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Hike along the creek to the source,

and sit and watch times when the clouds rise.

— Wei Wang (701 – 761)

To my parents
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Abstract
Relational learning has received extensive attentions in recent years since a huge amount of

data is generated every day in the cyber-space and most of them is organized by the relations

between entities. The main tasks of the relational learning include discovering the communi-

ties of entities, classifying the entities, and make predictions of possible new relations. Since

the graph is a natural representation of pairwise relations, these tasks have been widely stud-

ied using the graphs. In this work, we examine the relational learning tasks in the framework

of hypergraph which is an extension of the graph. In a graph, an edge could connect exactly

two vertices, while in a hypergraph a hyperedge could connect any number of vertices. This

extension from graph to hypergraph allows us to represent the higher-order relations such as

the co-occurrence relation.

The existing works of hypergraph learning mainly focus on the so-called “vertex expansion”

where the hypergraph is transformed into a graph that shares the same set of vertices with

the hypergraph. With different weighting functions used in the transformation, the result-

ing graph would have different structures. The spectral graph theory provides us a powerful

tool to analyze the graph structures. It has been shown that one can use the eigenvectors

of the graph Laplacian to discover clusters of vertices in the graph. Therefore, the spectral

techniques are also adapted to the graph transformed from the hypergraph, which serves as

the main ingredient of the clustering and classification algorithms. We show that a special

vertex expansion called the normalized hypergraph cut (NHC) can be also used in the link

prediction task to rank the possible relations that would appear in the future. In fact, the

NHC expansion is able to produce a latent factor space where each entity is represented by a

vector and all the vectors form approximately orthogonal clusters.

On the other hand, instead of taking the vertex-centric view in the vertex expansions, we

turn to the hyperedge-centric view and develop the “hyperedge expansion” that reflects an-

other category of objective functions defined on the hyperedges. We show that the hyperedge

expansion objectives can be attained by computing the eigenvectors of the Laplacian of a di-

rected auxiliary graph, and this eigen-decomposition is equivalent to a quadratic eigenvalue

problem (QEP). Based on the analysis of the above eigen-decomposition, we present the clus-

tering and classification algorithms with the hyperedge expansion.

All the approaches developed in this work are compared with state-of-the-art methods in
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real applications. First the clustering algorithms are evaluated on the network traffic inspec-

tion problem where network traffic records are collected from real corporate networks. The

resulting network traffic clusters could give the network administrators a better understand-

ing of the services and traffic flows. Then the classification algorithms are tested in a semi-

supervised setting with different relational datasets. We show that the hypergraph-based

approaches perform significantly better than the feature-space algorithms when the data

can be naturally organized with the co-occurrence relations. Finally the link prediction al-

gorithms based on matrix factorization techniques are adapted into a recommender system

and evaluated with datasets from the music and book domains. Evaluation results show that

the hypergraph-based approach outperforms the other methods, such as singular value de-

composition and non-negative matrix factorization, in terms of the accuracy and diversity of

the recommendations.

Keywords: relational learning, hypergraph learning, spectral graph theory, recommender

system, network traffic inspection
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Résumé
L’apprentissage relationnel a reçu une attention particulière ces dernières années depuis

qu’un gros volume de donnée est généré sur internet tout les jours, et la pluspart est organisé

par des relations entre entités. Les tâches principales de l’apprentissage relationnel inclus la

découverte de communautés d’entités, la classification d’entités, and faire des prédictions

sur des relations possible. Comme le graphe est une représentation naturelle des relations

par paires, ces tâches ont été largement étudiées à l’aide de graphes. Dans ce travail, nous

examinons les tâches d’apprentissage relationel dans le cadre d’hypergraphe qui est une ex-

tension de graphe. Dans un graphe, un arc peut être connecté exactement à deux sommets,

tandis que dans un hypergraphe un hyperarc peut être connecté à n’importe quel nombre

d’arcs. Cette extension de graphe à hypergraphe nous permet de représenter des relations

d’ordre supérieur telles que la relation de co-occurence.

Les travaux existant sur l’apprentissage d’hypergraphe se concentre principalement sur l’ex-

tension de sommets dont l’hypergraphe est transformé en un graphe partageant le même

ensemble de sommets que l’hypergraphe. Avec des fonctions de poids différentes utilisées

dans la transformation, le graphe résultant aurait des structures différentes. La théorie des

graphes spectraux nous donne un outil puissant pour analyser les structures des graphes. Il a

été démontré qu’il est possible d’utiliser les vecteurs propres du graphe Laplacien afin de dé-

couvrir des groupes de sommets dans un graphe. Ainsi, les techniques spectrales sont aussi

adaptées au graphe résultant de la transformation de l’hypergraphe, nous donnant l’ingré-

dient principal pour les algorithmes de regroupement et de classification. Nous montrons

que q’une extension spéciale de sommets appellée coupe d’hypergraphe normalisée (CHN)

peut aussi être utilisée dans la täche de prédire des liens pour classer des relations possible

qui pourraient apparaître dans le future. En fait, l’extension CHN est capable de produire un

espace factoriel latent dans lequel chaque entité est représentée par un vecteur et tous les

vecteurs forment un groupe orthogonal approximatif.

D’un autre côté, à la place de prendre une vue centrée sur les sommets dans l’extension de

sommet, nous considérons une vue centrée sur les hyperarcs, et nous développons l’exten-

sion d’hyperarcs qui reflète une autre catégorie de fonctions objectives définie sur les hy-

perarcs. Nous montrons que les objectifs de l’extension d’hyperarc peuvent être atteint en

calculant les vecteurs propres du Laplacien du graphe auxiliaire dirigé, et que cette décom-
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position propre est équivalente au problème de valeur propre quadratique. Basé sur l’analyse

de la décomposition propre, nous présentons des algorithmes de regroupement et classifica-

tion avec une extension d’hypergraphe.

Toutes les approches développées dans ce travail sont comparées avec l’état de l’art pour des

applications réelles. Premièrement, les algorithmes de regroupement sont évalués sur un pro-

blème d’inspection de trafic réseau dans lequel des rapports de trafic réseau sont collectés de

réseaux d’entreprise réels. Les groupes de résultant peuvent donner aux administrateur de ré-

seau une meilleure compréhension des services et flux de trafic. Ensuite les algorithmes de

classification sont testés dans cadre semi-supervisé avec différent ensembles de données re-

lationnelles. Nous montrons que les approches basées sur l’hypergraphe se comportent sen-

siblement mieux que les algorithmes d’espace caractéristique lorsque les données peuvent

être naturellement organisée par des relations de co-occurence. Finallement, les algorithmes

de prédiction de liens basés sur la factorisation matricielle sont adaptés aux systèmes de re-

commendation et évalués avec des ensembles de données dans le domaines des livres et

musiques. Les résultats de l’évaluation montrent que l’approche basée sur l’hypergraphe est

plus performante que que les autres méthodes pour ce qui est de la précision et la diversité

des recommendations.

Mots-clés : apprentissage relationnel, apprentissage d’hypergraphe, théorie des graphes spec-

traux, systèmes de recommendation, inspection de trafic réseau
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1 Introduction

People understand the world by recognizing the objects in the world and connecting them

with relations. The genealogy tells us which family a person belongs to, an alliance shows us

which countries are on the same side, and the follower-following relation decides who makes

the biggest impact in an online social network. We have been using the relations for a long

time to distinguish, categorize, and classify the objects, or even predict new relations that

would appear in the future. As our world going quickly to the direction of digitization and

mobile, an enormous amount of data is generated everyday on the Internet by the users, and

many of them are recorded in terms of relations.

In this work, we study the relations and the learning problems with relational data. Tradition-

ally the relational data is organized as high-dimensional data points, e.g. see [Roweis and

Saul, 2000] for the relations between the words and documents, and special algorithms are

designed for this type of inputs. However, as it turns out, relations are different from the data

points in a vector space. The relations are essentially subsets of entities, and the correlations

between entities are described in terms of intersections between the subsets. While in a vec-

tor space, the correlations between data points are usually defined by a distance function

or a similarity function. In many applications, modelling the entities with relations would be

more natural than modelling them with feature vectors. For example, the users in a social net-

work can be easily linked by the follower-following relations, but it would be very factitious

to create a feature vector for each user to describe these relations.

In recent years, many types of relational learning problems have been extensively studied

[Getoor and Diehl, 2005, Getoor, 2007]. The clustering and classification problems require

to learn a partition of entities so that each entity is attached with a label. For example, given

a social network, we would like to discover the communities (clusters) of people who have

stronger connectivity within a community than between the communities. The identified

communities can be used to interpret the underlying social structures such as the emerging
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Chapter 1. Introduction

political/cultural groups. Another example would involve the interactions in a cell and the

gene expressions measured from a patient. We know that some diseases are caused by cer-

tain genes expressions through the signaling pathways. Thus it would help the doctor if we

can classify the disease by measuring the gene expression profile of the patient and making

inference through the relations in the pathway network. The third type of relational learning

tasks tries to predict the future relations. In the million-dollar Netflix Prize, we are given a set

of ratings for some movies from a set of users, and the goal is to recommend more movies, or

discover more relations between the users and the movies, based on the given ratings [Ben-

nett and Lanning, 2007]. This task is challenging because other than studying the correlations

between the users and the movies, we need to create a model such that the existing correla-

tions can be generalized to make predictions. The above three tasks, namely the clustering,

classification, and link prediction, are the main learning problems in this work.

1.1 Pairwise and Co-occurrence Relations

There are mainly two types of relations discussed in this work, namely the pairwise relation

and the co-occurrence relation. A pairwise relation is also called a binary relation. It involves

in two entities, usually of the same type. For example, a friendship relation connects two

persons. Normally the friendship is symmetric, which means that if Bob is a friend of Alice,

Alice is also a friend of Bob. A binary square matrix A can be used to describe all the possible

relations. The rows and columns of A are named after the entities, and the entry A(i , j ) is set

to 1 if a pairwise relation exists between the row entity i and the column entity j , otherwise

A(i , j ) is set to 0. For a symmetric relation, the matrix A is also symmetric. Another type of

pairwise relation is the asymmetric relation, which allows only one direction of the relation-

ship between any two entities. If Bob is the parent of Alice, Alice cannot be the parent of Bob.

In this case, it is not possible to have A(i , j ) = 1 and A( j , i ) = 1 at the same time. But in many

Internet applications, pairwise relations are neither symmetric nor asymmetric. For example,

the twitter following-follower relation can be one-directional or bi-directional.

The pairwise relation has two limitations. Firstly, it could only describe homogeneous rela-

tions. Secondly, a pairwise relation could only relate exactly two entities. However, in many

cases, there are entities of different types, and a relation could involve more than two entities.

A co-occurrence relation is a natural extension of the pairwise relation. It could contain any

number of entities (can be zero) that have co-occurred. For example, some students have

participated in the same course, so we can create a co-occurrence relation that includes all

these students. The co-occurrence relation can be named after the place or the occasion

where the entities have co-occurred. In the above example, the course name could be the

name of the co-occurrence relation. When there are many co-occurrence relations, the set of

all entities that can co-occur is denoted as Z = {z1, z2, ..., zn} (e.g. the students), and the set

2



1.1. Pairwise and Co-occurrence Relations

of co-occurrence relations is denoted as Y = {y1, y2, ..., ym} (e.g. the courses). A binary ma-

trix (usually non-square) X of size m×n can be used to describe the co-occurrence relations.

Each row of X represents a co-occurrence relation in Y , and each column of X represents

an entity in Z . The entry X (i , j ) is set to 1 if the entity z j is observed in the co-occurrence

relation yi .

The roles of the entities in Z and the entities in Y can be swapped. Consider the courses taken

by a student, we could include these courses in a co-occurrence relation which is named after

the student. When performing this role swapping, the relation matrix X is simply transposed.

As the co-occurrence relations are represented by a 2-dimensional matrix, it could only dis-

play two types of entities. Many existing works have extended this representation to a multi-

dimensional array (tensor) for more types of entities [Lin et al., 2009, Acar et al., 2009, Neubauer

and Obermayer, 2009]. But in this work our discussion is restricted to the 2-dimensional case,

because the tensor method often suffers from the sparsity of the data, and in most applica-

tions the multi-dimensional representation can be approximated by several 2-dimensional

matrices.

It is possible to approximate a co-occurrence relation by a set of pairwise relations. This can

be done by connecting each pair of entities in the co-occurrence relation with a pairwise re-

lation. But some information is lost and some additional non-desirable information is added

in this transformation. Consider the above example, the students from the CS department

and the students from the EE department may attend the same course. This fact simply tells

us that all the students in the course are likely to be in the same group because they share

the same technical background, but the sub-group structures within this group are unknown.

However, with the pairwise transformation, each pair of students in the course are connected,

which implicitly suggests that a CS student is likely to be in the same group with an EE stu-

dent. The meaning of the pairwise relations has been changed. Existing works have studied

the differences between pairwise relations and co-occurrence relations, and suggested that

the (higher-order) co-occurrence relations cannot be easily approximated by the pairwise

relations [Agarwal et al., 2005, 2006, Bulò and Pelillo, 2009, Ladicky et al., 2010].

It is worth mentioning that both pairwise relation and co-occurrence relation can only de-

scribe the positive correlations between the entities, i.e. the information states that the enti-

ties are similar. A very fundamental assumption about these models is the transitivity. With

the pairwise relations, if computer A is connected to computer B and computer B is con-

nected to computer C, there must be a connection between computer A and computer C.

And the similar property holds for the co-occurrence relations. In fact, almost all the existing

works exploit this basic assumption to make inferences, and our learning algorithms in this

work also rely on the transitivity. Therefore, dissimilar relations such as “these students come

3
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from different cities” are not supported in this work.

1.2 Graph and Hypergraph

It is straightforward to model the pairwise relations as a graph. Let G = {V ,E } denote a graph

where V is the vertex set and E is the edge set. Each entity can be represented by a vertex v ∈
V , and each pairwise relation can be represented by an edge e ∈ E that connects two entities

v ∈ V and u ∈ V . The graph can be undirected if the pairwise relations are symmetric, and

directed if the relations are non-symmetric (including the asymmetric case). The adjacency

matrix of the graph is exactly the the matrix A introduced in the previous section. In this

work, we assume that there is no edge from a vertex to itself, i.e. there is no relation from an

entity to itself.

Similarly, a set of co-occurrence relations can be represented by a hypergraph H = {Z ,Y }.

The vertex set Z is the set of entities that could appear in the co-occurrence relations, and

each element in the hyperedge set Y represents one co-occurrence relation. In fact, each hy-

peredge is a subset of Z , i.e. yi ∈ Y , yi ⊆ Z . The difference between a graph and a hypergraph

is that an edge in a graph connects exactly two vertices, while a hyperedge could connect

any number of vertices. We use the same notation yi for a hyperedge and a co-occurrence

relation, since they are referring to the same thing.

When the relational data is modeled by a graph or a hypergraph, the learning problem of clus-

tering or classification can be expressed by a partition of the vertex set. Taking the friendship

graph as an example, the people are represented by the vertices, and the friendship relations

are represented by the edges. We would like to identify the communities of people, i.e. a

partition of the vertex set, where people have stronger connections within a community than

between the communities. To make the partition reasonable, one has to precisely define what

is a good partition. In the context of graph, a straightforward rule would consider a partition

that leaves the least number of edges between communities as the best partition. In other

words, we would like to minimize the edge-cut when applying the partition [Wu and Leahy,

1993].

When it comes to the hypergraph, there are two choices. First, we could transform each co-

occurrence relation to a set of pairwise relations and form a graph. Then we can simply bor-

row the rules from the graph to determine the best partition. Second, it is also possible to

define new rules directly on the hypergraph, but all the techniques developed for the graphs

have to be revised for the new rules. These two approaches are studied and compared in

Chapter 3 and Chapter 4.

The main tool that we use to study the graph and the hypergraph is the spectral graph the-
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1.3. Overview and Contributions

ory [Chung, 1997]. The spectral graph theory tries to decompose a graph into orthogonal

components such that different components can be studied separately. Since the discov-

ery of the Fiedler vector (the second eigenvector of a graph Laplacian) in bi-partitioning a

graph [Fiedler, 1973], the spectral techniques are extensively studied for clustering problems

in graphs. In this work, we introduce these techniques as the main tools and extend them to

the hypergraphs.

In the Internet applications, another very important observation is about the degree distri-

bution of the vertices in the graphs or hypergraphs. Instead of an uniform or a normal dis-

tribution, there are usually a few very high-degree vertices and a lot of low degree-vertices.

The actual distribution usually follows a power-law function [Faloutsos et al., 1999]. With

this type of distribution, a good partition based on the edge-cut does not always exist. Large

graphs tend to have an expander-like core and the community structures are hard to find

[Abou-Rjeili and Karypis, 2006, Leskovec et al., 2009]. Generative models like preferential

attachment [Newman, 2001] and “forest fire” model [Leskovec et al., 2005] provide possible

explanations for the power-law distribution and the expander core. But if the partition is

based on the vertex-separator instead of the edge-cut, balanced partition does exist by re-

moving the high degree vertices [Albert et al., 2000]. Inspired by these works, we observe that

a hypergraph constructed from a real world application often consists of a few hyperedges

that include many vertices. The transformation from co-occurrence relations to pairwise re-

lations would usually generate a power-law graph. Thus a partition can be better expressed

in the original hypergraph, which inspires our work in Chapter 4.

1.3 Overview and Contributions

In Chapter 2, we formally define the graph, the hypergraph, and the learning tasks. Then the

spectral graph theory is briefly introduced in the view of clustering the vertices in a graph. We

also present a generative model based on the beta-Bernoulli process, which provides a foun-

dation for the subsequent chapters. In Chapter 3, the spectral graph theory is extended to

the hypergraph case, by the so called vertex expansions. The idea of vertex expansions is very

similar to the above-mentioned transformation from the co-occurrence relations to the pair-

wise relations. But more sophisticated measures are taken to ensure that the transformation

exhibits desired properties. We present the algorithms for the learning tasks based on the

vertex expansions. And for the first time we show a justification of using the vertex expansion

in an asymmetric manner in the link prediction task. In Chapter 4, we examine another cat-

egory of hypergraph transformations that focus on the hyperedges rather than the vertices.

This so called hyperedge expansion has drawn much less attentions in the literatures com-

pared to the vertex expansions. For the first time we use a vertex-separator formulation in

the transformation, and study the spectral properties of the resulting directed graph. Then
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Chapter 1. Introduction

the algorithms for the clustering and classification tasks are presented. In Chapter 5, three

experimental studies are carried out for the clustering, (semi-supervised) classification, and

link prediction tasks. We show that our algorithms could produce good results in the real

applications like network traffic inspection and recommender system. In Chapter 6, we con-

clude the thesis and propose several future research directions.

The contributions of this work include the following. We adapt the nonparametric Bayesian

models to the “multi-class beta-Bernoulli process” which describes the generating process

of a hypergraph (section 2.4). Based on this model, we could analyze the properties of a

hypergraph, such as the sparsity of the hypergraph Laplacian (section 3.2 and 4.1) and the

orthogonal structure of the vertex embeddings (section 3.2). To our best knowledge, this

is the first work to combine such model with the spectral graph theory. Since the power-

law distribution of vertex degrees is often observed in real applications, the link between the

generating process that would produce the same type of distribution and the spectral graph

theory is especially worth attentions.

The second main contribution of our work is the hyperedge expansion. We focus on the

hyperedges, and take a different view in the transformation from a hypergraph to an auxiliary

graph. The minimum hyperedge cut problem is converted to a minimum vertex separator

problem, and then a min-cut problem in a directed graph (section 4.1). We show that the

spectrum of the above directed graph is essentially the same as the spectrum of a quadratic

eigenvalue problem of the half size, and thus can be used to approximately solve the original

minimum hyperedge cut problem (section 4.2). To our best knowledge, this is the first work

to analyze the spectral properties of the minimum hyperedge cut problem and link it to a

quadratic eigenvalue solution.

We also propose a link prediction algorithm whose prediction rule is justified in the frame-

work of multi-class beta-Bernoulli process (section 3.4), and the clustering/classification al-

gorithms with the hyperedge expansion (section 4.3).

Finally, experiments with real applications and benchmark datasets are carried out to show

the effectiveness of our proposed methods (chapter 5). It is worth mentioning that the hy-

pergraph based relational learning algorithms have been successfully applied to a network

traffic inspection tool which could help the network administrators to understand the traffic

flows in the real corporate networks (section 5.1).
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2 Relational Learning with Hypergraphs

The early studies of hypergraph focus on the partitioning [Lawler, 1973], matching and colour-

ing problems [Berge, 1989] from a pure mathematical point of view. Then the hypergraphs

have been used to describe the co-occurrence relations of logical formulas [Park and Van Gelder,

1996], association rules in databases [Han et al., 1997], and VLSI circuits [Karypis et al., 1997].

As soon as the volume of relational data has dramatically increased from popular Internet and

mobile applications, the use of hypergraph or similar models has diversified into many areas,

such as recommender system[Siersdorfer and Sizov, 2009, Bu et al., 2010], community detec-

tion[Lin et al., 2009, Neubauer and Obermayer, 2009], inference of graphical models[Kok and

Domingos, 2009], and parallel computing[Devine et al., 2006, Gonzalez et al., 2012b].

The methodology of hypergraph research is also extended by the spectral graph theory [Chung,

1993, Zien et al., 1999, Zhou et al., 2007]. Just as the physicists study the spectrum of signals

to reveal the composition of a material, spectral graph theory studies the principal proper-

ties and structures of a graph by decomposing the graph into a set of orthogonal bases. The

spectral properties are closely connected to interesting phenomenons in a graph, e.g. the

community structure, the diffusing time, and the fault tolerance property. The spectral graph

theory plays a central role in our studies of hypergraph.

Another line of works zooms into the fundamental mechanisms with which the relations

emerge [Newman, 2001, Chojnacki and Kłopotek, 2010, Broderick et al., 2012]. It is interesting

to see how simple rules can be applied to individual entities and yet the aggregated behavior

of a group follows certain patterns (e.g. the power-law distribution of vertex degrees). We

propose a generative model based on existing works to create a hypergraph, which provides

justifications for our usage of hypergraphs in various applications.

In this chapter we formally define the hypergraph and the problems to be studied, introduce

the related techniques such as the spectral graph theory, and propose a generative model for
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Chapter 2. Relational Learning with Hypergraphs

hypergraphs. These components form the foundations of our work.

2.1 Graph and Hypergraph

A weighted graph G = {V ,E , w } consists of a vertex set V , an edge set E , and a weighting func-

tion w : E →R+. Each edge in the graph connects exactly two vertices e = (vi , v j ), and the

weight of an edge w (e) is assumed to take only positive real values. If the graph is directed,

the edges connecting the same pair of vertices in opposite directions are different edges, i.e.

e = (vi , v j ) �= e ′ = (v j , vi ). In this work, a graph is assumed to be undirected by default if the

type is not specified. The weighted degree of a vertex is the sum of the weights of the edges

which are connected to that vertex, i.e. deg (v)=∑e∈E ,e=(v,v ′) w (e). Similarly, when the graph

is directed, the in-degree of a vertex is i ndeg (v) = ∑e∈E ,e=(v ′,v) w (e), and the out-degree is

out deg (v)=∑e∈E ,e=(v,v ′) w (e).

