-
ing batch (ZA, see Section 3.4, step (i)) which the participant
uses to update the model when acting as the contributor par-
ticipant, and a test dataset (ZBtest, see Section 3.4, step (ii)),
which the participant uses to estimate the sign of the influ-
ence when acting as a tester participant. The ratio of these
datasets is 2 : 1. The training batch size is 100 (i.e., the train
dataset includes 100 points, and the test dataset 50 points).
This means that e.g., for a simulation with 100 participants,
each training batch is evaluated on 50× (100−1) test points,
and that for each training batch (contributor participant A),
the center collected (100− 1) estimates of the influence sign
(Equation 3).

The corruption used for the evaluation is generated by re-
placing the original label with a random one. We corrupted
30% of the total batches (i.e., participants). For each cor-
rupted batch, we corrupted 90% of the data points.
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Figure 3: Visualization of the voting scheme. The x-axis represents a contributor participant A. The y-axis shows the sum of all votes from
all the testers, i.e.,

∑
∀B Iproposed(Z

B
test). Figure 3a corresponds to the sum of true votes (no privacy) for the test data of each contributor

on the x-axis, while Figure 3b depicts the sum of differentially private votes (ε = 1), according to Equation 4. Finally, Figure 3c shows the
filtration threshold, which corresponds to the arithmetic mean of the two cluster centers (computed using k-means).

(a) α→∞ (b) α→ 100 (c) α→ 10

(d) α→ 0.1 (e) α→ 0.01 (f) α→ 0

Figure 4: Dirichlet distribution visualisation for 10 classes,
parametrized by α. α controls the concentration of different classes.
Each row represents a participant, each color a different class, and
each colored segment the amount of data the participant has from
each class. For α → ∞, each participant has the same amount of
data from each class (IID distribution). For α→ 0, each participant
only holds data from one class. In this work, we use α→ 0.1 for a
non-IID distribution.

Each simulation was run 8 times. We report average values,
and standard deviations. For a comprehensive overview of the
results, please see the supplement.

Non-IID Setting
The main hurdle for Federated Learning is the fact that not
all data is IID. Heterogeneous data distributions are all but
uncommon in the real world. To simulate a Non-IID distribu-
tion we used Dirichlet distribution to split the training dataset
as in related literature [Hsu et al., 2019; Lin et al., 2020;
Hoech et al., 2022; Yu et al., 2022]. This distribution is pa-
rameterized by α which controls the concentration of differ-
ent classes, as visualised in Figure 4. In this work, we use
α → 0.1 for a non-IID distribution, as in related literature
(e.g., [Yu et al., 2022]).

Implementation
The proposed approach is model-agnostic, and can be used
with any gradient-descent based machine learning method.
For our simulations we used a Vision Transformer (ViT), as
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Figure 5: F1 score on Cifar10, IID, ε = 1, with 100 participants.
We vary the training parameters (training epochs in the vertical axis,
learning rate in the horizontal) used for partially training a model by
the contributor participant A (see step (i) of Section 3.4).

Filtration Metrics

Distribution Recall Precision Accuracy

CIFAR 10 IID 97.08 ± 3.51 % 91.91 ± 7.15 % 96.38 ± 2.83 %
Non-IID 93.75 ± 5.12 % 69.02 ± 6.28 % 85.00 ± 3.28 %

CIFAR 100 IID 99.17 ± 2.20 % 97.96 ± 2.30 % 99.12 ± 1.27 %
Non-IID 92.50 ± 5.71 % 55.41 ± 3.94 % 75.12 ± 3.76 %

Table 1: Quality of filtration metrics for a setting with 100 partici-
pants, under strict worst-case privacy guarantees (ε = 1). Please see
the supplement for the complete results.

it exhibits state-of-the-art performance [Dosovitskiy et al.,
2020] (specifically, HuggingFace’s implementation [Wolf et
al., 2020]).