Let n = |V | denote the number of vertices in the graph. The (weighted) adjacency matrix is

a n ×n real matrix A, where A(i , j ) = w (e) if the edge e = (vi , v j ) exists. When the graph is

undirected, A is symmetric (or real Hermitian). The (weighted) degree matrix is a n ×n real

diagonal matrix D whose main diagonal contains the (weighted) degrees of the vertices.

A weighted hypergraph H = {Z ,Y , w } consists of a vertex set Z , a hyperedge set Y , and a weight-

ing function w : Y →R+. Each hyperedge y ∈ Y is a subset of Z , i.e. y ⊆ Z . A hyperedge y is

incident with a vertex z if z ∈ y . The weight of a hyperedge w (y) is assumed to take only pos-

itive real values. The weighted degree of a vertex is the sum of the weights of the hyperedges

that are incident with that vertex, i.e. deg (z) =∑z∈y,y∈Y w (y). The degree of a hyperedge is

the number of vertices within that hyperedge, i.e. deg (y)= |y |.

Let n = |Z | denote the number of vertices, and m = |Y | denote the number of hyperedges.

The incident matrix is a m×n binary matrix X , where the entry X (i ,k)= 1 if the hyperedge yi

is incident with the vertex zk , otherwise X (i ,k)= 0. The m ×m diagonal matrix of hyperedge

degrees is defined as Dy = diag(X 1), where 1 is a all-ones vector of proper length. Let W

denote the m ×m diagonal matrix of the hyperedge weights, i,e, W = diag
(
w (yi )

)
. The n ×n

diagonal matrix of vertex degrees is defined as Dz = diag(1�W X ), where (·)� denotes the

transpose of a matrix or a vector.

A hypergraph is an extension of a graph (the edges in a graph can be considered as hyperedges

of fixed degree), so we could represent a graph either in the form of the adjacency matrix A,

or in the form of the incident matrix X and the weight matrix W .

We say that a hypergraph (or similarly a graph) H is connected if for any pair of vertices zi , z j ∈
Z , there exists a hyperedge path {y1, y2, ..., yp } such that zi ∈ y1, z j ∈ yp and yk ∩ yk+1 �= 	
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2.1. Graph and Hypergraph

(1 ≤ k < p). Without loss of generality, in this work we assume that a hypergraph (or a graph)

is always connected.

The (undirected) induced graph GH = {VGH ,EGH , wGH } derived from a hypergraph H = {Z ,Y , w }

consists of the same vertex set VGH = Z . An edge e = (vi , v j ) ∈ EGH is placed between the ver-

tices vi and v j in GH if there exists a hyperedge y in the original hypergraph which is incident

with both vi and v j . The weight of the edge is defined as wGH (e) =∑y∈Y ,y�vi ,v j
w (y)/deg (y).

It is easy to show that the hypergraph is connected if and only if the induced graph is con-

nected.

Another representation of the hypergraph or the co-occurrence relations resorts to a bi-partite

graph Gb . The vertex set of Gb is the union of the set Z and Y in the original hypergraph. But

an edge in Gb can only connect a member of Z to a member of Y . There is no edge con-

necting members within Z or within Y . The weights of the hyperedges can be attached to

the vertices corresponding to Y such that the graph Gb is vertex-weighted (only some ver-

tices have weights). Or we can assign weights to the edges of Gb so that Gb is edge-weighted.

Figure 2.1 illustrates an example of a hypergraph, its induced graph, and the corresponding

bi-partite graph.
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hypergraph 

induced graph 

bi-partite graph 

Figure 2.1: An example of a hypergraph, the induced graph, and the corresponding bi-partite
graph.

There is an one-to-one mapping from a hypergraph to a bi-partite graph. But an induced

graph can be mapped to multiple hypergraphs. In fact, the adjacency matrix of the induced

graph GH can be written as AGH = D−1/2
z X�D−1

y W X D−1/2
z , providing that the entries in the

main diagonal of AGH are set to zeros. The induced graph GH is uniquely determined by AGH ,

while the combination of X and W that could generate AGH is usually not unique.

Below we list some examples of hypergraphs. They are constructed from real datasets and
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Chapter 2. Relational Learning with Hypergraphs

used for illustrations through this work.

Example 2.1.1. [���] Consider some animals and their attributes. Some animals have 2 legs,

some have 4 legs. And some animals live in the sea, while some others could fly. The animals

that share the same attribute are considered to be similar. We can use the co-occurrence

relations to model such similarities. To represent the ��� data with a hypergraph, each ani-

mal is represented by a vertex, and each hyperedge contains the animals who share the same

attribute. For example, one hyperedge contains all the animals of 2 legs, and another hyper-

edge contains all the animals living in the sea. The total number of hyperedges depends on

the number of attributes and the number of values that each attribute could take from.

Example 2.1.2. [!"!��	#��
$] Consider the books available in Amazon.com and the users

who purchase the books. The books purchased by the same user are usually similar because

these books have similar features for attracting the user, although we do not know what are

the features explicitly. For example, one user might only purchase comic books, and another

user might only purchase love stories and biographies. To represent the !"!��	#��
$ data

with a hypergraph, we can take each book as a vertex, and each user as a hyperedge that

contains all the books (vertices) that he or she has purchased.

Example 2.1.3. ["%$�] Consider the music artists in a music store and the users who listen

to the musics. The users usually choose the artists by their personal preferences on the artist’s

music styles or genres. The artists visited by the same user would have similar styles. In the

"%$� data, we use a vertex to represent an artist, and a hyperedge to represent a user which

contains all the artists who have been visited by this user.

2.2 Learning Tasks

The relational learning tasks on a hypergraph can be classified into several categories. Below

we formally define three categories of tasks that are studied in this work.

2.2.1 Clustering

The goal of the clustering task is to find a partition of the vertex set such that similar vertices

are grouped together. A (vertex) partition or a clustering of a hypergraph H consists of s non-

overlapping subsets of the vertex set, i.e. C = {c1,c2, ...,cs } where c j ⊆ Z , c j �= 	, c j ∩c j ′ = 	 for

j �= j ′ and ∪c j = Z . Each subset c j is called a cluster or a group. When there is no confusion,

we also denote the cluster that a vertex z belongs to as C (z).

By the above definition, the clusters are mutually exclusive, which means that a vertex could

belong to exactly one cluster. This seems to be a very strong assumption, since in many real

applications a vertex could be involved in multiple clusters. For example, an artist could play
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with more than one genres, and a book could have both romantic and SiFi styles. In fact,

the mutual exclusion assumption is still valid in such cases because we could create a cluster

for each combination of genres or styles. Then the groups of artists who play with different

combinations of genres, or the groups of books that have distinct combinations of styles are

mutually exclusive.

The optimal partition of the clustering task depends on how we define the similarities be-

tween the vertices. In general we have an objective Φ(H ,C ) ∈R that tells the goodness of the

partition, and the optimal partition would simply minimize (or maximize) Φ(H ,C ). Notice

that Φ(H ,C ) also depends on s (the number of clusters).

2.2.2 Semi-supervised Learning

Another task that is similar to the clustering task is the semi-supervised learning. In this task

we also would like to find a partition C of the vertex set. But unlike the clustering, the number

of clusters s is known and the clusters of some vertices are already given. In other words, we

know a partial clustering T = {t1, t2, ..., ts } where t j ⊆ Z , t j �= 	 and t j ∩ t j ′ = 	 for j �= j ′, but

the union ∪t j is not necessarily equal to Z . The goal of the task is to find a full clustering C

that minimizes (or maximizes) Φ(H ,C ), where C has the same number of clusters as T and

coincides with T on the given vertices ∪t j . Taking the ��� dataset as an example, we know

the biological classes of some animals (vertices), and we would like to classify the remaining

animals by the co-occurrence relations encoded in the hypergraph. If the tiger is known to

be in the mammal class, and the cat shares many hyperedges with tiger, cat is probably also

in the mammal class.

The same mutually exclusive assumption on the final clustering is applied to the vertices in

the semi-supervised learning task.

2.2.3 Link Prediction

The last task can be better described with the bi-partite graph representation. Suppose that

the edges in the bi-partite graph Gb represent the co-occurrence relations that we have ob-

served so far. In the link prediction task we would like to predict a new set of edges ÊGb in Gb

that would appear in the near future. This prediction is usually based on the existing relations

and a model of how the relations are generated.

In our model, we follow the common assumption that a clustering structure C does exist for

the vertices on one side of the bi-partite graph, which is usually chosen to be the vertex set

Z in the hypergraph. And we also assume that a vertex on the other side of the bi-partite

graph (representing a hyperedge y ∈ Y ) creates new edges to the vertices in Z according to a
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distribution or a preference over the clusters {c1,c2, ...,cs }. The best clustering over Z is also

learned from the objective Φ(H ,C ).

For example, in the !"!��	#��
$ data, each book (vertex) belongs to a category (a cluster,

can be SiFi, romance, comic, or a combination of these), and each user (hyperedge) pur-

chases books by his or her preferences over the categories. Once we have identified the book

categories and the users’ preferences from existing relations, new relations can be predicted

by matching the categories and preferences.

2.3 Spectral Graph Theory

All the three tasks listed above depend on the objective Φ(H ,C ). In this section, we discuss

how the objective Φ(H ,C ) is defined and how to find the optimal clustering C by the spectral

graph theory.

We start with the simple version of the objective where the hypergraph H is actually a graph

G (each hyperedge contains exactly two vertices), so Φ(H ,C ) can be written as Φ(G ,C ). In

this case, each edge in the graph represents a pairwise relation between two vertices. When

making a clustering of the vertices, a possible objective is to minimize the number of edges

that connect vertices from distinct clusters, which can be formulated as a min-cut problem

on the graph. Let a vector c j of length n denote the membership of vertices for cluster c j . If

a vertex v belongs to the cluster c j , the v-th entry of c j (v) is set to 1, otherwise the entry is 0.

By the mutual exclusion assumption between the clusters, a 1 should appear only once in the

v-th entries of all the membership vectors. Let C = [c1,c2, ...,cs ] denote the membership ma-

trix. In a min-cut problem, the weighted sum of the edges connecting vertices from distinct

clusters is

Φ(G ,C ) = 1

2

∑
1≤ j≤s

∑
e=(v,u)∈E

w (e)
(
c j (v)−c j (u)

)2 (2.1)

= 1

2

∑
1≤ j≤s

c�j (D−A)c j (2.2)

= 1

2
trace

(
C� (D−A)C

)
, (2.3)

where the coefficient 1/2 comes from the fact that each edge crossing different clusters is

counted two times. The matrix L= D−A is commonly defined as the combinatorial Laplacian

of the graph. Thus a clustering solution Ĉ to the min-cut problem would minimize Φ(G ,C )
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with the mutual exclusive constraint

Ĉ = argmin
C

1

2
trace

(
C�LC

)
, (2.4)

subject to: C(k , j )∈ {0,1}, C�C = Sd , (2.5)

where Sd is a s × s diagonal matrix containing the cluster sizes. When there are only two

clusters, this combinatorial optimization problem can be solved in polynomial time with a

max-flow algorithm, but the result usually yields very unbalanced clusters. When some ad-

ditional constraints on the cluster sizes or the connectivity of partitions are imposed, this

problem is shown to be NP-hard [Johnson, 1979, Dyer and Frieze, 1985].

A common technique to tackle problem (2.4) is to relax the values in C . Instead of taking value

0 or 1, the entries of C are allowed to take any real value. The last constraint C�C = Sd orig-

inally ensures that each vertex can be assigned to only one cluster, but now this constraint

does not make sense anymore since the membership is a real value. The matrix Sd is a diago-

nal matrix, which implies that c�i c j = 0 for ∀i �= j . Thus we can translate the original mutual

exclusive constraint into a relaxed form

Ĉ = argmin
C

1

2
trace

(
C�LC

)
, (2.6)

subject to: C(k , j )∈R, ∀i �= j , c�i c j = 0, ∀ j , 1�c j = 0,c�j c j = 1. (2.7)

The last constraint prevents a relaxed membership from assigning all the vertices in a single

cluster or forming an empty cluster. Since L is a real symmetric matrix, by the Courant–Fischer

min-max theorem the column vectors in the optimal solution Ĉ should be the eigenvectors

of L.

Theorem 2.3.1 (Courant–Fischer). Let λ1 ≤ λ2 ≤ ... ≤λn and {f1, f2, ..., fn} denote the eigenval-

ues and the corresponding eigenvectors of a n ×n Hermitian matrix M. For any 1 ≤ r ≤ t ≤ n,

and g ∈ span(fr , ..., ft ) with the constraint g�g = 1, we have λr ≤ g�Mg ≤λs .

The set of eigenvalues and eigenvectors of the Laplacian matrix is also called the spectrum

of the graph. It is easy to verify that if the graph is connected, the all-ones vector 1 is an

eigenvector of L corresponding to the smallest eigenvalue 0. Then the optimal solution Ĉ to

(2.6) should contain the eigenvectors of L corresponding to the second smallest eigenvalue

to the s+1 smallest eigenvalue (iteratively consider the subspaces span(f r , ..., f n) in Theorem

2.3.1, r = 2,3, ..., s +1). When only two clusters are requested, the eigenvector corresponding

to the second smallest eigenvalue, often referred as the Fiedler vector [Fiedler, 1973], is the

most useful one.

Theorem 2.3.2 (Cheeger). Let λ2 denote the second smallest eigenvalue of the combinatorial
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Laplacian of a graph G, ΦCheeger = minC
Φ(G ,C )

min(|c1|,|c2|) be the Cheeger constant of G in a partition

of exactly two clusters. The following always holds [Cheeger, 1970, Chung, 1997]

1

2maxv∈V deg (v)
Φ2

Cheeger ≤λ2 ≤ 2ΦCheeger. (2.8)

This result shows that the spectrum of the Laplacian matrix has a close connection to the

clustering structure of the graph. We can bound the optimal min-cut by the eigenvalue of

the Laplacian. Obviously the relaxed solution cannot be directly used as a clustering result,

usually a post-process step is carried out to convert the real values in Ĉ back to binary values.

Some possible post-process steps are discussed later in this work.

Lemma 2.3.3. For the combinatorial Laplacian L of a connected graph G, if the eigenvalues

and the eigenvectors of L are σ1 ≤σ2 ≤ ... ≤σn and {f1, f2, ..., fn}, we have [Chung, 1997]

1. σ1 = 0, and f1 ∝ 1.

2. σn =‖L‖2 ≤ 2maxv deg (v), where ‖ ·‖2 denotes the l2 norm of a matrix.

Proof. The first argument follows directly from the construction of L. Let F = [f 1, f 2, ..., f n

]
be the matrix of the eigenvectors of L. The second argument follows the definition of ‖ · ‖2

and the fact that

σn‖F‖1 = ‖σnF‖1 = ‖LF‖1 ≤ ‖L‖1‖F‖1, (2.9)

where ‖ ·‖1 denotes the l1 norm of a matrix. Thus we have

σn ≤‖L‖1 = max
j

∑
i
|L(i , j )| = 2max

v
deg (v). (2.10)

In the formulation of the combinatorial Laplacian, we do not apply any control to the clus-

ter sizes. But in many real applications, a balanced clustering is desired since it makes more

sense than a trivial clustering where one vertex forms a cluster and all the other vertices form

another cluster. One could enforce a hard constrain on the cluster size, while a more so-

phisticated approach would apply a normalization to the objective for a balanced result. Let

vol (c j ) =∑v∈c j
deg (v) denote the volume of the cluster c j , and c̄ j =V \c j denote the compli-

ment of c j . The new objective normalized by the cluster volumes can be written as [Shi and
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Malik, 2000]

ΦN (G ,C ) = ∑
1≤ j≤s

(
1

vol (c j )
+ 1

vol (c̄ j )

) ∑
e=(v,u)∈E

w (e)
(
c j (v)−c j (u)

)2 (2.11)

= ∑
1≤ j≤s

c�j
(
I −D−1/2AD−1/2)c j (2.12)

= trace
(
C� (I −D−1/2AD−1/2)C

)
, (2.13)

where I is an identity matrix. If a cluster creates a small edge-cut but has even smaller size, the

objective would still have a large value. Therefore, the objective ΦN (G ,C ) prefers a balanced

clustering compared to the un-normalized version Φ(G ,C ). The matrix LN = I −D−1/2AD−1/2

is denoted as the normalized Laplacian. Similar to Lemma 2.3.3, the following holds for the

normalized Laplacian.

Lemma 2.3.4. For the normalized Laplacian LN of a connected graph G, if the eigenvalues

and the eigenvectors of LN are λ1 ≤λ2 ≤ ... ≤λn and {f1, f2, ..., fn}, we have [Chung, 1997]

1. λ1 = 0, and f1 ∝ D−1/21.

2. λn =‖LN‖2 ≤ 2.

3. λ1 ≤ 1 if G is not a complete graph.

We show several examples in Figure 2.2 of the eigenvectors. In the special case where the

graph contains some distinct connected components, it is easy to find out which component

a vertex belongs to by looking at the corresponding entries of the eigenvectors. This trans-

formation can be also regarded as a projection of the vertices to a lower dimensional space,

e.g. 3-d space if the first 3 eigenvectors are used. Such projection is commonly referred as the

spectral embedding. When the graph is connected but contains several clusters, the spectral

embedding would project the vertices belonging to the same cluster to some points that are

close to each other in the lower dimensional space. These points can be further processed to

reconstruct the clusters.

Some graphs have very clear clustering structure, but some other graphs (especially real-

world power-law graphs) does not possess balanced clusters. The differences between these

situations can be reflected by the gap between the consecutive eigenvalues, or the eigen-gap,

in the spectrum of the graph. If the graph consists of s connected components, one can

show that the smallest s eigenvalues of L and LN are all zeros, while all the other eigenvalues

are strictly positive (see [Chung, 1997] Lemma 1.7). The multiplicative gap γs is defined as

γs = λn−λs+1
λn−λs

≤ 1, where λn is the biggest eigenvalue of L or LN . The λn part in the formula

comes from the fact that most numerical methods for computing the eigenvalues can only
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Figure 2.2: Examples of the eigenvectors and eigenvalues of different graphs. The eigenvalues
and eigenvectors from both L and LN of each graph are shown under the graph. There are
roughly 3 clusters in each graph, and the first 4 eigenvalues and the corresponding eigenvec-
tors are shown. We could generally distinguish vertices from different clusters by the first 3
eigenvectors {f 1, f 2, f 3}. The eigen-gap between λ3 and λ4 becomes smaller from left to right
as the clustering structure is less clear (but the multiplicative gap γ3 becomes bigger from left
to right).
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2.4. Multi-class Beta-Bernoulli Process

estimate the eigenvalues of the largest absolute values. Thus we have to shift the spectrum of

L or LN to the negative side of the origin. It can be seen in Figure 2.2 that when the boundary

between clusters are less clear, γs becomes bigger. When computing the first s eigenvalues

and eigenvectors of a matrix, the numerical method usually operates in an iterative fashion.

The number of iterations is determined by the eigen-gap, depending on the actual numerical

method used, e.g. O( 1
1−γs

) iterations for an orthogonal iterations method, and O( 1�
1−γs

) iter-

ations for a Lanczos method [Golub and Van Loan, 1996, Bach and Jordan, 2006, Mavroeidis,

2011]. Therefore, it would require less iterations in the eigenvalue computation for a graph

with a clear clustering structure.

2.4 Multi-class Beta-Bernoulli Process

Various models have been proposed to describe the process of generating relational data. The

nonparametric Bayesian approach provides a scheme in which data are assumed to emerge

from some simple probabilistic rules, and yet follow certain distributions (e.g. power-law)

in a global view. Since the power-law distribution is often observed in real applications, the

nonparametric Bayesian approaches have been well-justified and gained great popularity in

existing works [Broderick et al., 2012]. The well-known Dirichlet process mixture model in-

cludes a distribution over partitions (clusters) of entities, and this distribution can be gener-

ated incrementally in a Chinese restaurant process (CRP). But if we apply the CRP to generate

a hypergraph, a vertex can only be associated with one hyperedge. The beta-Bernoulli process

removes the above limitation to allow an arbitrary number of relations from the vertices to

the hyperedges. This process could be also generated incrementally in the so-called Indian

buffet process [Thibaux and Jordan, 2007, Griffiths and Ghahramani, 2011]. In this section, we

start with a minor variation of the beta-Bernoulli process and model the generated data as a

hypergraph.

Suppose we have two sets of entities Y and Z , and the entities in set Z belong to s clusters

{c1,c2, ...,cs }. This setting is exactly the same as in the definition of the hypergraph and the

clustering task. Take the "%$� data as an example, the set Y is the set of users and Z is the

set of artists. Clusters or partitions over Z can be made according to the genres in which the

artists play. For example, c1 includes the rock music artists, while all the country music artists

are in c2. Each user in the set Y , on the other hand, is assumed to have some preferences

over the music genres. If the user likes rock music, he would like the artists from c1 with a

high probability. Or the user would rarely choose artists from c2 if he doesn’t like country

music. As explained in the previous section, the mutual exclusive assumption over clusters

does not prohibit an artist playing in multiple genres, because we could create a cluster for a

combination of genres when needed.
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A (discrete) beta process B ∼ BP(ξ,B0) is a random process depending on two parameters:

the concentration function ξ is a positive function defined on a finite (discrete) space Ω =
{ωi }, and B0 is of the form B0 =∑i qiδωi where qi ∈ [0,1] and δωi is a unit point mass at ωi .

Then the beta process B follows the similar form B =∑i piδωi , where pi is drawn from a beta

distribution pi ∼ Beta
(
ξ(ωi )qi ,ξ(ωi )(1−qi )

)
. Our model is a simplified version of the model

in [Thibaux and Jordan, 2007] where the space Ω is infinite, while our Ω is finite.

Take the "%$� example again, we can set Ω = Y . Each qi corresponds to a user in Y and

indicates the user’s overall preference to music, while pi can be seen as the actual probability

of observing that the user likes an artist. A qi close to 1 means that the user generally likes

music and thus pi is also likely to be close to 1, and vice-versa.

The concentration function ξ can be different for each cluster, and for simplicity we assume

that the function ξ takes the same value for each ωi (or yi ), i.e. ξ(yi ,c j ) = ξ(yi ′ ,c j ) = ξ(c j ). If

ξ(c j ) is very small (close to 0) for the cluster c j , a user would either very much like an artist in

c j (p
j
i close to 1) or doesn’t like her at all (p

j
i close to 0). Since ξ is different for each cluster,

we use p j
i to indicate the actual probability of observing that the user yi likes an artist from

the cluster c j . The chance of drawing a p
j
i between 0 and 1 is very small, which means that

the samples of p j
i are concentrated on {0,1}. Figure 2.3 shows several examples of this process

with different concentration functions.

relation matrix X p1
i p2

i p3
i

ξ
0
=1

0−
4

ξ
0
=0

.1
ξ

0
=

1
ξ

0
=

10

Figure 2.3: Samples drawn from the multi-class beta-Bernoulli process with m = 10, n = 35,
and different concentration parameters ξ0. There are 3 clusters of sizes {20,10,5}. The param-
eter q0 = 0.2.
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2.4. Multi-class Beta-Bernoulli Process

After we have the p
j
i ’s, the event of observing the user yi likes an artist from cluster c j is

simply a Bernoulli trial with a success probability p j
i . Since there are |c j | artists in the cluster

c j , we just repeat the Bernoulli trial |c j | times independently. By this second-step process, a

binary matrix X of size m ×n is generated (a success in the Bernoulli trial would write a 1 in

X , and 0 otherwise). This matrix can be also regarded as the incident matrix of a hypergraph.

Samples of X are shown in Figure 2.3.

To further capture the difference between the clusters, a decaying parameter τ > 0 is intro-

duced to make the p
j
i smaller as j getting bigger. In summary, an entry X (i ,k) of X is gener-

ated from the following distributions:

p
j
i

i .i .d .∼ Beta
(
ξ(c j )qi ,ξ(c j )(1−qi )+ ( j −1)τ

)
, (2.14)

X (i ,k) i .i .d .∼ Bernoulli
(
p

j
i

)
, zk ∈ c j . (2.15)

For simplicity, we assume that the parameters are all the same if no special conditions are

mentioned, i.e. ∀i ∈ {1,2, ...,m}, qi = q0, and ∀ j ∈ {1,2, ..., s}, ξ(c j )= ξ0.

Broderick et al. show that with the beta-Bernoulli process the distribution of occurrences of

entities in Z , i.e. the distribution of column sums of X , is asymptotically a power-law when

m and s approach infinity [Broderick et al., 2012]. Let Kk denote the number of entities in Z

that are associated with exactly k entities in Y . The asymptotic property states that

Kk
a.s.∼ αΓ(k −α)

k !
βmα, m, s →∞, (2.16)

where 0 < α < 1 and β > 0 are constants, and Γ(x) = ∫∞
0 t x−1e−t d t is the gamma function.

The symbol a.s.∼ means that the ratio of the left side over the right side is almost surely 1 as

m, s → ∞. The modification of adding multiple classes in our model does not change the

outline of the proof in [Broderick et al., 2012], so this result can be directly applied to our

model.

Given ξ(c j ) and qi , the rows of X are independently generated. For an entity yi and a cluster

c j , the number of relations between yi and the entities in c j (denoted by Ni , j ) follows a bino-

mial distribution whose parameter p
j
i is drawn from a beta distribution. Let f (·) denote the

probability density function (PDF), and p denote p j
i for simplicity. Without loss of generality,

we assume j = 1 in the following analysis. The probability of Ni , j = k can be written as

P
(
Ni , j = k

)=∫
p

f
(
Ni , j = k |p) f

(
p
)

d p (2.17)
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=
∫

p

(
|c j |
k

)
pk (1−p

)|c j |−k pξ(qi )qi−1
(
1−p

)ξ(qi )(1−qi )−1

B
(
ξ(qi )qi ,ξ(qi )(1−qi )

) d p (2.18)

=
(
|c j |
k

)
B
(
ξ(qi )qi +k ,ξ(qi )(1−qi )+|c j |−k

)
B
(
ξ(qi )qi ,ξ(qi )(1−qi )

) ∫
p

pξ(qi )qi +k−1
(
1−p

)ξ(qi )(1−qi )+|c j |−k−1

B
(
ξ(qi )qi +k ,ξ(qi )(1−qi )+|c j |−k

)d p

(2.19)

=
(
|c j |
k

)
B
(
ξ(qi )qi +k ,ξ(qi )(1−qi )+|c j |−k

)
B
(
ξ(qi )qi ,ξ(qi )(1−qi )

) , (2.20)

where B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the beta function. The integral in (2.19) is the PDF of a beta dis-

tribution, so the result is 1. Figure 2.4 shows some examples of the distribution of Ni , j . We

could observe that when ξ(c j ) is small, Ni , j is concentrated on 0 or |c j |, and the distribution

becomes flat as ξ(c j ) getting bigger. The mass parameter qi controls the overall density of

relations in X . A bigger qi leads to more relations in X .
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Figure 2.4: Distributions of Ni , j with different concentration parameters ξ(c j ) (top) and mass
parameters qi (bottom). For the top figure, |c j | = 20 and qi = 0.6. For the bottom figure,
|c j | = 20 and ξ(qi ) = 0.5. We assume j = 1 in this figure.
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For any zk ∈ c j , the relation X (i ,k) is generated independently, thus the expectation of Ni , j

can be written as

E
(
Ni , j

)= E

( |c j |∑
k=1

X (i ,k)

)
(2.21)

= ∑
zk∈c j

E (X (i ,k)) (2.22)

= |c j |E (X (i ,k)) (2.23)

= |c j |
B
(
ξ(qi )qi +1,ξ(qi )(1−qi )

)
B
(
ξ(qi )qi ,ξ(qi )(1−qi )

) (2.24)

= |c j |qi . (2.25)

The line of (2.24) comes from a special case of (2.17) where a single entity zk is considered as

a cluster.

When there is more than one cluster, the number of relations between yi and all the entities

in Z is Ni =∑ j Ni , j . The relations in each cluster are independently generated, thus we have

E (Ni ) =
s∑

j=1
E
(
Ni , j

)
(2.26)

=
s∑

j=1

ξ(qi )qi

ξ(qi )+ ( j −1)τ
(2.27)

Unfortunately, our model does not possess a power-law distribution of Ni .

In the subsequent sections, the multi-class beta-Bernoulli process is adopted in the learning

tasks as the underlying model to generate hypergraphs. With the assumptions associated

to the model, we are able to identify the structure of the vertex clusters in the hypergraphs

that correspond to the clusters in the model, and the computational costs of the learning

algorithms are estimated with the model parameters.
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3 Vertex Expansion

The graph Laplacian and the normalized Laplacian, as introduced in the previous chapter,

have some properties that are closely connected to the min-cut problem defined on a graph.

We have shown how to use the eigenvalues and the eigenvectors of the Laplacian to discover

the clusters in a graph. The hypergraph, however, as a higher order structure, cannot directly

benefit from the extensively-studied results of graph Laplaicans. Since our learning tasks are

defined based a clustering of the vertices, it is reasonable to transform the hypergraph into a

graph such that the graph has the same vertex set as the hypergraph. By this transformation,

we could make further operations on the transformed graph to reconstruct the clusters of

vertices. One can imagine that there are many possible transformations from a hypergraph

to a graph, but which one is better in a given situation? Would the induced graph introduced

in section 2.1 be a good candidate? In this chapter we discuss the possible transformations

and the corresponding algorithms for our learning tasks.

In this chapter, we focus on the transformations that keep the vertex set unchanged or hold

all the original vertices in the new graph. Since the transformations are commonly referred

as “expansions” in the literatures, the vertex-centric transformations that we discuss in this

chapter are called the “vertex expansions”. By the vertex expansion, all the original vertices

that we would like to cluster or classify are still in the new graph, thus it is possible to directly

use the graph Laplaicans in the algorithms. This is an advantage of the vertex expansion

compared to the hyperedge expansion (discussed in the next chapter).

We start with a survey of existing vertex expansions in an unified view. Then a special vertex

expansion called normalized hypergraph cut is studied for its properties of the embeddings

(projections to the lower dimensional space). Finally we present the algorithms for clustering,

semi-supervised learning, and link prediction.

Our main contribution in this chapter is the spectral analysis of the embedding structures of
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the normalized hypergraph cut based on the multi-class beta-Bernoulli process model. We

also design a new link prediction algorithm based on the embedding structures. This algo-

rithm is shown to be better than state-of-the-art methods in a recommender system experi-

ment in terms of accuracy and diversity of recommendations. To our best knowledge, this is

the first work to combine a generative hypergraph model with the spectral graph theory.

3.1 Clique Expansion and Star Expansion

Recall the optimization problem (2.6) defined for introducing the graph Laplacian. Essen-

tially, we define a cluster membership indication vector c over the vertex set and try to mini-

mize c�Lc with the constraint c�c = 1. In other words, the purpose is to find the best c that

agrees with the structure of the graph in the sense that the difference between c(v) and c(u)

for any pair (v,u) is varying according to the weight of the edge e = (v,u) (if the edge exists).

If we generalize this idea to a hypergraph H = {Z ,Y , w }, the vector c over Z is then supposed

to agree with the hyperedges

ĉ = argmin
c

∑
∀z1,z2∈y, y∈Y

w (y)(c(z1)−c(z2))2 . (3.1)

This formula is very similar to (2.6). In fact, if we make a graph with the same vertex set V = Z ,

the indictor vector ĉ can be obtained in the new graph by the so called clique expansion [Zien

et al., 1999, Agarwal et al., 2006]. The clique expansion, by its name, constructs a clique from

each hyperedge in the hypergraph. The weight of the edges in the clique is simply the weight

of the hyperedge. Then all the cliques from different hyperedges are combined together to

form a new graph. The edge wight in the new graph can be written as

w (v,u)= ∑
∀v,u∈y, y∈Y

w (y). (3.2)

So the adjacency matrix of the new graph GH ,clique after the clique expansion is

AH ,clique = X�W X −Dz . (3.3)

Then the combinatorial Laplacian or the normalized Laplacian can be obtained from GH ,clique

and the eigenvectors can be used for reconstructing clusters.

The clique expansion, however, does not consider the hyperedge sizes when performing the

optimization in (3.1). If there is a big hyperedge that contains almost all the vertices, there

would be a clique of very large size and all the clustering structures would be diminished

in this clique. Since all the hyperedges are treated the same regardless of their sizes, the

relative weighting portion of a clique in (3.1) would grow quadratically as the hyperedge size
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increases. In extreme cases, although the hyperedge has a small weight, its importance would

be inflated due to its large size.

To mitigate the problem of clique expansion, the star expansion is proposed with the normal-

ization of the hyperedge size [Zien et al., 1999, Agarwal et al., 2006]. Star expansion works

on the bi-partite graph representation of the hypergraph (see section 2.1). In the new graph

GH ,star the vertex set is the union Z ∪Y . An edge in GH ,star can only connect a vertex zk ∈ Z

to a vertex yi ∈ Y . The weight of the edge e = (zk , yi ) is associated with the original hyperedge

weight and normalized by the hyperedge size

w (zk , yi ) = w (yi )/|yi |. (3.4)

The corresponding adjacency matrix of GH ,star is

AH ,star =
[

0 D−1
y W X

X�W D−1
y 0

]
, (3.5)

which is a block matrix with blocks on the anti-diagonal. In GH ,star the original vertices are

connected through the virtual vertices representing the hyperedges. In fact, the spectral prop-

erties of GH ,star remain the same. Agarwal et al. show that the spectrum of the normalized

Laplacian of GH ,star is the same as the spectrum of the clique expansion, providing that the

weighting function in (3.4) is scaled by (|yi |−1)/|yi | [Agarwal et al., 2006].

Starting from the star expansion, it is possible to define more expansions. If we have a eigen-

value problem with a block matrix in the following form

[
I −M

−M� I

][
f

g

]
=λ

[
f

g

]
, (3.6)

where M is an arbitrary matrix, the partial eigenvector f and the value (1−λ)2 is also an eigen-

pair

MM�f = (1−λ)2f . (3.7)

It is easy to show that the Laplacian of the star expansion graph GH ,star is in the form of (3.6).

By taking the partial eigenvector corresponding the original vertices (the set Z ), one can con-

struct a vertex expansion called normalized hypergraph cut (NHC) [Zhou et al., 2005a, Agar-

wal et al., 2006], which is further studied later in this chapter. By taking the partial eigenvector

corresponding to the hyperedges (the set Y ), we obtain another category of expansions called

the hyperedge expansion. The hyperedge expansions are studied in the next chapter.

Although the NHC can be derived from the normalized Laplacian of the star expansion with
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weighting w (zk , yi ) = w (yi ), we explicitly show the underlying optimization problem of the

NHC. Recall the induced graph defined in section 2.1. The only difference between the in-

duced graph and the graph in the clique expansion is that the hyperedge weights are normal-

ized by the hyperedge sizes in the induced graph. The optimization problem of NHC is in the

same manner on the induced graph with the volume normalization (see (2.11))

ĉ = argmin
c

(
1

volGH (c)
+ 1

volGH (c̄)

) ∑
e=(v,u)∈EGH

wGH (e)(c(v)−c(u))2 , (3.8)

where c is a clustering indicator vector. By relaxing c to take any real values, we obtain the

relaxed optimization problem and the Laplacian of NHC can be defined as [Zhou et al., 2007]

LNHC = I −D−1/2
z X�D−1

y W X D−1/2
z . (3.9)

The NHC Laplacian is the most commonly used vertex expansion. Applications such as

metabolic pathway prediction and coreference resolution have demonstrated its effective-

ness [Mithani et al., 2009, Lang et al., 2009]. However, there is no existing work to show the

distribution of the NHC embeddings in the embedding space. We continue in this line of

works and illustrate that the vertex clusters in the original hypergraph remain as clusters in

the embedding space.

3.2 Normalized Hypergraph Embedding

We have shown in Figure 2.2 that the embeddings of the vertices can be used to find clusters

in a graph. Assume that the adjacency matrix of a graph exhibits the following block structure

A =

⎡
⎢⎢⎢⎢⎢⎣

A1

A2

. . .

As

⎤
⎥⎥⎥⎥⎥⎦ , (3.10)

which corresponds to s distinct connected components {c1,c2, ...cs }, and any ci and c j are

comparable, i.e. the second largest eigenvalue of Ai is smaller than the biggest eigenvalue of

A j and vice versa. Prakash et al. and Wu et al. show that the eigenvectors of the largest s

eigenvalues of A would have the following structure [Prakash et al., 2010, Wu et al., 2011]

g1 = [ g 1
1 · · ·g |c1|

1 0 · · · 0 ]�

g2 = [ 0 g 1
2 · · ·g |c2|

2 · · · 0 ]�

·· ·
g s = [ 0 0 · · · g 1

s · · ·g |cs |
s ]�.

(3.11)
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This implies a set of axis-aligned embeddings of the vertices in the s-dimensional space. The

vertices in c1 are projected to some points on the first axis, the vertices in c2 are projected to

some points on the second axis, etc. Furthermore, it is shown that when the adjacency matrix

is disturbed by a noise matrix E, the spectral embeddings of the new adjacency matrix Ã =
A+E would lie on s quasi-orthogonal lines in the s-dimensional space. The quasi-orthogonal

lines {r1, ...,rs } are in the following form ([Wu et al., 2011], Theorem 2)

r1 = [ 1
β1,2

σ2−σ1
· · · β1,s

σs−σ1
]�

r2 = [
β2,1

σ1−σ2
1 · · · β2,s

σs−σ2
]�

·· ·
rs = [ βs,1

σ1−σs

βs,2

σ2−σs
· · · 1 ]�,

(3.12)

where {σ1, ...,σs } are the largest s eigenvalues of A and βi , j = g�
i Eg j . Figure 3.1 shows some

example embeddings of a disconnected graph and a disturbed graph. This result provides a

theoretical foundation by which the practice of using embeddings for clustering is justified.

In the embedding space, clustering algorithm like k-means or k-nearest neighbor (kNN) can

be further applied. By this result, the cosine distance or other angle-based distances should

be chosen in the clustering algorithms, since clusters of points approximately distribute on

some lines passing through the origin.
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Figure 3.1: Embeddings of a disconnected graph and a disturbed graph. The quasi-
orthogonal lines of the disturbed graph are also shown. The graph is weighted, so the gray
scale in the adjacency matrix indicates the weights of the edges.
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But is there a similar embedding structure when it comes to the hypergraph? In the remain-

der of this section, we first show that the NHC embeddings can be obtained by a singular

value decomposition, then we show that in some cases the orthogonal structures can be ob-

served with the NHC embeddings as well.

Recall the NHC Laplacian defined in (3.9) and denote the smallest l eigen-pairs of LNHC as

λ1 ≤λ2 ≤ ... ≤λl and {f 1, ..., f l }. Also let F = [f 1, f 2, ..., f l

]
. If we define

X̄ = D−1/2
y X D−1/2

z , (3.13)

the NHC Laplacian can be rewritten as

LNHC = I − X̄�X̄ , (3.14)

and the biggest l eigenvalues of X̄�X̄ are exactly {1−λ1,1−λ2, ...,1−λl }, while the correspond-

ing eigenvectors are still {f 1, f 2, ..., f l }.

Then we decompose the matrix X̄ by the singular value decomposition (SVD)

X̄ = UΣV �, (3.15)

where U and V are unitary matrices, and Σ is a rectangular diagonal matrix. The biggest l

singular values in Σ are exactly {
√

1−λ1,
√

1−λ2, ...,
√

1−λl }, and the columns of V (right-

singular vectors) are the eigenvectors of X̄�X̄ . Therefore, instead of computing the eigen-

decomposition of LNHC, the matrix F can be obtained by the SVD of X̄ , i.e. F is the sub-matrix

of the first l columns of V . Computing F can be also done by the “truncated SVD”

X̄ ≈ U lΣl V �
l = U lΣl F�, (3.16)

where only the l largest singular values Σl are calculated. This can be much quicker and more

efficient than the full SVD if l � min(m,n).

There are many advantages of using the truncated SVD to compute the l -dimensional embed-

dings rather than the eigen-decomposition. First, in real applications the matrix X̄ is usually

sparse, but X̄�X̄ might be non-sparse. Let M̄ = X̄�X̄ . The expected number of zero entries in

M̄ from the multi-class beta-Bernoulli process (see section 2.4) can be written as

E

(
n∑

k=1

n∑
t=1,t �=k

1(M̄(t ,k)= 0)

)
=

n∑
k=1

n∑
t=1,t �=k

E
(
1(M̄(t ,k)= 0)

)
(3.17)

=
n∑

k=1

n∑
t=1,t �=k

E
(
1(X̄ (·, t )�X̄ (·,k)= 0)

)
, (3.18)
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3.2. Normalized Hypergraph Embedding

=
n∑

k=1

n∑
t=1,t �=k

(
X̄ (·, t )�X̄ (·,k) = 0

)
, (3.19)

where X̄ (·, t ) denote the t -th column of X̄ and 1 is the indication function. For some fixed

t and k , denote X̄i = X̄ (i , t )X̄ (i ,k), i ∈ {1,2, ...,m}. Recall that X is generated from the prob-

abilities p j
i , and p j

i is drawn from a beta distribution. Let f (·) denote a probability density

function (PDF). If the column X (·, t ) and column X (·,k) are generated from the same cluster

c j , we have

P
(
X̄ (·, i )�X̄ (·,k)= 0

)
(3.20)

=
∫

p j
1 ,p j

2 ,...,p j
m

f
(

X̄1 = 0, X̄2 = 0, ..., X̄m = 0|p j
1, p j

2, ..., p j
m

)
f
(
p j

1, p j
2, ..., p j

m

)
d p j

1 p j
2...p j

m

(3.21)

=
∫

p j
1 ,p j

2 ,...,p j
m

m∏
i=1

f
(

X̄i = 0|p j
i

) m∏
i=1

f
(
p j

i |ξ0, q0

)
d p j

1 p j
2...p j

m (3.22)

=
m∏

i=1

∫
p j

i

(
1−

(
p j

i

)2
) (p j

i

)ξ0q0−1 (
1−p

j
i

)ξ0(1−q0)−1+( j−1)τ

B
(
ξ0q0,ξ0(1−q0)+ ( j −1)τ

) d p j
i (3.23)

=
(

1− B
(
ξ0q0 +2,ξ0(1−q0)+ ( j −1)τ

)
B
(
ξ0q0,ξ0(1−q0)+ ( j −1)τ

) )m

(3.24)

=
(

1− ξ0q0(ξ0q0 +1)(
ξ0 + ( j −1)τ

) (
ξ0 + ( j −1)τ+1

) )m

. (3.25)

When the column X (·, t ) and column X (·,k) are generated from different clusters c j and c j ′ ,

we have a similar result

P
(
X̄ (·, i )�X̄ (·,k)= 0

)
(3.26)

=
m∏

i=1

∫
p j

i

∫
p j ′

i

(
1−p j

i p j ′

i

)
f
(
p j

i |ξ0, q0

)
f
(
p j ′

i |ξ0, q0

)
d p j

i p j ′

i (3.27)

=
(

1−
(

B
(
ξ0q0 +1,ξ0(1−q0)+ ( j −1)τ

)
B
(
ξ0q0,ξ0(1−q0)+ ( j −1)τ

) )(
B
(
ξ0q0 +1,ξ0(1−q0)+ ( j ′ −1)τ

)
B
(
ξ0q0,ξ0(1−q0)+ ( j ′ −1)τ

) ))m

(3.28)

=
(

1− ξ2
0q2

0(
ξ0 + ( j −1)τ

)(
ξ0 + ( j ′ −1)τ

)
)m

. (3.29)

It can be seen from (3.25) and (3.29) that if the parameters τ, ξ0 and q0 are fixed, the number

of non-zero entries in LNHC = I − X̄�X̄ is proportional to n2.

When the vertex set size n = |Z | is large, the computational cost and the storage cost of

the eigen-decomposition might be impractical, while the truncated SVD can always directly

benefit from the sparsity of X̄ and scale to a bigger dataset. Secondly, there are existing

approaches to implement SVD incrementally, which allows us to just compute the minor
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changes when modifying some entries of X̄ or including several more rows/columns into X̄ .

In many real applications, such as recommender systems, the ability of incremental comput-

ing is often desired.

To show the orthogonal structures with the NHC embeddings, we consider a special case of

the multi-class beta-Bernoulli process: the parameters p
j
i are concentrated on {0,1}. In other

words, ξ(c j ) is always close to 0 and p
j
i can only take a value of either 0 or 1 (see the top-left

example in Figure 2.3). This special case is known as the Haldane’s prior in a beta distribution.

With this assumption, the matrix X̄ can be written as

X̄ = [x̄1 · · · x̄1︸ ︷︷ ︸
|c1|vectors

x̄2 · · · x̄2︸ ︷︷ ︸
|c2|vectors

· · · x̄s · · · x̄s︸ ︷︷ ︸
|cs |vectors

], (3.30)

where the column vectors in one cluster are all the same. The rank of X̄ is s or smaller than

s. Thus the truncated SVD X̄ = U lΣl V�
l is not an approximation but an exact decomposition

when l = s. Recall that the projections in F can be obtained from F = V l . The following

theorem shows the structure of F .

Theorem 3.2.1. If X̄ is generated from a multi-class beta-Bernoulli process of s clusters with

the Haldane’s prior, and we compute the embeddings by the truncated SVD X̄ = UsΣs F�, rows

of F = [α1 · · ·αn]� can be grouped by the clusters αk =β j for ∀zk ∈ c j . The αk ’s from the same

cluster are identical (denoted as β j ). Furthermore we have β�
j β j ′ = 0 for ∀ j �= j ′.

Proof. It is easy to show that αk = αk ′ = β j if zk , zk ′ ∈ c j , because the k-th column and the

k ′-th column of Σs F� must be the same to obtain the same x̄k and x̄k ′ in the truncated SVD,

which implies that αk = αk ′ . Then we consider the full SVD of X̄ . Since αk = αk ′ = β j for

zk , zk ′ ∈ c j , we can list the rows of V corresponding to the entities in cluster c j as

V �
( j ) =

[
β j β j · · · β j

γ1 γ2 · · · γ|c j |

]
. (3.31)

The vectors {γ1,γ2, ...,γ|c j |} are not necessarily the same. On the other hand, it is always pos-

sible to find a linear combination of the first s columns of V (denoted as
[
f 1, f 2, ..., f s

] = F)

such that

Ft1 = [ 1 · · ·1 0 · · ·0 · · · 0 · · ·0 ]�

Ft2 = [ 0 · · ·0 1 · · ·1 · · · 0 · · ·0 ]�

·· ·
Fts = [ 0 · · ·0︸ ︷︷ ︸

|c1|
0 · · ·0︸ ︷︷ ︸
|c2|

· · · 1 · · ·1︸ ︷︷ ︸
|cs |

]�
(3.32)

where the 1’s are in the entries corresponding to all the entities in c j , and t j are the coeffi-
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3.2. Normalized Hypergraph Embedding

cients. Because the rank of F is s. Since all the columns in V are orthogonal to each other,

a column of V ( j ) is also orthogonal to the linear combination Ft j of some other columns.