4.1 Recall, Precision, and Accuracy of Filtration
Recall is the most informative metric to evaluate the effi-
ciency of our filtering approach. Recall refers to the ra-
tio of detected mislabeled batches over all of the mislabeled
batches. Including a mislabeled batch can harm a model’s
performance significantly more, compared to removing an
unaltered batch. Thus, achieving high recall is of paramount
importance.



Meanwhile, precision represents the ratio of correctly iden-
tified mislabeled batches, over all batches identified as mis-
labeled. An additional benefit of using the proposed ‘lazy’
influence metric for scoring data is that it also allows us to
identify correctly labeled data, which nevertheless do not pro-
vide a significant contribution to the model.

Table 1 shows the recall, precision, and accuracy of filtra-
tion for our two datasets, for both IID and non-IID (α = 0.1)
distributions, for a setting with 100 participants, and under
strict worst-case differential privacy guarantees (ε = 1). The
proposed ‘lazy’ influence results in highly effective filtering
of corrupted data (recall of > 90%, in both IID and non-IID
settings).

Precision and accuracy are also high. Of course, there is
some degradation in the precision for the non-IID setting, but
this is to be expected given the low concentration of classes
per participant (high degree of non-IID). Importantly, the
metrics improve (including the precision) as we increase the
number of participants (see Figure 6, horizontal axis). In sim-
ple terms, more testers mean more samples of the different
distributions, thus ‘honest’ participants get over the filtering
threshold, even in highly non-IID settings. As seen in Fig-
ure 6b, the precision in the non-IID setting increases dramat-
ically to 85% (for the same ε = 1) by increasing the number
of participants to just 500.

Finally, Figure 5 depicts the effects of different training
parameters (for partially training the model by the contribu-
tor participant A, see step (i) of Section 3.4) to the F1 score
(harmonic mean of the precision and recall). Our proposed
approach requires only 3-9 epochs to achieve high quality fil-
tration, instead of a complete re-training of the model for the
exact influence.

4.2 Privacy
As expected, there is a trade-off between privacy, and qual-
ity of filtration (see Figure 6, vertical axis, where ε refers
to the privacy guarantee for both the training, and test
data/participant votes). Nevertheless, Figure 6 demonstartes
that our approach can provide reliable filtration, even un-
der really strict, worst-case privacy requirements (ε = 1,
which is the recommended value in the DP literature [Tri-
astcyn, 2020]). Importantly, our decentralized framework al-
lows each participant to compute and tune his own worst-case
privacy guarantee a priori, using Equation 5.

The privacy trade-off can be mitigated, and the quality of
the filtration can be significantly improved, by increasing the
number of participants (Figure 6, horizontal axis). The higher
the number of participants, the better the filtration (given a
fixed number of corrupted participants). This is because as
the number of participants increases, the aggregated influence
signs (which is exactly what we use for filtering), will match
the true value in expectation. For 500 participants, we achieve
high quality filtration even for ε = 0.75. This is important
given that in most real-world FL applications, we expect a
large number of participants.

5 Conclusion
Privacy protection is a core element of Federated Learning.
However, this privacy also means that it is significantly more
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Figure 6: Recall (top), and Precision (bottom) on CIFAR 10, non-
IID, for increasing problem size (number of participants), and vary-
ing privacy guarantees (ε – lower ε provides stronger privacy).

difficult to ensure that the training data actually improve the
model. Mislabeled, corrupted, or even malicious data can re-
sult in a strong degradation of the performance of model, and
privacy protection makes it significantly more challenging to
identify the cause.

In this work, we propose the ’lazy’ influence, a practical
approximation of the influence to obtain a meaningful score
that characterizes the quality of training data and allows for
effective filtering (recall of > 90%, and even up to 100% as
we increase the number of participants), while fully maintain-
ing the privacy of both the training and test data under strict,
worst-case ε-differential privacy guarantees.

The score can be used to filter bad data, recognize good
and bad data providers, and pay data holders according to the
quality of their contributions. We have documented empiri-
cally that poor data have a significant negative impact on the
accuracy of the learned model, and that our filtering technique
effectively mitigates this, even under strict privacy require-
ments ε < 1.
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