Therefore, the entries in each dimension of the vectors {γ1, ...,γ|c j |} sum up to 0. In other

words, for ∀c j we have

|c j |∑
p=1

γp = 0, (3.33)

which implies that V �
( j )1 = |c j |

[
β�

j 0�
]�

. Since all the rows in V are also orthogonal to each

other, we have
(
V �

( j )1
)� (

V �
( j ′)1’

)
= 0 for ∀ j �= j ′. This concludes to β�

j β j ′ = 0.

When ξ0 → 0, the embeddings of the vertices in the s-dimensional space form exactly s clus-

ters and the vectors of the cluster centers are orthogonal to each other. Figure 3.2 shows

several examples of the embeddings with different concentration parameter. This result ex-

tends the line orthogonality structure to hypergraphs. Unlike the graph case, the embeddings

are not aligned to the axes. The rotation from the axes to the orthogonal projections can be

arbitrary, depending on the sizes of clusters and the data distribution in the matrix.

ξ0 = 10−4 ξ0 = 0.1 ξ0 = 1

Figure 3.2: Hypergraph embeddings with different concentration parameters. The hyper-
graphs are randomly generated by the multi-class beta-Bernoulli process (3 clusters) with
q0 = 0.3 and concentration parameters shown in the figure. The outer boxes are the axes and
the gray lines are lines from the origin to the cluster centers.

Although the embeddings are not directly aligned with the axes, we can make the possible

alignments by a rotation. Then the embeddings would have a similar structure as in (3.11),

and each dimension of the embedding space can be considered as a latent factor that corre-

sponds to a cluster in the original data. This idea of latent factors has been widely applied in

many other methods, either explicitly or implicitly.

In the non-negative matrix factorization (NMF), the data matrix X is directly decomposed

into two low-rank, sparse and non-negative matrices X ≈ GH� such that ‖X −GH�‖2 is min-

imized [Hoyer, 2004, Chen et al., 2008]. The orthogonal latent factors are explicitly assumed
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to control the values in X , and each latent factor takes one axis in the low-rank approxima-

tion. In the "%$� example, a row of H represents an artist, and each entry of the row vector

indicates one associated latent attribute. A positive entry means that the artist has this latent

attribute, and the corresponding entry in the user matrix G indicates if the user has the same

latent attribute. A match of the latent attributes on the same dimension between a user and

an artist would result in a positive entry in X . The sparsity constraints on G and H ensure that

each user and each artist could only be associated with a limited number of latent attributes.

Our model is similar to NMF in the sense that the latent factors are also orthogonal in the

latent (embedding) space, although not aligned to the axes. But an entity in Z could be as-

sociated with multiple latent factors in NMF, while only one latent factor is allowed in our

model. For the entities in Y , both approaches allow multiple associations to the latent fac-

tors. The non-negative constraint is unnecessary in our model since the embedding structure

automatically implies it.

3.3 Clustering and Semi-supervised Learning

Once we have the embeddings of the vertices, the learning tasks can be carried out by addi-

tional procedures. We list below the algorithms for the tasks of clustering and semi-supervised

learning using vertex expansions.

The clustering algorithm is denoted as ��&%$���'(�) where (� stands for the vertex expan-

sion or the specific Laplacian to compute the embeddings.

Algorithm 1 The vertex expansion clustering algorithm

1: procedure ��������	
��(H = {Z ,Y , w }, l , s)
2: Compute the Laplacian L���� from H with the selected vertex expansion (�

3: Compute the eigenvectors corresponding to the smallest l eigenvalues of L����, and
place the eigenvectors in the |Z |× l matrix F

4: When F can be computed from the truncated SVD instead of the eigen-decomposition,
replace the previous two steps with the truncated SVD

5: return a hard clustering Ĉ from k-means or kNN that takes s (the desired number of
clusters or the number of neighbors) and the rows of F as inputs

6: end procedure

As shown in the previous section, the cosine distance or another angle-based distance func-

tion would make most sense to compute the distances between the rows of F in the k-means

or kNN algorithm. In theory, the embedding dimensionality l should be chosen by looking

for the biggest eigen-gap. But a clear eigen-gap is usually absent in most real datasets that ex-

hibit power-law degree distributions. A common practice is to use cross-validation to choose

the best l .
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3.3. Clustering and Semi-supervised Learning

In the semi-supervised learning setting, the clusters of some vertices are already known. This

known part can be represented by the partial indicator matrix T of size |Z |× s where s is the

given number of clusters. An entry T (k , j )= 1 if the vertex zk is known to be in the cluster c j ,

otherwise T(k , j )= 0. We assume that at least one vertex from each cluster is labeled in T , i.e.

the column sums of T are all greater than 0. Then the goal of semi-supervised learning is to

find a full clustering Ĉ that minimizes both Φ(H , Ĉ) = trace(Ĉ
�

L����Ĉ) and the empirical loss

between Ĉ and T . The first part can be solved by a relaxation, and the second part (empirical

loss) can be defined as the norm of Ĉ−T . Putting them together, we have the relaxed solution

as follows

F̂ = argmin
F

trace
(
F�L����F

)+μtrace
(
(F −T )�(F −T )

)
, (3.34)

subject to: F(k , j )∈R, (3.35)

where L���� is the selected Laplacian of a vertex expansion, and μ> 0 is a parameter to specify

the balance between the two terms. By taking the partial derivative with respect to F and

setting the formula to zero, it can be shown that the optimal F̂ is

F̂ = (L����+μI
)−1 T . (3.36)

The
(
L����+μI

)
part is positive definite since the smallest eigenvalue of L���� is 0 (see Lemma

2.3.4). The algorithm �  '(�) is summarized as below (the   stands for “semi-supervised”).

Algorithm 2 The vertex expansion semi-supervised learning algorithm

1: procedure �	
��(H = {Z ,Y , w }, T , μ)
2: Initialize Ĉ
3: Compute the Laplacian L���� from H with the selected vertex expansion (�

4: Compute the relaxed solution F̂ = (L����+μI
)−1 T

5: For each vertex zk which is not labeled in T , let Ĉ(k , j ) = 1 where j = argmaxp F̂(k , p),
and set all the other entries of the k-th row of Ĉ to 0

6: return a hard clustering that combines Ĉ and T
7: end procedure

This algorithm actually takes the common one-over-all scheme for the semi-supervised learn-

ing, i.e. each cluster is chosen to make a bi-clustering with respect to all the other clusters.

This is done implicitly in each dimension of F in (3.36). The values in F̂ are then treated as

scores, and an unlabeled vertex is assigned to the cluster which has the highest score.

The running time of Algorithm 1 mainly depends on the eigen-decomposition of the Lapla-

cian. The common routines for computing a few eigen-pairs are all iterative algorithms. For

example, the Lanczos method for Hermitian matrices computes a set of vectors over the itera-

tions and reconstruct the eigenvectors in the end. The basic operation in each iteration is the
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matrix-vector multiplication where the matrix is usually sparse and the vector is dense. This

operation can be done in O(M ) time if M is the number of non-zeros in the matrix (e.g. the

non-zeros in L����). On the other hand, the number of iterations to converge depends on the

eigen-gap (see the end of section 2.3). There are various ways from the numerical comput-

ing research to accelerate the convergence, but most approaches rely on certain structures

of the matrix. In the case where the eigen-decomposition can be replaced by a SVD of ma-

trix X̄ (see equation 3.16), the truncated SVD routine usually takes the eigen-decomposition

approach on the matrix X̄�X̄ , i.e. the matrix-vector multiplication is replaced by two consec-

utive matrix-vector multiplications (first X̄ then X̄�
). The two multiplications could take less

time because X̄ is sparse while X̄�X̄ is not (see the results of (3.25) and (3.29)). Furthermore,

by the two multiplications there is no need for the large space to store X̄�X̄ .

The Algorithm 2 involves in solving a linear system of size n. In general one can compute the

matrix inverse
(
L����+μI

)−1 and multiply it with T , but more efficient algorithm does exist

since L����+μI is sparse, symmetric, and diagonally-dominate. Spielman and Teng show that

approximately solving such linear system can be done in O(M 1.31) time [Spielman and Teng,

2003].

3.4 Link Prediction

The third learning task, link prediction, works on the bi-partite graph representation. Predict-

ing more edges in the bi-partite graph is the same as predicting more 1’s in the relation matrix

X . We make the predictions based on the multi-class beta-Bernoulli process. Once the enti-

ties in Z are projected into some clusters of embeddings in the l -dimensional embedding

space, we model an entity in Y as another vector in the same space. A vector θi of length

l is assigned to each yi ∈ Y . Then a prediction score is computed for the possible relation

between yi and zk

P(yi , zk ) = θ�
i αk , (3.37)

where αk is the embedding of zk . The vector θi should take the values such that the predictor

P coincides with the existing relations (or as close as possible).

In many applications, the relation matrix contains not only binary relations but also weights

of the relations (e.g. ratings in a recommender system). In this case, we have an edge-weighted

bi-partite graph and a weighted relation matrix R where R(i ,k) ∈ R+ ∪ {0}. But the embed-

dings are still learned from the unweighted relations X which is extracted from R, i.e. X =
sign(R) where sign(x) = 1 if x > 0, sign(x) =−1 if x < 0, and sign(x) = 0 when x = 0.

The link prediction algorithm first takes X to compute the vertex embeddings F with the NHC

34



3.4. Link Prediction

Laplacian (let αk ’s denote the rows of F). The points in Figure 3.3 are examples of αk . Then

the vector θi for the entity yi is calculated based on the original weighted relation matrix R

and the embeddings F . Let R(i , ·) denote the i -th row of R. The vector θi is determined by

θi = argmin
θ

‖R(i , ·)−θ�F�‖2. (3.38)

Figure 3.3 explains equation (3.38) in an illustrative way. The red points in Figure 3.3 are the

αk ’s that correspond to the entities related to yi . For example, they could be the embeddings

of the books that the user yi has read. We would like to choose a θi that is close to these

selected αk ’s. When the R(i , ·) is weighted, θi should be even closer to the αk ’s with higher

weights, which can be written as

θi = argmin
θ

∑
zk∈yi

(
R(i ,k)−θ�

i αk
)2

. (3.39)

For those αk ’s that are not related to yi (the gray points in Figure 3.3), they should stay as far

from θi as possible, ideally orthogonal to θi . This can be written as

θi = argmin
θ

∑
zk �∈yi

(
θ�

i αk
)2

. (3.40)

 

  

 
 

 
 

… 
… 

Figure 3.3: An illustration of the link prediction algorithm.

Putting (3.39) and (3.40) together, we obtain (3.38). By this formulation, the vector θi should

be approximately in the subspace spanned by the related αk ’s (the hyperplane in Figure 3.3).

In the "%$� example, a user’s latent attributes θi is roughly represented by a vector in the

subspace spanned by the embedding vectors of the artists that the user has visited, and ap-

proximately orthogonal to the subspace spanned by the embedding vectors of the unrelated
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artists. Finally a prediction score P(yi , zk ) is computed by (3.37), and we could make predic-

tions by selecting the unseen relations of the highest scores.

The full link prediction algorithm is presented in Algorithm 3. Since our approach works

with the hypergraph embedding by the NHC Laplacian and the truncated SVD, we call it

���������. The main operation in Algorithm 3 is the truncated SVD. Thus the computa-

tional cost is similar to Algorithm 1 with the NHC Laplacian.

Algorithm 3 The hypergraph link prediction algorithm

1: procedure ����������(Gb = {Z ∪Y ,Eb, w }, l ) � Gb is a weighted bi-partite graph
representation

2: Convert Gb to a weighted relation matrix R of size |Y | × |Z |. R(i ,k) = w
(
(yi , zk )

)
for

∀(yi , zk ) ∈ Eb

3: Let X = sign(R)
4: Compute X̄ from X by (3.13)
5: Compute the l -dimensional hypergraph embeddings F by the truncated SVD X̄ ≈

U lΣl F�

6: Obtain Θ by solving FΘ= R� in a least-squares sense
7: Compute prediction score matrix P =Θ�F�

8: return a set of relations of the highest scores in P that are unseen in Gb (possibly or-
dered by the scores)

9: end procedure

Our algorithm takes into account only the right singular vectors, so the basic assumption

must be verified when using this approach. In the multi-class beta-Bernoulli process, it as-

sumes that the set Z can be partitioned into some non-overlapping clusters. Therefore, it

makes more sense to fill the set Z with the artists in the "%$� example. Normally an artist

performs in a limited number of genres, while a user could be in fond of a wider range of gen-

res. This assumption can be a limitation with a dataset where clustering structures are hard

to find. But if the intuition behind the clusters follows some categorical attributes, e.g. genres,

languages, professions, etc., or a combination of categorical attributes, our basic assumption

would always hold.

In Algorithm 3 the embeddings in F is usually stationary over time, because the embeddings

are determined by all the relations in the dataset and the overall distribution of relations

would not change very often. On the other hand, for a specific entity yi , the θi could change

very rapidly. For example, a user would suddenly start to like new a genre. In practice, the val-

ues in F can be stored in the system and refreshed periodically (e.g. once every week), while

the θi ’s should be computed on the fly. In the "%$� example, when a user yi asks for more

artists, θi is calculated online and destroyed after the prediction scores P(i , ·) are obtained. If

|Z | is much smaller than |Y |, e.g. there is often much less artists than users, we could save a

lot of storage space for only saving F .

36



3.4. Link Prediction

3.4.1 Related Works

Algorithm 3 falls into the category of matrix factorization approaches, since the main ingre-

dient of our proposed method is the SVD. The use of matrix factorization for link prediction

has been studied for a long time. For the purpose of comparison, we list some other existing

approaches for the link prediction task.

Sarwar et al. proposed one of the early works that adopt SVD to predict more relations [Sar-

war et al., 2000]. The method is straightforward: use the low-rank SVD approximation to

fill the missing values in the original relation matrix. If the existing relations (weighted) are

provided in the matrix R, the matrix of prediction scores is simply

P = U lΣl V �
l , from truncated SVD: R ≈U lΣl V �

l . (3.41)

We denote this method as ������ (�� since it works directly on the weighted relation ma-

trix R. Imputation of missing values is implicitly required in this method when performing

SVD, and all the three resulting matrices of the SVD are used in the prediction scores.

To make a better baseline, we adapt our setting to the ������ (�� to first compute SVD

and then predict with only the right singular vectors in an asymmetric manner, i.e. follow the

same procedures in Algorithm 3 but replace X̄ with R in step 5. This modified algorithm is

called ������ (���.

The NMF is another matrix factorization technique that could replace SVD in many relational

learning problems. As explained above, the NMF explicitly assumes that there are l latent

dimensions in the latent space and each entity in Y or Z can take a few non-zero values along

the l dimensions. The non-negative constraint implies that an entity can only be positively

associated with a latent factor. For example, a user could like a genre of artists or stand in a

neutral position, but the user is not allowed to hate a genre. The prediction scores P = ĜĤ
�

are computed from the low-rank approximation of NMF [Hoyer, 2004, Chen et al., 2008]

Ĝ,Ĥ = argmin
G,H

‖R−GH�‖2, (3.42)

subject to: G(i , j )≥ 0, H(i , j )≥ 0. (3.43)

Since the optimization problem of NMF is not convex, an alternating algorithm is often adopted

to optimize either G or H in each iteration while fixing another one [Lin, 2007]. Although this

algorithm would eventually converge, the final solution would depend on the initial values

and may not be the global optimal. The randomness with the final solutions makes it hard to

interpret the latent attributes. We denote this method as �������*+�.

Similar to the ������ (���, the NMF decomposition is also adapted into our scheme. The
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modified algorithm �������*+�� follows the same procedures in Algorithm 3, but in step 5

the embeddings are replaced by F = Ĥ where Ĥ comes from (3.42).

The SVD and NMF techniques have been proven effective in many applications, but the rapid

increase of data sizes requires more efficient algorithms. In the million-dollar Netflix Prize, a

competitor needs to predict which movies a user would like to watch based on the ratings that

the user has given to the system. The Netflix dataset contains more than 100 million ratings

(weighted relations), thus an efficient algorithm to process all the data in a reasonable time

would be more important than the accuracy. Funk propose an alternative way of computing

a matrix factorization on a very big matrix that works only with the non-empty entries in the

matrix [Funk, 2006], which became very popular in later years. The decomposition is similar

to the NMF, i.e. R ≈ GH�. But there is no constraint on the values in G or H. The desired

parameters should minimize the weighted loss on the non-zero entries in R

Ĝ,Ĥ = argmin
G,H

∑
R(i ,k)>0

(
R(i ,k)−G(i , ·)H(k , ·)�)2 . (3.44)

In [Funk, 2006] an iterative algorithm (Algorithm 4) is proposed to obtain the optimal solu-

tion. The parameter γr is the learning rate, which is suggested to be 0.001 in practice. The

parameter γK is introduced into the algorithm as a regularization parameter because with-

out the γK this method could suffer from over-fitting on the non-empty entries. γK = 0.015 is

suggested to be a good choice in practice.

Algorithm 4 The Simon Funk algorithm

1: procedure ��������(R, l , γr , γK )
2: Initialize G of size m × l and H of size n × l (suppose R is of size m ×n)
3: while overall error does not meet some condition do
4: for p = 1 to l do
5: for all (i ,k) such that R(i ,k)> 0 do
6: er r =R(i ,k)−G(i , ·)H(k , ·)�
7: G(i , p)= G(i , p)+γr

(
er r ·H(k , p)−γK ·G(i , p)

)
8: H(k , p)= H(k , p)+γr

(
er r ·G(i , p)−γK ·H(k , p)

)
9: end for

10: end for
11: end while
12: return G and H
13: end procedure

Once we have G and H, the prediction scores are simply P = GH�. The whole algorithm is

denoted as �������,� which calls Algorithm 4 as a subroutine. Here �,� means that the

algorithm works only on the non-zero entries of R. Notice that the �������,� is exactly the

same as ������ (�� except the matrix factorization subroutine.
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In �������,� we need to keep two matrices before making the prediction, which requires a

lot of storage space if R is large. Based on the work of [Funk, 2006], Paterek suggested a new

model to reduce the number of parameters in storage [Paterek, 2007]. In this approach, a

decomposition is computed by Algorithm 4, but only the matrix H is taken into the next step.

Let αk denote the rows of H. An entity yi ∈ Y is represented by all the incident entities in Z :

θi =∑k , R(i ,k)>0αk . Then a prediction score is computed with the following rule

P(i ,k)= ak +θ�
i αk , (3.45)

where ak = mean({R(i ,k)|i = 1,2, ...,m, R(i ,k)> 0}) is the average weight (average rating) of

the entity zk . We call this method ��������,� where the � stands for asymmetric.

It has been shown that the asymmetric method that takes partial result from the matrix fac-

torization would actually outperform the full SVD methods [Koren, 2008]. But no one has

provided an explanation of why the asymmetric method should work better. Our proposed

methods ���������has the similar asymmetric style, and the quasi-orthogonal embedding

structures presented in the previous section give us an explanation of the good performance

of the asymmetric method. Besides the benefits of fewer parameters to store, Koren pointed

out several other advantages of the asymmetric methods, including easy handling of new

relations and the good explainability of predictions [Koren, 2008].
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4 Hyperedge Expansion

With a vertex expansion, the set of co-occurrence relations is transformed into a set of pair-

wise relations between the vertices, where evaluating the goodness of the clustering is done

on the induced graph. If we have a hyperedge of k vertices, by the clique expansion, a par-

tition that separates the hyperedge into 1 and k −1 vertices would cut k −1 pairwise edges,

while a cut that splits the vertices in two equal halves would have k2/4 cut edges. So the

clique expansion would prefer an unbalanced clustering. To mitigate the problem of unbal-

anced clustering, the star expansion adopts the normalizer of the hyperedge size to minimize

the impact of large hyperedges. Furthermore, the NHC takes an additional normalizer of the

cluster volume to balance the cluster sizes. But it can be seen that the cost of the NHC still

depends on how the vertices distribute among the clusters, because a balanced separation of

a hyperedge would cut more edges in the induced graph anyway.

We have explained in section 3.1 that the star expansion can be further reduced into two

categories of expansions, depending on which partial eigenvector is taken in the spectrum

of LH ,star. In many applications, the exact objective for a clustering should be designed to

depend on the number of hyperedges that are separated in the clustering, regardless the dis-

tribution of vertices across the partition boundary. For example, in the ��� data, we would

like to classify the animals according to their attributes (the hyperedges) in such a way that

all the animals that share the same attribute should stay in one cluster. If the animals that

share the same attribute appear in different clusters, it creates a violation. And our goal, or

the objective function, is to minimize the total number of violations. A violation should be

counted once whether it involves ten animals or only one animal. The optimal clustering by

this rule can be formulated as follows

Ĉ =argmin
C

ΦHE0(H ,C )= argmin
C

∑
y∈Y

w (y)1
(|{c j |y ∩c j �= 	}| > 1

)
, (4.1)
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Chapter 4. Hyperedge Expansion

Ĉ =argmin
C

ΦHE (H ,C )= argmin
C

∑
y∈Y

w (y)
(|{c j |y ∩c j �= 	}|−1

)
. (4.2)

The first objective ΦHE0(H ,C ) counts the (weighted) number of violations. The second ob-

jective ΦHE (H ,C ) further considers different degrees of the violations. If the vertices in a

hyperedge appear in three clusters, the cost would be higher than the case where the ver-

tices in a hyperedge appear in two clusters. When there are only two clusters in C , ΦHE (H ,C )

reduces to ΦHE0(H ,C ). The �� in the subscript of the objectives stands for the “hyperedge

expansion”, and we call the objective defined above “hyperedge cut”.

 

… … 

 

… 

20 vertices in the intersection 

… … … 

… … … 

 

 
 

 

Figure 4.1: A hypergraph with two hyperedges for bi-clustering. The first hyperedge has
weight 1 and 120 vertices. The second hyperedge has weight 0.99 and 100 vertices. There
are 20 vertices in the intersection part. The two possible ways of partitioning the hypergraph
into two clusters are shown as C A and CB .

The following example shows why a vertex expansion like NHC cannot fulfill the requirement

in ΦHE0(H ,C ). Suppose we have a hypergraph as in Figure 4.1, and we would like to find two

clusters in this hypergraph. Obviously there are only two ways of making the clustering, either

assign the intersection part to the left side or to the right side. By the objective ΦHE0(H ,C ),

the intersection part should be assigned to the left side (the C A case in Figure 4.1), because

the weight of y2 is smaller than the weight of y1. But if we compute the NHC cost, i.e. the

normalized objective on the induced graph (see equation (2.11)), the CB case would be pre-

ferred because the volume normalizer tries to make a balanced clustering. Even with the help

of volume normalizer, a vertex expansion cannot completely eliminate the influence of the

vertex distribution as long as the expansion is vertex-centric.

Many works have shown that the hyperedge-centric objective ΦHE0(H ,C ) or ΦHE (H ,C ) is

more suitable for some applications [Singla and Domingos, 2006, Ladicky et al., 2010, Pu

and Faltings, 2011]. In this chapter, we start from the objective ΦHE0(H ,C ) and focus on the

hyperedge-centric view. We show how a solution for the objective ΦHE0(H ,C ) can be found

by transforming it into a vertex separator problem. Then the vertex separator problem is

studied with the spectral techniques. The algorithms for the clustering and semi-supervised
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4.1. The Hyperedge Expansion Transformation

learning with hyperedge expansion are also presented in this chapter.

Our main contribution in this chapter is the spectral analysis of the minimum hyperedge cut

problem. We show that the minimum hyperedge cut problem is essentially equivalent to a

minimum vertex separator problem and a min-cut problem in a directed auxiliary graph (no-

tice that the NHC expansion is based on a min-cut problem in an undirected graph, which

is different from the directed auxiliary graph in this chapter). Based on the directed graph, a

new Laplacian that encodes the minimum hyperedge cut is proposed. Then the new Lapla-

cian is linked to a quadratic eigenvalue problem, and the spectrum structure of the new

Laplacian is presented. We also show that (under some conditions) the minimum hyper-

edge cut can be lower bounded by the second smallest eigenvalue of the new Laplacian. To

our best knowledge, this is the first work to analyze the spectral properties of the minimum

hyperedge cut problem and link it to a quadratic eigenvalue solution.

4.1 The Hyperedge Expansion Transformation

As in Algorithm 2, our analysis takes the one-over-all scheme when there are multiple clus-

ters in the problem, i.e. choose one cluster in each step and consider all the other clusters as

one virtual cluster. Thus our analysis would focus on the bi-clustering case. For the hyper-

edge expansion problem, the objective ΦHE (H ,C ) reduces to ΦHE0(H ,C ) and we only need

to cover the later.

Given a hypergraph H , consider an auxiliary graph GB,H constructed from H . The vertices

of GB,H correspond to the hyperedges of H , and an edge is placed between a vertex yi and

an other vertex y j (in graph GB,H ) if the two original hyperedges intersect in the hypergraph,

i.e. yi ∩ y j �= 	. The graph GB,H is vertex-weighted. The weight of a vertex is the same as the

weight of the original hyperedge. Figure 4.2 shows an example of the auxiliary graph GB,H .

Denote the adjacency matrix of GB,H as

B = [B(i , j )
]

, where

{
B(i , j )= 1, if yi ∩ y j �= 	
B(i , j )= 0, otherwise

. (4.3)

When we have a minimum hyperedge cut solution to (4.1), it can be mapped to a vertex sep-

arator on GB,H , i.e. a set of vertices in GB,H whose removal would separate GB,H into at least

two distinct connected components (see Figure 4.2 (a) and (b) for an example). On the other

hand, if we have a vertex separator on GB,H , it can be mapped back to a minimum hyperedge

cut solution. We say that the mapping from a bi-clustering solution of (4.1) to a vertex separa-

tor on GB,H is valid in most cases, because it could be the case that several vertices that only

appear in one hyperedge are assigned to one cluster and all the other vertices form another

cluster (Figure 4.2 (c)), which cannot be represented by a vertex separator in GB,H . But this
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Chapter 4. Hyperedge Expansion

is a trivial case which is not very useful in practice and we normally would like to avoid it.

Without loss of generality, a non-trivial optimal solution to (4.1) can be always established by

finding a minimum vertex separator in GB,H .
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(c) 

Figure 4.2: A hypergraph H (a) and its undirected auxiliary graph GB,H (b). The vertices in
the hypergraph are not shown for simplicity. If a bi-clustering solution cuts the hyperedge y3

into two parts in (a), it corresponds to a vertex separator of GB,H in (b). (c) A counterexample
when a trivial bi-clustering cannot be mapped to a vertex separator.

The minimum vertex separator problem is shown to be NP-hard [Bui and Jones, 1992]. But

the problem itself has a close connection with the max-flow/min-cut problem in a directed

graph, which leads to various approximation algorithms, e.g. see [Leighton and Rao, 1999,

Feige et al., 2008]. Lawler proposed one of the early works to find an optimal clustering in

a hypergraph with the transformation to a max-flow/min-cut problem in a directed graph

[Lawler, 1973]. We use a slightly different transformation as in [Acid and Campos, 1996]. In

this transformation, there is an one-to-one correspondence between the minimum hyper-

edge cut and the min-cut in the auxiliary directed graph.

Starting from the undirected auxiliary graph GB,H , another directed auxiliary graph G�B ,H =
{V�B ,E�B , w�B } is constructed as follows. Firstly, a vertex in the undirected graph GB,H is copied

to two vertices in the directed graph G�B ,H , one with a + sign and another one with a − sign

(notice that a vertex in GB,H corresponds to a hyperedge in the original hypergraph). Then

a directed edge is placed between each pair of vertices in G�B ,H from the + sign to the − sign.

The weight of the directed edge is the same as the weight of the original hyperedge (Figure

4.3 (b)). In the next step, for each pair of vertices yi and y j which are connected by an edge in

GB,H , we place two directed edges in G�B ,H from the − sign to the + sign: (y−
i , y+

j ) and (y−
j , y+

i ).

The weight of the edge (y−
i , y+

j ) is w (y j ), and the weight of the edge (y−
j , y+

i ) is w (yi ) (Figure

4.3 (c) and (d)). Now the construction of G�B ,H completes.
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4.1. The Hyperedge Expansion Transformation

If we look at a vertex in G�B ,H with a + sign, e.g. the vertex y+
i , it has exactly one out-going

edge and all the edges attached to vertex y+
i have the same weight. This implies that if the

min-cut of G�B ,H contains an edge e from a − sign to a + sign (any in-coming edge of vertex

y+
i ), one can always find another min-cut of the same cost where e is replaced by another

edge e ′ from a + sign to a − sign (the out-going edge of vertex y+
i ). See Figure 4.3 (e) for an

example. The blue edges are possible candidates of e , and the red edge is the e ′. Therefore, a

min-cut of G�B ,H could only contain the edges from the + sign to the − sign, which implies an

one-to-one mapping from a min-cut in G�B ,H to a minimum vertex separator in GB,H (Figure

4.3 (f)). With the removal of the min-cut edges, the graph G�B ,H would be separated into at

least two distinct strongly connected components.
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Figure 4.3: The detailed steps to construct G�B ,H from GB,H . (a) The undirected auxiliary graph
GB,H . (b) - (f) The directed auxiliary graph G�B ,H .

By linking the minimum hyperedge cut to the min-cut in G�B ,H with the minimum vertex

separator in GB,H as an intermediator, we obtain the hyperedge expansion transformation.

It is worth mentioning that the trivial solutions of the minimum hyperedge cut as in Figure
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4.2 (c) are not covered by our transformation. But in a normal application, from a min-cut

solution in G�B ,H it is sufficient to reconstruct a minimum hyperedge cut solution.

Let the vector c of length 2m denote the membership indicator of vertices in G�B ,H , and S

denote the set of vertices that are on one side of the min-cut in G�B ,H (consequently S̄ =V�B \S

is the compliment set). An entry c(i ) can take values from {1/
�|S|,0}, which implies that

c�c = 1 always holds. We sort the entries in c with the order corresponding to the vertices

{y−
1 , y−

2 , ..., y+
1 , y+

2 , ...} (the vertices with the − sign come fist, then the vertices with the + sign).

The optimization problem of finding the min-cut can be formulated as

ĉ = argmin
c

ΦHE0(H ,c) (4.4)

= argmin
c

∑
(i , j )∈E�B

|S|w�B

(
i , j
)(

c(i )−c( j )
)

c(i ) (4.5)

subject to: c(i ) ∈ {1/
√

|S|,0}, c�c = 1. (4.6)

The second c(i ) in (4.5) ensures that only the edges from S to S̄ are counted when c(i ) = 1/
�|S|

and c( j ) = 0. It is easy to show that there is an one-to-one mapping from a solution ĉ of (4.4)

to a min-cut of G�B ,H . In the next section, we start from this optimization problem to define a

hyperedge expansion Laplacian, and present several properties of the new defined Laplacian.

By the construction, the number of edges in G�B ,H is two times the number of edges in GB,H

plus the number of hyperedges. The former can be calculated as the number of non-zero

entries in B. Let MB = X X� and set the main diagonal of MB to zeros. If the hypergraph is

generated from a multi-class beta-Bernoulli process, the expected number of zeros in B is

E

(
m∑

i=1

m∑
t=1

1(MB (t , i )= 0)

)
=

m∑
i=1

m∑
t=1

E (1(MB (t , i )= 0)) (4.7)

=
m∑

i=1

m∑
t=1,t �=i

E
(
1(X (t , ·)X (i , ·)� = 0)

)
(4.8)

=
m∑

i=1

m∑
t=1,t �=i

P

( ∑
zk∈c1

X (t ,k)X(i ,k)= 0, ... ,
∑

zk∈cs

X (t ,k)X(i ,k)= 0

)
(4.9)

=
m∑

i=1

m∑
t=1,t �=i

s∏
j=1

P

( ∑
zk∈c j

X (t ,k)X(i ,k)= 0

)
. (4.10)

Let f (x,ξ0, q0, j ,τ) denote the PDF of the beta distribution with parameters {ξ0, q0, j ,τ} (see

(2.14)), and p1, p2, p denote some intermediate variables. By the similar derivation as in

(3.26), we have

E

(
m∑

i=1

m∑
t=1

1(MB (t , i )= 0)

)
(4.11)
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=
m∑

i=1

m∑
t=1,t �=i

s∏
j=1

∫
p1,p2

|c j |∑
h=0

(−1)h

(
|c j |
h

)
ph

1 ph
2 f (p1,ξ0, q0, j ,τ) f (p2,ξ0, q0, j ,τ)d p1p2

(4.12)

=
m∑

i=1

m∑
t=1,t �=i

s∏
j=1

|c j |∑
h=0

(−1)h

(
|c j |
h

)(∫
p

ph f (p,ξ0, q0, j ,τ)d p

)2

(4.13)

= m(m −1)
s∏

j=1

|c j |∑
h=0

(−1)h

(
|c j |
h

)((
ξ0 + ( j −1)τ

)(h)(
ξ0q0

)(h)

)2

, (4.14)

where x(h) = x(x+1)...(x+h−1) is the Pochhammer symbol. This result contains a 3F2 hyper-

geometric series that makes it hard to simplify. We show an example of the expected percent-

age of non-zeros in B in Figure 4.4.
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Figure 4.4: The expected percentage of non-zeros in B with respect to ξ0 and q0. We use three
clusters in this example of sizes {20,10,8}, and set τ= 0.

4.2 The Hyperedge Expansion Laplacian

The standard spectral graph theory starts with the min-cut problem with binary indicator

variables. Then the binary variables are relaxed to take real values so that an approximation

can be established between the eigen-decomposition and the min-cut. We use the same tech-

nique to relax c to take positive real values and find the relaxed c which minimizes ΦHE0(H ,c)

(see (4.4)) by the Lagrange multiplier method with the constraint c�c = 1. The Lagrange func-
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tion is defined as

L (c,λ) =ΦHE0(H ,c)−λ
(
c�c −1

)
, (4.15)

where λ is a Lagrange multiplier. When taking the partial derivatives, we drop the contribu-

tions from c( j ) which is close to zero. This implies the following approximation

∂w�B (i , j )
(
c(i )−c( j )

)
c(i )

∂c(i )
= 2w�B (i , j )c(i )−w�B (i , j )c( j ) (4.16)

≈ 2w�B (i , j )c(i ), (4.17)

∂w�B (i , j )
(
c(i )−c( j )

)
c(i )

∂c( j )
=−w�B (i , j )c(i ). (4.18)

Setting ∂L (c,λ)
∂c(i ) = 0, we obtain the following 2m equations

{
w (y)deg (y)c(y−

i )−∑yi∩y j �=	 w (y)c(y+
j ) =λc(y−

i ) i ∈ {1,2, ...,m}

w (y)
(
c(y+

i )−c(y−
i )
)=λc(y+

i ) i ∈ {1,2, ...,m}
(4.19)

In a matrix form, the above equations are equivalent to

c�LHE =λc�, (4.20)

where

LHE =
[

DB −W B

−W W

]
, (4.21)

and DB = diag(1�W B) is the weighted degree matrix of the vertices in GB,H . The matrix LHE is

called the hyperedge expansion Laplacian. And the Lagrange multiplier λ can be interpreted

as an eigenvalue of LHE and c as a left eigenvector. Notice that the left eigenvector and the

right eigenvector of LHE are not the same, because the graph G�B ,H is a directed graph and the

induced Laplacian LHE is a non-Hermitian matrix.

For a non-Hermitian matrix like LHE, the Courant–Fischer min-max theorem does not hold

anymore. The field of values of the non-Hermitian matrix is a superset of the convex hull of

the eigenvalues [Horn and Johnson, 1991, da Silva, 2010], and there is no guarantee that all

the eigenvalues are real, even if all the entries of LHE are real values.

There are existing theories about the spectral properties of a directed graph based on the sym-

metrization of LHE [Wu, 2005, Chung, 2005], and the corresponding learning problems for the

directed graph [Zhou et al., 2005b]. It is shown that a Cheeger inequality can be established

with the first non-trivial eigenvalue of L̃ = 1
2

(
�V�P+�P

��V
)
, where�P is the (non-Hermitian) tran-
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sition probability matrix of the directed graph and �V is the diagonal matrix of the first non-

trivial eigenvector of �P. In the transition probability matrix �P, the weights of the out-going

edges are normalized by the out-degrees. For the special structure of our directed graph G�B ,H ,

the out-degree normalization could be problematic because the correct mapping from the

min-cut of G�B ,H to the original minimum hyperedge cut relies on the special weighting of

the directed edges. If the edge weights are changed, it is possible that the min-cut of G�B ,H

also contains edges from the − sign vertices to the + sign vertices, which is undesirable in our

case. This is the reason why we use the unnormalized non-Hermitian Laplacian LHE instead

of the Hermitian Laplacian L̃.

Although LHE is a non-Hermitian matrix, we show that the special structure of the directed

auxiliary graph G�B ,H leads to some special properties of LHE. These special properties would

allow us to carry out the learning tasks with LHE. Denote the eigenvalues of LHE as λ1 ≤ λ2 ≤
... ≤λ2m , and the left eigenvectors as {f 1, ..., f 2m}.

Lemma 4.2.1. For the hyperedge expansion Laplacian LHE, we have λ1 = 0 and all the entries

of f1 are real positive values.

Proof. It is easy to verify that λ1 = 0 is an eigenvalue of LHE with an all-ones right eigenvector.

Consider the matrix L̃HE = αI −LHE where α is a real positive value. For any eigenvalue λ

of LHE, α−λ is an eigenvalue of L̃HE, and vise versa. In the underlying graph G�B ,HT
, we can

find a directed path between any two vertices if the hypergraph is connected. Thus the graph

G�B ,HT
is strongly connected, and the matrix L̃HE is irreducible and has non-negative entries

for some α> 0. By the Perron-Frobenius theorem [Berman and Plemmons, 1979], there exists

a left eigenvector f 1 whose entries are real positive, and a real eigenvalueα−λ1 for L̃HE, where

α−λ1 has the biggest magnitude. Thus f 1 is a left eigenvector of LHE to the eigenvalue λ1.

For each eigenvector, let f −
k and f +

k denote the first and the second halves of f k . The following

theorem states that we could still expect real entries in the other eigenvectors.

Theorem 4.2.2. All the eigenvalues of LHE are non-negative real numbers and the left eigen-

vectors of LHE are real if and only if there exists γ ∈ R such that the matrix Q(γ) = γ2W−2 −
γW−1(I+W−1DB )+ (W−1DB −B) is negative definite.

Proof. Take an eigenvalue λ of LHE and a left eigenvector f = [f −, f +]. The eigenvalue prob-

lem f �L =λf � can be reformulated as

DB f −−W f + =λf −, (4.22)

−W Bf −+W f + =λf +. (4.23)
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By substituting f + = W−1(DB −λI)f − in the second equation, we obtain a quadratic eigen-

value problem (QEP)

Q(λ)f − = (λ2W−2 −λW−1(I +W−1DB )+ (W−1DB −B)
)

f − = 0. (4.24)

Notice that the coefficient matrices of λ2 and λ are positive definite (omitting the minus sign

beforeλ), because W and DB are diagonal matrices with positive entries in the main diagonal.

It is known that the QEP in (4.24) is overdamped if and only if there exists γ ∈R such that the

matrix Q(γ) is negative definite and (W−1DB −B) is positive semi-definite (see Theorem 2

and Definition 4 of [Guo and Lancaster, 2005]). The second condition can be always satisfied

because for any vector x ∈Rm

x�(W−1DB −B)x = ∑
(i , j )∈EB ,H

(√
w j

wi
x(i )−

√
wi

w j
x( j )

)2

. (4.25)

It is also known that the overdamped QEP Q(λ)f − = 0 has 2m non-negative real eigenvalues

and 2m real eigenvectors of length m. Thus LHE has 2m non-negative real eigenvalues and

2m real left eigenvectors of length 2m.

The condition stated in Theorem 4.2.2 is hard to verify in practice. The state-of-the-art tech-

niques usually require to actually compute all the eigenvalues of a QEP to test if it is over-

damped [Higham et al., 2002]. We give a sufficient condition which is easier to verify.

Theorem 4.2.3. All the eigenvalues of LHE are non-negative real numbers and the left eigen-

vectors of LHE are real if d (DB (i , i ) + W(i , i )) > 8DB (i , i )W(i , i ) for all i ∈ {1,2, ...,m}, where

d = mini (DB (i , i )+W(i , i )).

Proof. As shown in Definition 1 of [Guo and Lancaster, 2005], the conclusion of the theorem

holds if

(
(f −)∗W−1(I +W−1DB )f −)2 > 4

(
(f −)∗W−2f −)((f −)∗(W−1DB −B)f −) (4.26)

for all non-zero f − ∈Cm , where (f −)∗ denotes the conjugate transpose of f −. Let g = W−1f −.

Because W−1 is a diagonal matrix with positive main diagonal, we can transform the above

condition into

(
g∗(W +DB )g

g∗g

)2

> g∗W (4W −1DB −4B)W g

g∗g
(4.27)

for all non-zero g ∈Cm . Both sides of the inequality contain a Rayleigh quotient. Since (W +
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4.2. The Hyperedge Expansion Laplacian

DB ) is a diagonal matrix, by the Courant–Fischer min-max theorem (Theorem 2.3.1), we have

min
g

g∗(W +DB )g

g∗g
= min

i∈{1,2,...,m}
(DB (i , i )+W (i , i )) (4.28)

= d > 0. (4.29)

Therefore another sufficient condition can be written as

d
g∗(W +DB )g

g∗g
> g∗W (4W −1DB −4B)W g

g∗g
, (4.30)

or

g∗ (d (W +DB )−4DB W +4W BW )g

g∗g
> 0 (4.31)

for all non-zero g ∈Cm , which means that the Hermitian matrix d (W +DB )−4DB W +4W BW

must be positive definite. We know that a Hermitian matrix is positive definite if it is strictly

diagonally dominant and has all positive diagonal entries. Noticing that each row of (W BW −
DB W ) sums up to 0, which implies the conclusion in the theorem.

In fact we find that many hypergraphs tested in our experiments satisfy this sufficient condi-

tion, and the first 6 eigenvalues (smallest magnitude) of almost all the hypergraphs are real

non-negative. Experiments in the next chapter show that the hyperedge expansion Laplacian

works well in general.

The eigen-pairs of an overdamped QEP fall into two distinct classes, the primary {λ1 ≤ λ2 ≤
... ≤ λm} and the secondary {λm+1 ≤ λm+2 ≤ ... ≤ λ2m} [Tisseur and Meerbergen, 2001]. The

corresponding eigenvectors also fall into two classes, the primary {f 1, ..., f m} and the sec-

ondary {f m+1, ..., f 2m}. Unlike the spectrum of a Hermitian matrix, the eigenvectors of an

overdamped QEP do not necessarily orthogonal to each other. Instead, we know that the

primary eigenvectors are linearly independent, and the secondary eigenvectors are linearly

independent. This means that span(f 1, ..., f m) = Rm and span(f m+1, ..., f 2m) = Rm [Duffin,

1955]. Figure 4.5 shows an example of the primary eigenvalues and the secondary eigenval-

ues of the overdamped ��� dataset (see section 5.2.1 for a detailed description of the dataset).

It has been shown that the min-cut in a graph (the Cheeger constant) can be bounded by

the second smallest eigenvalue of the Laplacian (Theorem 2.3.2). We present a similar result

for the hyperedge cut. Recall that the minimum vertex separator of the undirected auxiliary

graph GB,H = {VB,H ,EB,H } can be mapped to the minimum hyperedge cut in the original hy-

pergraph. Let Φ̂HE0 =minC ΦHE0(H ,C ) represent the minimum hyperedge cut when dividing

the hypergraph into two parts, and wi = W (i , i ) denote the weight of the vertex i in GB,H or
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Figure 4.5: The primary eigenvalues and the secondary eigenvalues of the ��� dataset.

the weight of the original hyperedge yi .

Theorem 4.2.4. Suppose the QEP of the hyperedge expansion Laplacian LHE is overdamped.

Let wmax = maxi∈VB ,H wi and ε= maxi , j∈VB ,H |wi −w j |, we have

λ2
2 ≤ wmaxΦ̂HE0 +2ε2|EB,H |, (4.32)

where λ2 is the second smallest eigenvalue of LHE.

Proof. We use the same notations as in the proof of Theorem 4.2.2 except that replace f −

with u for simplicity. As in [Rogers, 1964], denote the roots of the quadratic u�Q(x)u =
0 as p(u) where u ∈ Rm . Let a(u) = u�W−2u, b(u) = u� (W−1(I +W−1DB )

)
u, and c(u) =

u� (W−1DB −B
)

u. By the proof of Theorem 4.2.2, we know that a(u), b(u) and c(u) are all

non-negative. The smaller root of the quadratic can be written as

p(u) = b(u)−
√

b(u)2 −4a(u)c(u)

2a(u)
(4.33)

≤
�

4a(u)c(u)

2a(u)
(4.34)

=
√

c(u)

a(u)
. (4.35)

The inequality (4.34) comes from the fact that b(u)2 −4a(u)c(u) is always positive since the

QEP is overdamped. The term
�

c(u)/a(u) is called a (generalized) Rayleigh quotient in [Duf-

fin, 1955]. Clearly scaling the vector u does not change p(u), i.e. p(αu) = p(u) for any scaler

α.

Recall that DB = diag(1�W B) and B is the adjacency matrix of GB,H = {VB,H ,EB,H }. The i -th
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4.2. The Hyperedge Expansion Laplacian

diagonal entry of
(
W−1DB −B

)
is 1

wi

∑
(i , j )∈EB ,H

w j . Thus (4.35) can be written as

p(u)2 ≤ c(u)

a(u)
=
∑

(i , j )∈EB ,H

(√
w j

wi
u(i )−

√
wi
w j

u( j )
)2

∑
i

u(i )2

w 2
i

. (4.36)

Suppose the minimum vertex separator of GB,H is the subset of vertices Sm ⊂ VB,H , and the

removal of Sm would make two disjoint subsets of vertices Sl ⊂VB,H and Sr ⊂VB,H which are

not connected by any edge in GB,H . These three subsets are disjoint and Sl∪Sm∪Sr =VB,H . If

a special vector g is taken such that g(i ) = gl ∈R for i ∈ Sl , g(i ) = 0 for i ∈ Sm and g(i ) = gr ∈R
for i ∈ Sr , then (4.36) can be written as

p(g)2 ≤

∑
i∈Sm

⎛
⎜⎝ ∑

j∈Sl
(i , j )∈EB ,H

g 2
l

wi
w j

+ ∑
j∈Sr

(i , j )∈EB ,H

g 2
r

wi
w j

⎞
⎟⎠+ ∑

i , j∈Sl
(i , j )∈EB ,H

g 2
l

(wi−w j )2

wi w j
+ ∑

i , j∈Sr
(i , j )∈EB ,H

g 2
r

(wi−w j )2

wi w j

∑
j∈Sl

g 2
l

w 2
j
+∑ j∈Sr

g 2
r

w 2
j

(4.37)

≤

∑
i∈Sm

⎛
⎜⎝ ∑

j∈Sl
(i , j )∈EB ,H

g 2
l

wi
w j

+ ∑
j∈Sr

(i , j )∈EB ,H

g 2
r

wi
w j

⎞
⎟⎠+ε2 ∑

i∈Sl
(i , j )∈EB ,H

g 2
l

deg (i )
w 2

i
+ε2 ∑

i∈Sr
(i , j )∈EB ,H

g 2
r

deg (i )
w 2

i

∑
j∈Sl

g 2
l

w 2
j
+∑ j∈Sr

g 2
r

w 2
j

(4.38)

≤ wmax

∑
i∈Sm

wi

(∑
j∈Sl

(i , j )∈EB ,H

g 2
l

w j
+∑ j∈Sr

(i , j )∈EB ,H

g 2
r

w j

)
∑

j∈Sl

g 2
l

w j
+∑ j∈Sr

g 2
r

w j

+ε2
∑

i∈Sl∪Sr

deg (i ) (4.39)

≤ wmax
∑

i∈Sm

wi +2ε2|EB,H | (4.40)

= wmaxΦHE0(H ,g)+2ε2|EB,H |. (4.41)

The ΦHE0(H ,g) on the right side is exactly the vertex separator cost given by g . The inequality

(4.38) is obtained by assigning an edge to the vertex with smaller weight in Sl or Sr , then each

vertex is processed iteratively. The deg (i ) is the unweighted degree of the vertex i . Then

(4.39) and (4.40) are obtained by omitting some vertices of Sl and Sr in the denominator.

There might be a tricky situation where a vertex i ∈ Sm is not directly connected to any vertex

in Sl ∪Sr . This could happen when a vertex is connected by only one edge to a vertex in the

minimum vertex separator. We can work around it by assigning such vertex to either Sl or Sr .

It is shown that there exists a (m − 1)-dimensional subspace U such that λ2 = minu∈U p(u)

for an overdamped QEP ([Duffin, 1955], Lemma 6). The special vector g could take values
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Chapter 4. Hyperedge Expansion

from a 2-dimensional subspace G spanned by the two indicator vectors of Sl and Sr . Thus

the intersection of U and G is always non-trivial (non-zero) in Rm . Let ĝ be a vector in the

intersection. We have λ2 ≤ p(ĝ). Combing it with (4.41), we obtain the conclusion of the

theorem.

The above eigenvectors from the hyperedge expansion Laplacian are the embeddings of the

hyperedges, but the required clusters or classifications in our learning tasks are about the

vertices. In order to utilize the hyperedge expansion, we need to find a mapping from the

hyperedge embeddings to the vertex embeddings. The idea is to use the incident matrix of the

hypergraph to find the mapping, i.e. the embedding of a vertex is the linear combination of

the embeddings of the hyperedges that are incident with the vertex. If the first l eigenvectors

of LHE are used, the vertex embeddings can be constructed by

αz =
[
f −

1 , f −
2 , ..., f −

l

]� X (·, z), ∀ z ∈ Z . (4.42)

Notice that the first halves of the f k ’s are used in (4.42). The reason is that we use the vertices

with the + sign in G�B ,H to enforce additional constraints in semi-supervised learning. With

the constraints applied to the vertices with the + sign, it makes more sense to construct the

embeddings from the vertices with the − sign.

4.3 Clustering and Semi-supervised Learning

The clustering algorithm with the hyperedge expansion is similar to those with the vertex

expansions. Besides the different Laplacian for computing the eigenvectors, we also need to

project the hyperedge embeddings back to the vertex embeddings. We denote the hyperedge

expansion clustering algorithm as ��&%$���'��).

Algorithm 5 The hyperedge expansion clustering algorithm

1: procedure ��������	���(H = {Z ,Y , w }, l , s)
2: Compute the |Y |×|Z | incident matrix X and the 2|Y |×2|Y |hyperedge expansion Lapla-

cian LHE from H , see (4.3) and (4.21)
3: Compute the left eigenvectors corresponding to the smallest l eigenvalues of LHE, and

place the eigenvectors in the 2|Y |× l matrix F y

4: Take the upper half matrix F−
y of F y

5: Let F z = X�F−
y

6: return a hard clustering Ĉ from k-means or kNN that takes s (the desired number of
clusters or the number of neighbors) and the rows of F z as inputs

7: end procedure

Unlike the vertex expansion case, we do not have a theory with the hyperedge expansion to

support a specific type of distance in the k-means or k-NN algorithm. But in practice the co-
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4.3. Clustering and Semi-supervised Learning

sine distance works well in most applications. We can also use cross-validation for choosing

a good parameter l . Algorithm 5 involves in the computation of the leading l eigenvectors of

a matrix of size 2|Y |×2|Y |. In the iterative eigen-decomposition routines, the running time

per iteration is proportional to the non-zeros in the adjacency matrix B of graph GB,H , which

is estimated in (4.14). The total number of iterations depends on the eigen-gap of graph GB,H

and can be variant for different datasets.

In the semi-supervised learning, some vertices are already classified into some clusters, but

our auxiliary graphs for the hyperedge expansion are constructed with the hyperedges. There-

fore, we need to first convert the given partial clustering to the hyperedge setting, which is

done by adding some auxiliary hyperedges into the original hypergraph.

Suppose that the known partial clustering is represented by the partial indicator matrix T of

size |Z | × s where s is the given number of clusters. An entry T (k , j ) = 1 if the vertex zk is

known to be in the cluster c j , otherwise T (k , j ) = 0. For each cluster c j , a label hyperedge is

created by including all the vertices in the j -th column of T . In other words, a new hyperedge

yc j = {zk |T (k , j ) = 1} is added to the original hypergraph. We assume that at least one vertex

from each cluster is labeled in T , so the label hyperedge can be always constructed. The

weights of all the label hyperedges are set to a pre-defined value wT , i.e. w (yc1) = w (yc2) =
... = wT . Let HT denote the extended hypergraph with label hyperedges. Then a directed

auxiliary graph G�B ,HT
is constructed from HT by the steps described in section 4.1.

Our learning algorithm is in the one-over-all style. In each step, one cluster is selected (sup-

pose it is cp ), and a modified hyperedge expansion Laplacian is defined as

LHET,cp = LHET −μMcp (4.43)

where LHET is the hyperedge Laplacian of the extended hypergraph HT , μ is a parameter and

Mcp =

⎡
⎢⎢⎢⎣

. . .

w (ycp )
. . .

⎤
⎥⎥⎥⎦ . (4.44)

The matrix Mcp has only one non-zero entry w (ycp ) in the bottom-right half diagonal cor-

responding to the position of the vertex y+
cp

in the directed graph G�B ,HT
. The modification

of the Laplacian can be seen as an additional constraint to (4.5) on the vertex y+
cp

such that

the entry c(y+
cp

) is forced to take the positive value 1/
�|S|. The degree of the constraint is

controlled by the parameter μ. A larger μ would have a bigger influence on guiding the direc-

tion of the hyperedge partition around y+
cp

, while a smaller μ would let the partition follow

the intrinsic principle direction of G�B ,HT
. It is worth mentioning that LHET,cp is defined for a
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specific cluster cp . Thus for each cluster the matrix LHET,cp has to be recomputed.

With the Hermitian Laplacian for graphs, the eigenvector associated with the second smallest

eigenvalue, namely the Fiedler vector, is often taken to make a bi-clustering. In our case, if

the modified Laplacian LHET,cp is computed with a positive parameter μ> 0, the eigenvector

corresponding to the smallest real eigenvalue is more useful.

Theorem 4.3.1. If μ > 0, there smallest eigenvalue λcp of LHET,cp is real and has the smallest

real part among all the eigenvalues of LHET,cp . The left eigenvector fcp
corresponding to λcp is

also real and has all positive entries. Furthermore we have λcp ≥−μw (ycp ).

Proof. The proof follows the same steps as in Lemma 4.2.1. The bound of λcp directly comes

from the spectral radius bound of the Perron-Frobenius theorem.

Similar to the semi-supervised learning algorithm with vertex expansions, the values in f cp

are treated as scores for the final assignment of an unlabeled vertex. But again we need to

first convert the scores on the hyperedges to the scores on the vertices. The score of a vertex

z to a cluster c j is

score(z,c j ) =∑
z∈y

f c j
(y−). (4.45)

Since the additional constraint is applied to a + sign vertex in the modified Laplacian, only

the entries with the − sign are taken into consideration in the above formula. Putting every-

thing together, we obtain the semi-supervised learning algorithm with hyperedge expansion

(denoted as �  '��)).

Algorithm 6 The hyperedge expansion semi-supervised learning algorithm

1: procedure �	���(H = {Z ,Y , w }, T , wT , μ)
2: Initialize a |Z | × s matrix Ĉ and a |Z | × s matrix F̂ , where s is the number of clusters

specified in T
3: Construct an extended hypergraph HT from the input hypergraph H , the partial clus-

tering T and the label hyperedge weight wT

4: for all cluster cp in partial clustering T do
5: Compute the modified hyperedge expansion Laplacian LHET,cp from HT , see (4.43)
6: Compute the left eigenvector f cp

corresponding to the smallest real eigenvalue of
LHET,cp

7: Fill the entry F̂(k , p) with the score(zk ,cp ) defined in (4.45)
8: end for
9: For each vertex zk which is not labeled in T , let Ĉ(k , j ) = 1 where j = argmaxp F̂(k , p),

and set all the other entries of the k-th row of Ĉ to 0
10: return a hard clustering that combines Ĉ and T
11: end procedure
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Algorithm 6 involves in the computation of the leading eigenvector of a matrix of size 2N×2N

(N = |Y |+s), and this procedure has to be repeated s times. Since we are only interested in the

eigenvector of the smallest real eigenvalue, it can be solved by the power iteration methods.

The basic operation in each iteration is a matrix-vector multiplication where the matrix is

essentially LHET,cp . If M is the number of non-zero entries in LHET,cp , the time complexity of

each iteration is O(M ). The convergence rate depends on the eigen-gap of LHET,cp and the

initial value of the iterations. In fact, the lower bound in Theorem 4.3.1 can be used as a good

initial guess of the eigenvalue.

4.3.1 Related Works

The clustering and semi-supervised learning algorithms proposed in this chapter and in the

previous chapter take relational data (hypergraph) as input and output a hard clustering of

vertices. For the purpose of comparison, we list some other existing approaches for clustering

or semi-supervised learning on relational data.

The hMETIS toolkit is a commonly used tool for hypergraph partitioning [Karypis et al., 1997].

It tries to optimize the ΦHE (H ,C ) objective with a heuristic algorithm. Although hMETIS is

mainly designed for VLSI applications, reports show that this toolkit can be applied to general

classification/clustering problems [Strehl and Ghosh, 2003]. There is a “pre-assignment of

vertices” function in hMETIS that can be used for assigning some vertices to known clusters

in the semi-supervised learning task.

The rendezvous algorithm (denoted as ��	�) is a semi-supervised learning approach based

on a random walk on a graph [Azran, 2007]. The algorithm first constructs a directed graph

from the kNN algorithm where all the labeled vertices have only in-coming edges and thus act

as absorbing states of the random walk. Then the algorithm simulates a set of particles that

start a random walk from each unlabeled vertex and stop at some labeled vertices. Intuitively,

a particle from an unlabeled vertex will stop at a labeled vertex of its true label with higher

probability. Thus the algorithm determines the labels based on the outcome of the random

walk. Since our experiments are carried out on the hypergraphs, we take the induced graph

of the hypergraph as the input of the rendezvous algorithm. A Gaussian kernel function is

also adopted when constructing the kNN graph as suggested by the author.

The semi-supervised kernel k-means (denoted as   ��"�!	$) is an extension of the kernel

k-means method where the kernel function is a linear combination of the graph kernel and

the label-induced modifier [Kulis et al., 2005]. The label-induced component includes both

same-class rewards and different-classes penalties. Again we use the induced graph from the

hypergraph to compute the graph kernel. For the kernel k-means step, the result of 1-nearest

labeled neighbor algorithm (with cosine distance) are used to initialize the partition in our
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implementation, which is far better than a random initialization in practice.

The AnchorGraph algorithm focuses on the scalability of semi-supervised learning [Liu et al.,

2010]. Instead of constructing a kNN graph from the original data, AnchorGraph chooses

a small set of anchors which connect to the s-nearest neighbors in the original data, and

represents each data point with a linear combination of these anchors. The semi-supervised

algorithm is faster because the values to learn are only the weights of the anchors rather than

the labels of the original data, and the number of anchors is far less than the number of data

points. The AnchorGraph algorithm is designed as a feature-based approach. To adapt it into

the hypergraph scheme, we take the incident vector of each vertex as the feature vector for the

AnchorGraph algorithm. And the cluster centers from a k-means algorithm is pre-computed

as good anchors, as instructed by the authors.
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5 Applications

In this chapter, we present the applications of the hypergraph learning tasks: clustering, semi-

supervised learning, and link prediction. Each learning task is associated with one specific

application. The section of network traffic inspection presents a clustering tool to help the net-

work administrators to monitor the network activities. The section of semi-supervised learn-

ing shows a comparison between the hypergraph algorithms and some other semi-supervised

learning methods on benchmark datasets. Finally in the section of recommender system we

demonstrate the link prediction algorithm in the recommender systems with book and music

datasets.

In each section, we first introduce the motivation and background of the application. Then

our algorithms are adapted to serve the goal of the application. After presenting the datasets,

we show the comparison between our approaches and state-of-the-art methods.

5.1 Network Traffic Inspection

5.1.1 Introduction

Networked computing environments are subject to configuration errors, undesired activities

and attacks by malicious software. These can be detected by monitoring network traffic, but

the network administrators are usually overwhelmed by the amount of data that needs to be

inspected. Filtering techniques are widely used by the administrators to pick out the unusual

traffic [Chandola et al., 2009]. But this approach requires the pre-defined filters, so it might

miss some unknown anomalies. To deal with this problem, more intelligent techniques need

to be adopted. We aim to develop a clustering strategy based on the hypergraph model for

the administrator so that the network traffic can be efficiently inspected with a concise list.
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Chapter 5. Applications

The real-time enterprise desktop monitoring software developed by Nexthink 1 continuously

monitors the network traffic and application activities (processes) on all the desktops in an

enterprise network (Figure 5.1). Unlike the traditional system logs, the monitoring software

called Nexthink Collector is installed on the client side rather than the server side. This fea-

ture allows the complete records of TCP/UDP connections, which includes not only the com-

mon 5-tuple (source IP, destination IP, source port, destination port, and protocol) but also

the information of the application that has initialized the connection (e.g. application name,

application version, and the user ID who is using the application). We study two problems

with the Nexthink dataset, namely the network service identification and the user affiliation

identification. Each problem is modeled with a hypergraph as a clustering task.

our work 
 

Nexthink Collectors 
Nexthink Engine(s) 

Nexthink Portal Nexthink Finder 

Connection graph 
with grouped 

ports  

Network 
service 

identification 

Selected 
Nexthink 
records 

visualization 

Administrator 

Figure 5.1: The architecture of Nexthink tools.

With the Nexthink Finder tool, an administrator can select the part of records of particular in-

terest (by smart filters) and generate a connection graph for inspection. In this tool, connec-

tions are grouped by the port number range (e.g. TCP1-TCP1000, TCP1001-TCP2000, etc.),

which is obviously not a good grouping strategy because in each port number range there

could be ports of different functionalities. In the network service identification problem, we

aim to provide a better grouping strategy of the ports based on the network service, i.e. a set

of ports that serve for the same functionality. The functionalities can be the email service, the

printing service, the anti-virus service, etc.

The similar idea is applied to identify the affiliation of a user. In a corporate network, users

from the same department tend to use the same set of applications to access similar des-

tinations, since they do similar works. The affiliation information can be directly obtained

from the profile of the user, but there might exist latent “affiliations” that reflect some un-

known work patterns. In the user affiliation identification problem, we try to identify some

user groups by the user behaviors which are particularly interesting from the perspective of

network management. The identified user groups can be used to improve the work flows or

the security rules.

1http://www.nexthink.com
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5.1.2 Constructing the Hypergraph

Five types of entities are recorded with the Nexthink dataset: the connections represent the

TCP/UDP sessions; the applications are the processes on the client machines with the same

executable filename; the destinations are the servers of an unique IP address which open

some ports to the applications; the ports are the combinations of port types (TCP or UDP)

and port numbers; and the users are the unique IDs which login to the client machines and

access the destinations through the applications. Each record is simply a tuple <connection,

application, destination, port, user>, and we have a list of records in the database collected

from a period of time. In fact, the connection field is only used as an identifier of the records,

which is not taken into the clustering algorithm. The key of using the hypergraph for rela-

tional clustering is to construct the co-occurrence relations (or the hyperedges) from the raw

records.

In the network service identification problem, the vertices of the hypergraph are the ports

since we would like to find clusters of ports. Each cluster is called a network service. Consider

the set of applications and destinations that are associated with a network service, e.g. the

email service. There might be different applications acting as email client, and there might

exist multiple email servers (destinations) in the corporate network. But normally these ap-

plications and destinations should follow the common protocols for the email service, which

would specify some special ports to be reserved only for the emails. These specified ports are

not unique. For example, the ports TCP25, TCP110, TCP465 and TCP995 can all be used in

one application for the email service, or opened in a server. Ideally a network service (or a

cluster) should include all these ports. The co-occurrence relation that we extract from raw

records is the application-destination pair, because all the ports associated with the same

application-destination pair should serve for similar functionalities. For example, there are 4

records with the same application “outlook.exe” and the same destination “mail.epfl.ch”, and

the ports in those 4 records are TCP25, TCP110, TCP465 and TCP995. Then we could create

a co-occurrence to include the 4 ports. The underlying assumption is that “outlook.exe” con-

nects to “mail.epfl.ch” for a very specific reason – exchanging emails. Although in reality we

do not know the reason explicitly, but we assume that a latent reason does exist.

In some cases, a malware might mimic the behavior of a normal software such that the ma-

licious ports are identified as normal. But in order to hide itself, the malware has to know

the ports of other services. We offset the impact of this adversarial behavior by excluding

the well known ports to make it harder to hide the malicious ports within a known network

service. Therefore the records with the common ports, e.g. TCP80, are filtered out in the

pre-processing.

It can be observed in the records that the ports are not always used for the registered purpose
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connection application destination port User 

1000201 outlook.exe mail.epfl.ch TCP25 tom@it 
1000202 outlook.exe mail.epfl.ch TCP110 tom@it 
1000203 outlook.exe mail.epfl.ch TCP110 john@it 
1000204 outlook.exe mail.epfl.ch TCP465 tom@it 
1000205 outlook.exe mail.epfl.ch TCP465 bob@sales 

     
1023218 spoolsv.exe \\printer02 TCP515 bob@sales 
1003219 spoolsv.exe \\printer02 TCP9100 ray@sales 
1003220 spoolsv.exe \\printer02 TCP9102 alice@sales 

     

 

 

outlook.exe - mail.epfl.ch 
spoolsv.exe - \\printer02 

TCP25 
TCP110 

5 TCP465 TCP515 

TCP9102 

TCP9100 
tom@it 

john@it 

bob@sales 

ray@sales 
alice@sales  

some other hyperedge 

ray@sales

alice@sales

 

outlook.exe - mail.epfl.ch 

spoolsv.exe - \\printer02 some other  
hyperedge 

Figure 5.2: Constructing a hypergraph from the raw records of Nexthink dataset. The bottom
left hypergraph is for the network service identification, and the bottom right hypergraph is
for the user affiliation identification.

as shown in the IANA (Internet Assigned Numbers Authority) list, but we find that the func-

tionality of one port is quite stable within the enterprise network. Thus it is reasonable to

assume that one port belongs to exactly one network service (cluster), which is also the basic

assumption of the clustering task defined in section 2.2.1.

Apparently the above two assumptions do not always hold, thus the constructed hypergraph

might be noisy. We leave the hypergraph to the clustering algorithm to filter out the noises

and extract the clusters. Notice that in network service identification the connection and user

information is discarded from the raw records. We denote this hypergraph as Hport.

In the user affiliation identification problem, we adopt the same idea to construct the hy-

peredges, but replace the ports with the users. The destinations used in this problem are

not restricted in the corporate network. Any IP address that a user has connected to is in-

cluded in the raw records. We also reduce the number of destinations by replacing the IP

addresses with its corresponding net-names and/or domain names. For example, the IP ad-

dress “173.252.110.27” is converted to “facebook.com”. This pre-processing procedure usu-

ally reduces the raw IP addresses to less than 10% destinations. We denote this hypergraph

as Huser. Figure 5.2 shows an example of the hypergraph Hport and Huser.

The first hypergraph Hport consists of hyperedges that are generated by the softwares. Since

the behavior of the software is rather deterministic, one could observe that Hport exhibits a
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relation distribution that is very close to the ξ0 → 0 case in the multi-class beta-Bernoulli pro-

cess. On the other hand, because the hyperedges in Huser are generated by the user activities,

the relation distribution of Huser is less deterministic, and conveys more randomness.

5.1.3 Experiments

We take datasets collected from different corporate networks for the clustering tasks. Since

there is no ground-truth about the clustering, an internal metric that only depends on the

hypergraph and the clustering result needs to be measured for evaluating the goodness of

the result.

The modularity is the most commonly used metric for community detection [Newman and

Girvan, 2004, Newman, 2006, Brandes et al., 2007]. It is defined on a graph and measures the

actual edge weights in a cluster minus the expected edge weights in the same cluster as if the

edges are randomly placed between the vertices. Given an undirected graph G = {V ,E , w } and

a vertex clustering C = {c1,c2, ...,cs }, define E (c j ) = {e |e = (v,u) ∈ E , v ∈ c j ,u ∈ c j } as the set of

edges that connect vertices within cluster c j , and E (ci ,c j ) = {e |e = (v,u) ∈ E , v ∈ ci ,u ∈ c j } as

the set of edges that connect vertices between cluster ci and c j . The modularity is defined as

[Brandes et al., 2007]

Q(G ,C ) =
|C |∑
j=1

w
(
E (c j )

)
w (E )

−
⎛
⎝w

(
E (c j )

)+∑|C |
i=1,i �= j w

(
E (ci ,c j )

)
2w (E )

⎞
⎠2

, (5.1)

where w (E (·)) denote the weight sum of the edges in the edge set E (·). The Q(G ,C ) value can

range from −1 to 1, and a larger value suggests a better clustering or community structure.

The modularity measures the edges between distinct clusters like the min-cut, and also con-

siders the average density of edges within a cluster, which penalizes the trivial partitions that

contain single-vertex clusters. Notice that the modularity can be also used to compare the

partitions with different numbers of clusters.

Because the modularity is defined on a graph, we take the induced graph GH (section 2.1) of

the hypergraph H to compute the value Q(GH ,C ). Some other metrics like the hyperedge cut

ΦHE0(H ,C ), ΦHE (H ,C ) (see (4.1)), and the normalized cut on the induced graph ΦN (GH ,C )

(see (2.11)) are also calculated.

We run experiments on Algorithm 1 with the NHC Laplacian, Algorithm 5 with the hyperedge

expansion Laplacian, the hMETIS toolkit (see section 4.3.1), and the agglomerative hierarchi-

cal clustering algorithm. Algorithm 1 and Algorithm 5 are tested with both k-means and kNN

subroutines. We apply a maximum cluster number kmax to the k-means algorithm, but the

final result could include less number of clusters since some clusters might become empty
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over the iterations of the k-means algorithm. The kNN algorithm takes the parameter kN

as input, constructs an auxiliary graph with kN -nearest neighbor search, and outputs the dis-

tinct (weakly) connected components in the auxiliary graph as clusters. As a baseline, we also

use the columns of the incident matrix X as (binary) feature vectors and take them into the

k-mean/kNN algorithm. The single-linkage algorithm, one of the agglomerative hierarchical

clustering algorithms, is reported to be the best clustering approach for the network traffic

or other signatures generated by the softwares [Bayer et al., 2009, Perdisci et al., 2010]. Thus

we also include it in the experiments. The distance function used in the experiments is the

cosine distance, and the dimensionality of the embeddings is set to l = 10.

In the network service identification problem, two datasets collected in a period of 10 days

are used. The first dataset ������	
�� contains 6.1 million records, 426 applications, and

5975 destinations. After pre-processing, there are 10061 ports and 4324 application-destination

pairs (hyperedges) in the constructed hypergraph. The second dataset ������	
�� contains

5.4 million records, 184 applications, and 2089 destinations. After pre-processing, there are

6291 ports and 2099 application-destination pairs (hyperedges) in the constructed hyper-

graph.

ΦHE0(H ,C ) ΦHE (H ,C ) ΦN (GH ,C ) Q(GH ,C ) #clusters

 �	-&���	
!-� (kmax = 20) 20 20 1.042 0.020 20

�*��� (kmax = 20) 1342 1394 4.459 0.468 20

k-means (kmax = 20) 2433 2550 1.518 0.534 12

��&%$���'���) (kmax = 20) 270 378 2.712 0.641 19

��&%$���'��) (kmax = 20) 332 433 1.374 0.655 13

kNN (kN = 8) 7 7 0.210 0.009 7

��&%$���'���) (kN = 4) 1928 2397 14.339 0.519 73

��&%$���'���) (kN = 6) 1899 2209 7.898 0.533 46

��&%$���'���) (kN = 8) 1517 1598 5.989 0.546 37

��&%$���'���) (kN = 10) 1335 1365 2.782 0.384 25

��&%$���'��) (kN = 4) 3958 7228 11.201 0.301 61

��&%$���'��) (kN = 6) 326 386 5.392 0.529 33

��&%$���'��) (kN = 8) 2909 3002 5.039 0.294 33

��&%$���'��) (kN = 10) 3292 3705 3.463 0.316 23

Table 5.1: Results of the clustering algorithms on dataset ������	
��.

Table 5.1 and 5.2 show the results of the experiments. The modularity Q(GH ,C ) values indi-

cate that our proposed approaches outperform the baselines and the other methods. In fact,

we are able to identify some clusters that can be easily mapped to a network service. In Table

5.3, some detected network services are listed. There are two main types of network services:

ports range and ports function. Ports range is a service that contains some consecutive or

random ports uniquely used by a specific application. Service 1 is an example of ports range.
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ΦHE0(H ,C ) ΦHE (H ,C ) ΦN (GH ,C ) Q(GH ,C ) #clusters

 �	-&���	
!-� (kmax = 20) 19 19 4.145 0.008 20

�*��� (kmax = 20) 137 181 5.807 0.415 20

k-means (kmax = 20) 598 658 0.551 0.693 10

��&%$���'���) (kmax = 20) 511 534 1.614 0.710 19

��&%$���'��) (kmax = 20) 154 157 0.119 0.749 6

kNN (kN = 8) 12 15 1.474 0.088 13

��&%$���'���) (kN = 4) 282 386 9.092 0.760 49

��&%$���'���) (kN = 6) 265 329 6.794 0.764 38

��&%$���'���) (kN = 8) 170 198 4.367 0.671 27

��&%$���'���) (kN = 10) 92 106 2.194 0.685 18

��&%$���'��) (kN = 4) 239 286 6.728 0.748 33

��&%$���'��) (kN = 6) 206 241 3.810 0.752 23

��&%$���'��) (kN = 8) 148 169 2.720 0.728 16

��&%$���'��) (kN = 10) 119 137 1.909 0.735 14

Table 5.2: Results of the clustering algorithms on dataset ������	
��.

It contains all the ports used by the process that supports the “Simple Network Management

Protocol”. Service 2 to 5 are examples of ports functions. Service 2 contains the two common

file-sharing ports in Windows system. It provides the list of all file-sharing servers without

any prior knowledge about the functionalities of ports in Windows system. The applications

in service 3 actually belong to the same software package “Novadigm Radia software deliv-

ery and management tools”. With this information, we can also find out which servers are

hosting the Radia service, which could help the administrator to manage the software. Ap-

plications in service 5 are the products of “Symantec AntiVirus Suite”. These clusters could

largely reduce the amount of work for the administrators to sift through the dataset.

Figure 5.3 shows another concrete example of network services. It draws the incident matrix

of the hypergraph with reordered rows and columns by the learned clusters. From this view

one can easily identify the network services and the associated applications/servers.

For the user affiliation identification problem, we use a dataset collected by Nexthink from

the computer rooms where the users (students) from different departments could access lo-

cal and Internet contents. The affiliation of users (the ground truth) is directly taken from the

online user profile and used as labels. In the label list, there are 12 affiliations that correspond

to 12 combinations of department and class year, e.g. CS2010, EE2011, etc. The smallest and

largest affiliations contain 7 users and 45 users respectively. Because the data from the small

affiliations is too sparse to make any reasonable clustering, we only keep the users from the

4 largest affiliations in the final hypergraph, which contains 146 users and 452 hyperedges.

The dataset was collected from a period of two weeks.
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service Ports, applications, destinations

1

port: UDP50758, UDP50760, UDP50767, UDP50769, UDP50770, UDP50771, ...

app: snmp.exe

dest: 10.0.0.20

2

port: TCP139, TCP445

app: system

dest: 10.130.10.111,10.130.10.107,10.130.10.226,10.130.10.98,10.130.10.222, ...

3

port: TCP3464, TCP3466

app: nvdkit.exe, radconct.exe, radstgms.exe, radstgrq.exe

dest: 10.130.10.94,10.144.0.5,10.136.0.5,10.60.15.5,10.140.1.5,10.20.3.8,10.100.0.5, ...

4

port: TCP5008, TCP5009, TCP5011

app: vau.exe, workstation.exe

dest: 10.21.49.176

5

port: TCP2967, UDP1281, UDP2967, UDP38293

app: rtvscan.exe, savroam.exe

dest: 10.130.10.98,10.144.0.5,10.136.0.5,10.2.0.5,10.60.15.5,10.140.1.5,10.20.3.8, ...

Table 5.3: Examples of network services (clusters) extracted from the Nexthink dataset.

Besides the internal metric like the modularity, we can also evaluate the results with some

external metrics since now the ground truth is available. Let C̄ and C denote the ground truth

clustering and the computed clustering respectively. The true positive (TP), false positive

(FP), and false negative (FN) for the cluster c̄ j ∈ C̄ are

TP j (c̄ j ,c j ) = |c̄ j ∩c j |, (5.2)

FP j (c̄ j ,c j ) = |c j \ c̄ j |, (5.3)

FN j (c̄ j ,c j ) = |c̄ j \ c j |. (5.4)

When there are more than two clusters, the averaged F-score can be defined in two ways

[Yang, 1999]: the micro-averaged F-score

Fmicro(C̄ ,C ) = 2
premicro · recmicro

premicro + recmicro
(5.5)

where premicro =
∑

j TP j∑
j TP j +∑ j FP j

, recmicro =
∑

j TP j∑
j TP j +∑ j FN j

, (5.6)

and the macro-averaged F-score

Fmacro(C̄ ,C ) = 2
premacro · recmacro

premacro + recmacro
(5.7)

where premacro =
1

|C̄ |
∑

j

TP j

TP j +FP j
, recmacro = 1

|C̄ |
∑

j

TP j

TP j +FN j
. (5.8)
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Figure 5.3: A spy plot of the incident matrix for the dataset ������	
��. The rows and
columns of the incident matrix are reordered by the learned clusters, and some identified
applications are shown in the figure. The clustering is generated by the ��&%$���'��) with
a kNN algorithm in the second step.

Both F-scores range from 0 to 1, and a larger value indicates a better matching between C̄ and

C . But in order to compute the F-score, one cluster in C has to be mapped to one cluster in

C̄ . We use the matching that maximizes the F-score over all possible matchings. On the other

hand, if the clustering is treated as a distribution of vertices, the above matching step can be

avoided by computing the mutual information between distributions. Let the |C̄ |×|C | matrix

N denote the confusion matrix where N(i , j ) = |c̄i ∩c j |. The normalized mutual information

(NMI) to measure the consistency between C̄ and C is defined as [Danon et al., 2005]

N M I (C̄ ,C ) =
−2
∑|C̄ |

i=1

∑|C |
j=1 N (i , j ) log N ·N (i , j )

(
∑

t N(i ,t ))(
∑

k N(k , j ))∑|C̄ |
i=1

(∑
t N(i , t )

)
log

∑
t N (i ,t )

N +∑|C |
j=1

(∑
k N (k , j )

)
log

∑
k N(k , j )

N

, (5.9)

where N is the sum of all entries in N . The NMI also ranges from 0 to 1. A value 1 appears if

C̄ and C are identical and 0 appears if C̄ and C are totally independent.

Table 5.4 shows the results of the user affiliation identification problem. Since we know the

number of clusters in the ground truth, the k-means algorithm is tested with a fixed parame-

ter kmax = 4. The clustering algorithm with the NHC Laplacian works the best in this experi-
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ment. It is able to correctly classify the affiliations for over 50% of the users. We can see that

the results indicated by the internal metric (the modularity Q(GH ,C )) are not consistent with

those indicated by the external metrics (the F-scores and the NMI), which suggests that the

underlying clusters do not completely follow the the structures established by the affiliations.

�*���  �	-&���	
!-� k-means ��&%$���'���) ��&%$���'��)

ΦHE0(H ,C ) 152 347 317 339 311

ΦHE (H ,C ) 298 568 529 617 556

ΦN (GH ,C ) 1.362 1.116 1.166 1.171 1.130

Q(GH ,C ) 0.061 0.143 0.132 0.130 0.146

Fmicro(C̄ ,C ) 0.430 0.397 0.470 0.511 0.441

Fmacro(C̄ ,C ) 0.402 0.392 0.471 0.507 0.436

N M I (C̄ ,C ) 0.130 0.173 0.353 0.403 0.309

accuracy 0.430 0.397 0.470 0.511 0.441

#clusters 4 4 4 4 4

Table 5.4: Results of the clustering algorithms for the user affiliation problem. The second
step clustering algorithm for ��&%$���'���) and ��&%$���'��) is k-means. The parame-
ter kmax is set to 4 for all the approaches. The shown values with a k-means algorithm are
averaged over 50 runs since the initialization of k-means is random.

5.2 Semi-supervised Learning

In this section, we compare the semi-supervised learning algorithms on benchmark datasets.

In these datasets, the ground truth partition C̄ over the vertices is known. All the classification

experiments are carried out in a transductive manner: we first create a hypergraph from the

raw data. Then the hypergraph and some vertex labels (a partial clustering T ) are taken as

inputs and the algorithm predicts the labels of the vertices which are not in T .

5.2.1 Experiments Setting

The tested algorithms include Algorithm 2 with the NHC Laplacian (�  '���)), Algorithm

5 with the hyperedge expansion Laplacian (�  '��)), the hMETIS toolkit (�*��� ), the ren-

dezvous algorithm (��	�), the semi-supervised kernel k-means algorithm (  ��"�!	$), and

the AnchorGraph algorithm (�	���.�!��). Please refer to section 4.3.1 for an introduction

of the last four algorithms.

The performance of the algorithms are evaluated in repeated runs. In each run, the labeled

vertices are randomly chosen from the vertex set such that every class has at least one labeled

vertex, and the same set of labeled vertices is applied to all the algorithms in each run to

ensure a fair comparison. We use the macro-averaged F-score (see (5.7)) as the evaluation
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metric.

In the experiments, we use 13 relational datasets from three different domains. The Ama-

zonBook co-purchase dataset contains the books in Amazon.com and the list of other books

that are co-purchased 2. We take three subsets of the book products to construct the hyper-

graphs. In each hypergraph, a book is represented by a vertex, and a hyperedge represents

a co-purchase list of books. The size of a hyperedge is no more than 6 because at most 5

other products can be listed in an Amazon product page. The label of each vertex is simply

the category of the corresponding book. We also have excluded the vertices which have no

label information from the dataset. The classes (labels) of the constructed hypergraphs are:

{Arts and Photography, Biographies and Memoirs, History} for the hypergraph �/��
�, {Com-

puters and Internet, Engineering, Science Fiction and Fantasy, Science} for the hypergraph

�/��
0, and {Accessories, Bargain Books, Entertainment, GayLesbian, Law} for the hyper-

graph �/��
1. The parameter μ in Algorithm 2 and Algorithm 5 is set to 1 for the above three

hypergraphs.

We also construct co-citation hypergraphs from the commonly-used ���!, ���$���, and

2�#�/ data [Sen et al., 2008]. They all have a citation structure where a paper is cited by an-

other paper or a webpage is linked by another webpage. For ���! and ���$���, a vertex

in the hypergraph represents a paper, and a hyperedge contains all the papers that cite the

same paper (thus one can name a hyperedge by the name of the paper that has been cited).

The papers in one hyperedge are assumed to be similar because they refer to the same topic

by citing the same paper. For the 2�#�/ data (��	�&& and ���!$), besides the link infor-

mation, word-based content information is also available. Thus we create some additional

hyperedges that include all the webpages that contain the same word. The set of words that

are included in the dataset is selected by a pre-processing procedure so that the stop words

and less important words are excluded. In order to show how the link information could

help in semi-supervised learning, the hypergraphs using only contents (denoted by C) and

contents plus links (denoted by CL) are constructed respectively for each 2�#�/ dataset. The

parameter μ in Algorithm 2 and Algorithm 5 is set to 50 for the co-citation hypergraphs.

In the last domain, categorical dataset, every entity has a set of nominal attributes which

could take values from a finite set. We use four labeled categorical datasets: ���, &�����,

�3	�4$-��%�$, and �������� from the UCI repository 3. For each dataset, a hypergraph is

constructed by taking the entities as vertices and creating a hyperedge for each value of the

attributes. Then every hyperedge should contain the entities that share the same attribute

value. For example, in the hypergraph ���, a vertex represents an animal, and the hyper-

edge “legs=2” should include all the animals which have 2 legs. We discretize those attributes

2Available at http://snap.stanford.edu/data/amazon-meta.html.
3Available at http://archive.ics.uci.edu/ml/.
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whose value is an integer with a cardinality larger than 10 into 10 sections. Some tested al-

gorithms do not scale very well on the datasets &�����, �3	�4$-��%�$, and ��������, so

only a subset is tested for each of them. We set the parameter μ = 1 for �3	�4$-��%�$ and

μ = 100 for all the other hypergraphs. Weighting the hyperedges usually depends on the do-

main knowledge. For simplicity, we assign the same weight to all the hyperedges in the exper-

iments. Table 5.5 shows the statistics of the hypergraphs.

hypergraph #vertices #hyperedges #clusters #labeled vertices in T

�/��
� 24500 29709 3 100

�/��
0 18120 20219 4 100

�/��
1 6965 8152 5 80

���! 1961 875 7 40

���$��� 1318 638 6 40

��	�&&��� 195 1254 5 20

��	�&&�� 195 1209 5 20

���!$��� 187 1125 5 20

���!$�� 187 1074 5 20

��� 100 36 7 15

&������� 1022 189 5 50

�3	�4$-��%�$ 1067 100 4 50

�������� 6344 140 7 50

Table 5.5: The statistics of the hypergraphs in the semi-supervised learning experiments. The
number of labeled vertices in the partial clustering T is also shown for each hypergraph.

5.2.2 Main Results

As shown in Table 5.6, the algorithm �  '��) performs significantly better than other meth-

ods in most cases. In the hypergraph �/��
1, the difference between �  '��) and �  '���)

becomes indistinguishable mainly due to the large variance of the F-score. In fact, the ratio

of the maximum class size over the minimum class size is much larger in �/��
1 (835.4) than

the ratio in �/��
� (1.5) and �/��
0 (10.3). With the unbalanced class sizes, the F-score of

small classes would be more sensitive to the choice of labeled vertices in T , which leads to

the high variance of the macro averaged F-scores over all the runs. For some datasets, the

�*��� algorithm does not work very well, partially because it is originally designed for the

VLSI applications, but not general classification tasks. From the results of ��	�&& and ���!$

with the �  '��) algorithm, we can observe an improvement from the content only case (C)

to the content+link case (CL). It confirms that the link information does help in classifying

the webpages.
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hypergraph �*���   ��"�!	$ �	���.�!�� ��	� �  '���) �  '��)

�/��
� 0.565(0.022) 0.446(0.015) 0.519(0.025) — 0.645(0.019) 0.657(0.023)

�/��
0 0.517(0.107) 0.376(0.016) 0.561(0.058) — 0.765(0.046) 0.798(0.023)

�/��
1 0.525(0.040) 0.357(0.067) 0.472(0.046) — 0.724(0.087) 0.716(0.064)

���! 0.477(0.054) 0.449(0.048) 0.500(0.050) — 0.613(0.046) 0.637(0.040)

���$��� 0.492(0.046) 0.361(0.030) 0.401(0.038) — 0.518(0.046) 0.509(0.046)

��	�&&��� 0.275(0.055) 0.411(0.091) 0.417(0.058) 0.304(0.068) 0.320(0.091) 0.497(0.047)

��	�&&�� 0.279(0.057) 0.427(0.092) 0.425(0.059) 0.299(0.056) 0.346(0.069) 0.480(0.050)

���!$��� 0.238(0.028) 0.362(0.050) 0.317(0.066) 0.249(0.042) 0.268(0.089) 0.425(0.045)

���!$�� 0.236(0.039) 0.350(0.047) 0.338(0.050) 0.254(0.047) 0.267(0.098) 0.410(0.068)

��� 0.467(0.066) 0.822(0.058) 0.803(0.075) 0.571(0.088) 0.359(0.147) 0.832(0.052)

&������� 0.379(0.049) 0.629(0.023) 0.664(0.039) 0.543(0.039) 0.606(0.047) 0.627(0.028)

�3	�4$-��%�$ 0.489(0.080) 0.480(0.041) 0.552(0.042) 0.482(0.069) 0.642(0.033) 0.628(0.042)

�������� 0.164(0.017) 0.285(0.019) 0.238(0.016) 0.268(0.022) 0.254(0.064) 0.307(0.028)

Table 5.6: The macro-averaged F-scores (and the standard deviation in the parentheses) on
13 hypergraphs. The algorithms are tested on �/��
�, �/��
0, �/��
1, and �������� with
10 runs, on the co-citation data with 50 runs, and on the other categorical data with 100 runs.
The bold number indicates the algorithm that performs significantly better than all the others
(p-value < 0.05 in a paired t-test). The Rendezvous algorithm (��	�) cannot return a result in
a reasonable time for some hypergraphs, so some F-scores are missing.

Nevertheless, the algorithms that are designed for hypergraphs (e.g. �*��� , �  '���) and

�  '��)) generally perform significantly better than those based on the graphs (  ��"�!	$)

or feature vectors (�	���.�!��). It suggests that the hypergraph approaches would be

better choices when the data is naturally organized as co-occurrence relations. For the hy-

pergraph &�������, the �	���.�!�� algorithm actually works best, because the original

attributes of &������� are all integer values on the real line (such as the mean of the x-

positions of the pixels) rather than nominal variables. When we construct the hypergraph

for &�������, these integer values are discretized into intervals to form hyperedges, which

might cause information loss. If the raw data is represented as vectors in a continuous vector

space, methods like the �	���.�!�� could be better for capturing the underlying patterns.

The running time of the algorithms is tested with different subsets of �������� such that

the sizes of the vertex sets range from 583 to 27056. These subsets are randomly extracted

from the original data. Figure 5.4 shows the measured times in log scale. We have shown

that the complexity of the �  '��) algorithm mainly depends on the number of hyperedges.

The running time of �  '��) does not change too much when increasing the number of ver-

tices. This is because the number of hyperedges in the subsets remains in the same level

(from 122 to 143). Therefore the algorithm based on the hyperedge expansion can be or-

ders of magnitude faster than the approaches based on the vertex expansions if the number

of hyperedges is much smaller than the number of vertices. By increasing the parameter μ,
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�  '��), μ= 1, b = 0.08
�  '��), μ= 5, b = 0.20
�  '��), μ= 10, b = 0.23
�  '��), μ= 100, b = 0.35
�  '��), μ= 500, b = 0.46
�  '��), μ= 1000, b = 0.46
�*��� , b = 1.08
�  '���), b = 2.52
  ��"�!	$, b = 1.98
�	���.�!��, b = 1.04
��	�, b = 2.35

Figure 5.4: The measured running time of the algorithms with 100 labeled vertices on dif-
ferent subsets of ��������. The slope b of each curve is shown in the legend, which is
computed by the least square fitting. Notice that both axes are in log-scale. The �  '��)

algorithm is tested with different parameters μ.

we can observe that �  '��) runs faster due to the higher convergence rate of the eigen-

vector computation, which confirms the conclusion in [Mavroeidis, 2011]. In practice, the

choice of μ also depends on the classification performance, but the running time would not

change by more than an order of magnitude when tuning μ. The running times of �*��� 

and �	���.�!�� grow linearly with respect to the number of vertices, while for �  '���),

  ��"�!	$ and ��	� the running time grows quadratically. We have shown that the time

complexity of �  '���) is proportional to the number of non-zeros in the Laplacian LNHC,

and the sparsity ( #non-zeros
#all entries ) of LNHC would be a constant. Thus the running time of �  '���)

is proportional to n2 where n is the number of vertices and n ×n is the size of LNHC.

Figure 5.5 shows a comparison of the embeddings using the vertex expansion and the hy-

peredge expansion. The vertices (animals) of the hypergraph ��� are projected into a 2-

dimensional space. It can be seen that the hyperedge expansion generates a different pic-

ture from that of the vertex expansion. The hyperedge expansion shows a better separation

between different classes in the 2-dimensional space, but for some animals (e.g. $�!$	!
�

and �&!���%$) both embeddings fail to assign them to a cluster, mainly due to their special

attributes.
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Figure 5.5: The vertex embeddings of ��� with the (scaled) eigenvectors corresponding to
the 2nd and 3rd smallest eigenvalues. The clusters of animals are annotated with different
markers. Left: the embeddings from the hyperedge expansion Laplacian LHE. Right: the
embeddings from the NHC Laplacian LNHC.

5.3 Recommender System

5.3.1 Introduction

The recommender systems have been studied since the rise of web-services and gained great

success in recent years [Resnick and Varian, 1997, Adomavicius and Tuzhilin, 2005]. Such sys-

tem tries to predict the possible preferences or ratings from a user to an item (movie, music,

social elements, etc.) by looking into the attributes of the item or the history of user behaviors.

Then the items can be recommended to a user with an order ranked by some personalized

relevance scores.

In this work we mainly focus on the relation-based approaches that make predictions ac-

cording to the user behaviors. Obviously, the relations between the users and the items can

be modeled as a hypergraph with the bi-partite graph representation, or as a weighted rela-

tion matrix R where R(i , j ) is the rating from the row i (a user) to the column j (an item). The

memory-based collaborative filtering (CF) systems first find a neighborhood for each user (or

item) whose behavior is similar to all the entities in the neighborhood [Schafer et al., 2007].

By the assumption that all the users (or items) in the neighborhood have the similar tastes

or properties, the recommendations are made from the collective preferences of the whole

neighborhood.

On the other hand, instead of assuming that the users would behave similarly in a neighbor-

hood, one can create a model to describe the underlying mechanism from which the relations

are generated. The model-based systems usually involve the so-called latent factors that can
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be shared and matched between the users and the items. For example, to represent the rat-

ings in a music website, the rows of R are the users , and the columns of R are the artists. A

typical recommender system would try to guess the user’s interests and generate a list of un-

seen artists that meets the user’s interests. Normally there is already a set of old users with

many seen artists (many non-zero entries in R). A model-based system would try to extract

the latent factors, e.g. preferences over music genres, from the matrix R. When a new user

comes into the system, based on a few relations from the new user to the artists, the system

would try to align the new user’s latent factors (interests) to the existing ones learned from

the previous step. Then the predictions of the most probable relations can be made from the

aligned latent factors.

Among many other model-based approaches such as probabilistic model or latent semantic

model, the matrix factorization technique is an ideal tool for extracting latent factors from

the rating matrix R. Early works (e.g. [Sarwar et al., 2000]) adopt the singular value decompo-

sition (SVD) to make a low-rank approximation of a matrix, and produce predictions based

on the generalization of the low-rank SVD to the missing entries. Along this line of works,

Funk [Funk, 2006] has developed a SVD algorithm that ignores missing values in the matrix,

which could scale up to bigger datasets. Paterek [Paterek, 2007] and Koren [Koren, 2008] have

pointed out that better predictions can be obtained from an asymmetric model. In the asym-

metric model, only the right singular vectors are used in the prediction step.

Since the rating matrix can be modeled as a hypergraph, we propose to use the link prediction

algorithm developed in section 3.4 to serve as a recommender system. In the hypergraph

representation, a vertex usually represents an item, and a user is denoted by a hyperedge. The

model behind our algorithm is the multi-class beta-Bernoulli process (see section 2.4), which

assumes that the items in the recommender system can be organized into some clusters and

the users choose to engage with the items in each cluster by some probabilities generated

from a beta distribution. For example, in the "%$� data, a cluster of items would include all

the artists who play a music genre or a combination of genres, where the latter case allows us

to handle the artists who play in multiple genres in our model.

Figure 5.6 shows the setting of our system. The rating matrix R is split into three parts. The

sub-matrix Rm contains most rows of R which represents the old users in the system. The

remaining rows of R are further split into Rtr and Rte, where a few ratings are available in Rtr

and our goal is to predict more relations in the Rte part. This setting simulates a recommender

system where we have a rich set of existing ratings and some new users would give only a few

ratings. In fact, this setting has the flexibility to allow us to learn the latent factors from any

sub-matrix of R (if the sub-matrix has all the columns of R), and to predict new relations for

any rows. The three matrices Rm, Rtr and Rte do not have to be disjoint. Notice that our

setting does not consider the cold-start problem when there are not enough ratings in the
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Figure 5.6: An illustration of recommender system with a hypergraph representation.

sub-matrix Rm to learn a good set of latent factors. Usually one has to resort to a hybrid

approach that combines the contents of the items and the relations [Lam et al., 2008].

We have shown in Algorithm 3 that the latent factors can be obtained by the truncated SVD

and the predictions can be made by computing a vector in the latent space for each user. In

section 3.2, it is also shown that the right singular vectors of the truncated SVD approximately

form some clusters which have an orthogonal structure. This justifies our algorithm which

has a similar asymmetric model to those in [Paterek, 2007] and [Koren, 2008].

5.3.2 Experiments Setting

Three datasets from the music domain and the book domain are used to test the perfor-

mances of the algorithms. We choose these two domains because they both have a cate-

gorical structure on the items (songs, artists, books) and both domains possess an enormous

number of items so that recommendations are desired by the users. The first dataset �!$�5"
4 contains the relations between users and artists, and the rating associated with the relation

is the actual count of plays with which a user has listened to an artist. A subset of 5848 artists

and 19810 users are selected to construct the hypergraph. The second dataset 6!���*%$� 5

is also in the music domain, but includes the relations between users and tracks. The ratings

in 6!���*%$� are in the range from 0 to 100. We also take a subset of the raw data and in-

clude 5644 tracks and 6020 users to construct the hypergraph. The last dataset /��
���$$�	-

contains the ratings from the users in #��
��$$�	-7�" on books (see [Ziegler et al., 2005]

for more details). The range of ratings is from 1 to 10. We take a subset of 5557 books and

1864 users in the hypergraph.

The algorithms are evaluated in two scenarios. Firstly we test the algorithm’s ability to dis-

4Available at �����������	�
���	���������, collected from �����
�.
5Available at ���������������������������������������, the Yahoo! Webscope dataset ydata-ymusic-

kddcup-2011-track2.
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cover unseen relations. The rating matrix is split into three parts as shown in Figure 5.6. The

matrix Rm contains all the rows that correspond to the users who have rated more than 60

items. Let Ym denote this set of users, and Yt denote the set of other users. Then we ran-

domly select Rtr to have 5 ratings for each row (each user) that is in Yt, and the remaining

ratings are all assigned into Rte. This setting simulates the situation where new users just

come into the system with only a few ratings, which is denoted as 8��1. Similarly, we create

another setting called 8���3 where each row of Rtr has 20 ratings to simulate the users with

more available ratings. In all the experiments, Rtr and Rte are randomly selected in 5 differ-

ent runs. Since all the items which are not in Rtr can be recommended in the final result, this

scenario is denoted as �����������.

All the tested algorithms have to make predictions for the users in Yt, based on the Rm and

Rtr parts. In Algorithm 3, the Rm part is used to compute the item embeddings, i.e. let X =
sign(Rm) in step 3 of Algorithm 3. And the Rtr part is used to calculate the user vector in step 6,

i.e. obtain Θ by solving FΘ= R�
tr . Finally the top kr unseen items with the highest prediction

scores are selected for each user in Yt. The other two algorithms introduced in section 3.4.1,

the ������ (��� and �������*+��, are also adapted into the above setting.

To evaluate the recommendations, for each user, we check if the set of recommended items

(the kr unseen items with the highest prediction scores) coincides with the set of liked items.

The set of liked items for a user is defined as the items with ratings higher than the median

in Rte. For the user yi , let H kr
i denote the set of top kr recommended items, and H like

i denote

the set of liked items. We measure the average precision

preavg =
1

|Yt|
∑

yi∈Yt

|H kr

i ∩H like
i |

|H kr
i |

. (5.10)

Sometimes we might already know a set of candidate relations that the user has provided

implicitly. For example, a user has viewed a list of pages of artists, but did not make any

further actions like purchase a CD or download a track. In this case, we can limit our pre-

dictions on the candidate relations and only recommend the items that are truly liked by

the user. In other words, the predictions are made on the items already seen in Rte, and

we only try to rank them such that the liked ones are ranked higher. This scenario is de-

noted as �������������� . The average precision defined in (5.10) is also used to evaluate

�������������� .

To summarize, there are two scenarios: ����������� and �������������� . And within

each scenario there are two settings: 8��1 and 8���3. When evaluating the results, we select

the top kr = 20 recommendations for each user. Besides our proposed Algorithm 3, the other

6 algorithms introduced in section 3.4.1 are also tested in the experiments.
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5.3.3 Main Results

Table 5.7 and Table 5.8 show the performances of ����������� and �������������� re-

spectively. In the first scenario, our proposed algorithm performs best in the music domain,

and shows results as good as the best methods in /��
���$$�	-. The algorithms ignoring

the empty values (�������,� and ��������,�) do not perform very well, mainly because

these methods are originally designed to minimize the RMSE (root mean squared error) on a

testing set of known ratings, which is more similar to the �������������� scenario. Thus

we observe poor performances from �������,� and ��������,� for the �����������

scenario. The difference between the SVD-based methods and the NMF-based methods is

not distinguishable with the 8��1 setting. But with more ratings available for each user in the

8���3 setting, the SVD-based methods perform slightly better than the NMF-based meth-

ods. Since the only different between ��������� and ������ (��� is the matrix used to

compute the embeddings, the better performance of ��������� suggests that the normal-

izations in the NHC Laplacian do help in constructing a better latent space. If we compare

the performances of 8��1 and 8���3 in the same algorithm, the average precision of 8���3

is slightly worse than that of 8��1. This result is a bit counter-intuitive and mainly due to

the fact that we measure the precision by comparing the recommendation set with the set of

highly-rated items in Rte. In the 8���3 setting, there are more rated items in Rtr but less in

Rte, so it would be harder to find good recommendations in Rte.

�!$�5" 6!���*%$� �����������	

8��1 8���3 8��1 8���3 8��1 8���3

������ (�� 0.113 0.083 0.237 0.207 0.078 0.063

������ (��� 0.114 0.087 0.237 0.210 0.078 0.062

�������*+� 0.114 0.090 0.218 0.189 0.073 0.054

�������*+�� 0.110 0.089 0.211 0.190 0.071 0.056

�������,� 0.002 0.003 0.001 0.001 0.005 0.003

��������,� 0.003 0.002 0.007 0.005 0.005 0.003

��������� 0.180 0.158 0.258 0.227 0.075 0.065

Table 5.7: The average precisions in the ����������� scenario. The bold number indicates a
method that performs significantly better than the others (p-value < 0.05 in a paired t-test).

In the �������������� scenario, no method performs significantly better than the oth-

ers over all datasets. But the NMF-based method �������*+�, the asymmetric method

��������,� and our proposed algorithm ��������� are constantly as good as the best

one. For the comparison between 8��1 and 8���3 in the same algorithm, we do not observe

a clear performance drop from the 8���3 setting to the 8��1 setting. Because in this scenario,

an algorithm could only recommend the rated items in Rte.
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�!$�5" 6!���*%$� �����������	

8��1 8���3 8��1 8���3 8��1 8���3

������ (�� 0.198 0.140 0.490 0.418 0.743 0.744

������ (��� 0.198 0.139 0.496 0.435 0.743 0.745

�������*+� 0.541 0.545 0.763 0.774 0.731 0.740

�������*+�� 0.279 0.222 0.579 0.496 0.743 0.745

�������,� 0.177 0.244 0.249 0.224 0.389 0.165

��������,� 0.537 0.531 0.755 0.783 0.696 0.714

��������� 0.515 0.524 0.765 0.766 0.745 0.747

Table 5.8: The average precisions in the �������������� scenario. The bold number indi-
cates a method that performs significantly better than the others (p-value < 0.05 in a paired
t-test).
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Figure 5.7: The popularity distribution of the recommended items in the ����������� sce-
nario. The x-axis (popularity) is in log-scale. The mean and median of the popularity are also
shown in the figure. Top: /��
���$$�	-. Bottom: 6!���*%$�.

In the recommender systems, people are also interested in recommending less-popular items,

because the users are usually already aware of the popular items from other sources. For
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the purpose of diversifying the recommendations, we measure the popularity distribution of

items in H kr
i and H kr

i ∩H like
i , i.e. in the set of recommended items and in the set of success-

fully recommended items. The popularity of an item zk in Z is calculated as the number of

ratings in the k-th column of the rating matrix R. Figure 5.7 shows the distributions in the

����������� scenario. We can observe that ��������� produces more diverse recommen-

dations with the same (or better) level of precision. Especially with the /��
���$$�	- data,

there are much more less-popular recommendations from ��������� compared to those

from ������ (�� and �������*+�.
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Figure 5.8: The average precisions with different dimensionality parameters l in the algo-
rithm ���������.

To examine the influence of the dimensionality parameter l in the algorithm ���������,

the average precisions are measured with changing l values, as shown in Figure 5.8. In the

����������� scenario, the average precision stays in the same level when l > 20. It means

that we cannot achieve better predictions by using larger l beyond some threshold, though

the threshold slightly varies for different datasets. In the �������������� scenario, the av-

erage precision does not change when using different dimensionalities. An exception is the

�!$�5" dataset with the 8��1 setting. The performance actually decreases as the dimension-

ality getting bigger. This result might suggest that the embeddings are crucial for discovering

possible new relations (�����������), but less important for ranking the possible relations

(�������������� ).
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6 Conclusion

In this work, we have proposed to use the hypergraph model to represent the co-occurrence

relations. Compared to the graph model, the hypergraph is more expressive and can be ap-

plied to many real applications. We have discussed the generating process of a hypergraph,

the vertex expansions and the hyperedge expansion, as well as the experiments on three rela-

tional learning tasks.

6.1 Hypergraph-based Relational Learning

For the hypergraph problems, a generative model is proposed to simulate the mechanism

from which the relations in the hypergraph are created. The multi-class beta-Bernoulli pro-

cess is extended from the beta process, a nonparametric Bayesian model, and we have shown

that the frequency of the vertices which have the same degree follows a power-law distribu-

tion. In most hypergraphs in our experiments, we do observe such power-law distribution.

Although the basic assumption requires the mutual exclusion between the vertices from dif-

ferent clusters, this generative model can be applied to many cases where the vertices have a

set of categorical attributes.

Starting from the multi-class beta-Bernoulli process, we have examined the sparsity of the

hypergraph Laplacians. It has been shown that the sparsity is a fixed value which depends on

the parameters of the multi-class beta-Bernoulli process and is independent of the size of the

hypergraph. Because the computational complexity of the hypergraph learning algorithms is

linear to the number of non-zeros in the Laplacian, a fixed sparsity implies that the running

time would increase quadratically with respect to the hypergraph size. This result is also

observed in the experiments.

Based on the multi-class beta-Bernoulli process, the vertex embeddings from the NHC Lapla-

cian are shown to have a special structure in the embeddings space. In fact, the embedding
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vectors from s clusters of vertices also aggregate into s clusters in the embeddings space, and

the cluster centers are approximately orthogonal to each other. This result extends the similar

result in the graphs to the hypergraphs. Unlike the graph case, we show that the embeddings

are no longer aligned to the axes of the embedding space, but up to a rotation that depends

on the distribution of relations. This rotation could be very sensitive to modifications of the

hypergraph, if the second smallest eigenvalue of the NHC Laplacian is not far away from the

rest of the spectrum.

We utilize the special structure of the NHC embeddings to develop a link prediction algo-

rithm, which has an asymmetric style in using only the right singular vectors. In the exper-

iments of recommender systems, it has been shown that our algorithm outperforms the ex-

isting approaches based on matrix factorization techniques. Since the only difference from

our algorithm to one of the baselines (������ (���) is the step of embedding computation.

The empirical results suggest that hypergraph-based models can better handle the relations

in a recommender system by means like hyperedge size normalization and special designed

weighting functions.

Instead of the vertex-centric view in the vertex expansions, we have also examined the other

possibility of the hyperedge-centric view. The hyperedge expansion Laplacian is proposed

from a transformation from the minimum hyperedge cut problem to a min-cut problem in

a directed auxiliary graph. We have shown the conditions with which the spectrum of the

hyperedge expansion Laplacian are all real, although the hyperedge expansion Laplacian is a

non-Hermitian matrix and thus could have a complex spectrum. The eigenvalue problem of

the hyperedge expansion Laplacian is also linked to a quadratic eigenvalue problem, which

has a different spectrum structure from that of an undirected graph. We have shown that if

the corresponding quadratic eigenvalue problem is overdamped, the minimum hyperedge

cut can be lower bounded by the second smallest eigenvalue of the hyperedge expansion

Laplacian. With the hyperedge expansion, the proposed algorithms for clustering and semi-

supervised learning tasks are tested on some benchmark datasets. The empirical results show

that our approach is significantly better than the state-of-the-art methods when the data can

be naturally organized by some co-occurrence relations.

6.2 Vertex Expansion vs. Hyperedge Expansion

The vertex expansion and the hyperedge expansion can be seen as different parts of a star

expansion (although the weights cannot be directly derived from the star expansion). But

given a dataset, which expansion should be applied is more than a simple rule. Generally we

should start from the objectives defined for the expansions and find the objective (and the

expansion) that would better formulate the problem.
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One should also examine the statistics of the co-occurrence relations in the hypergraph. If

the hyperedges are all small compared to the whole vertex set, the vertex expansion could be

better in capturing the clusters in the hypergraph. Because if the hyperedge sizes are small,

the information loss in the transformation to the induced graph is negligible. On the other

hand, if there are many large hyperedges, a vertex expansion would produce big cliques that

include almost all the vertices in the induced graph and thus have difficulties in finding clus-

ters. In this case, the hyperedge expansion would be a better choice, because the objective of

the hyperedge expansion does not depend on the hyperedge sizes.

Computational cost is another criterion to choose the expansion. We have shown that the

running time of a vertex expansion algorithm increases quadratically with respect to the num-

ber of vertices, and the running time of a hyperedge expansion algorithm has the similar rela-

tion to the number of hyperedges. Therefore, if the hypergraph has much more vertices than

hyperedges, the hyperedge expansion would run faster, and vice versa.

6.3 The Hypergraph Analysis Toolkit

Along with the study of hypergraphs, we have developed a MATLAB toolkit called the hyper-

graph analysis toolkit, or ��� 1. The ��� includes 8 sets of functions from data pre-processing,

algorithms, evaluation to visualization.

The �������$$�	- folder contains the functions to import a csv file or a excel file into a hy-

pergraph structure, the functions to manipulate a hypergraph (e.g. taking a sub-hypergraph

by labels, removing small hyperedges, etc.), and the functions to add additional attributes to

the vertices or the hyperedges. The -�!�� and �����-�!�� folders include the functions for

computing graph-based or hypergraph-based metrics (e.g. the normalized edge cut, graph

modularity, degree distributions, etc.), and the functions for transforming a hypergraph into

the induced graph. The &%$����	-, &!$$�5�!���	 and �!$
 folders provide the hyper-

graph learning algorithms based on the vertex expansions and hyperedge expansion, and a

set of functions to run the algorithms in batch mode. In the ��!&%!���	 folder, various exter-

nal and internal metrics are supported to evaluate the results of the algorithms. Finally the

��$%!& folder offers different ways of presenting a graph or a hypergraph together with the

algorithm outputs. We also provide a function to export the graph structure to the state-of-

the-art visualization software Gephi such that the results can be presented with a professional

visualization.

1Available at http://lia.epfl.ch/index.php/research/relational-learning.
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Chapter 6. Conclusion

6.4 Future Directions

The hypergraph has been successfully applied to many applications, but the theoretical as-

pect of the hypergraph learning is far from perfect. We list several future research directions

as follows.

In the research of complex networks, various models are proposed to simulate the power-law

distributions, or more general distributions like the log-normal distribution or the double

Pareto log-normal distribution, which are observed in the real world datasets. Some well-

known models include the preferential attachment model [Newman, 2003] and the forest fire

model [Leskovec et al., 2005]. Some nonparametric Bayesian models also show the similar

power-law behaviors [Paisley et al., 2010, Broderick et al., 2012]. Our model, the multi-class

beta-Bernoulli process, only shows a power-law distribution on the vertex degrees. But none

of the existing models can be applied to the hypergraph so that the hypergraph could ex-

hibit power-law distributions on both vertex degrees and hyperedge degrees, which we do

observe in real datasets (e.g. �!$�5", 6!���*%$� and /��
���$$�	-). Some existing works

have pointed out the hints for creating such models [Reed and Hughes, 2003, Chakrabarti

et al., 2004, Seshadri et al., 2008, Clauset et al., 2009], and the key component is a multiplica-

tive process that adds a relation to an entity with probability proportional to the number of

relations already attached to that entity, or a sequence of decaying probabilities that simu-

lates the multiplicative process in a reversed order. An interesting future work is to develop

a new model with the desired distributions, and utilize this model for improving the cluster-

ing/classification algorithms. Since we already have clusters in the current model, the hierar-

chical clustering structure proposed in the forest fire model could be a possible extension for

further studies.

As the volume of data created everyday exceeds 2.5 quintillion (2.5×1018) bytes 2, processing

them becomes an important issue in the big-data age. It generally requires the algorithms to

have linear or at most quasilinear complexity for obtaining results in a reasonable amount of

time, and approximate solutions could be accepted for large-scale problems. On the other

hand, the computational infrastructure needs to flexibly handle tasks of different sizes, un-

expected data loss, and skewed data distributions. The graph or hypergraph datasets in real

applications usually exhibit the properties like large size and power-law distribution of the

vertex (or hyperedge) degrees. It has been shown that the commonly used*!�����%�model

is not able to handle such datasets, and even the systems specially designed for graphs, like

Google’s Pregel [Malewicz et al., 2010], are not efficient enough [Gonzalez et al., 2012a]. The

main obstacle is that distributing the computations for the high degree notes over the ma-

chines leads to a huge communication overhead. In fact, the optimal strategy to split the

2http://www-01.ibm.com/software/data/bigdata/
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graph (or hypergraph) over the machines is equivalent to a minimum hyperedge cut prob-

lem. For the large-scale eigen-decomposition and SVD problems, we need to design new

efficient algorithms which take the computational infrastructure into considerations.

When we transform the minimum hyperedge cut to the min-cut of the directed auxiliary

graph, the minimum vertex separator is introduced as an intermediate step. There are many

other applications whose solution can be found from a minimum vertex separator [Kayaaslan

et al., 2012, Zhu et al., 2012]. For example, in the inference problem in a probabilistic graphi-

cal model and the SAT solver, a minimum vertex separator is often desired to divide the orig-

inal problem into smaller ones by recursive conditioning. We have shown that the minimum

vertex separator can be approximately obtained from a QEP. More works can be done along

this direction to enrich the understanding of the vertex separator problem. For example, we

could develop an algorithm that recursively produces bi-clusterings with minimum vertex

separators.
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