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ABSTRACT
We consider a community of private sensors that collect mea-
surements of a physical phenomenon, such as air pollution,
and report it to a center. The center should be able to pre-
vent low quality reports from degrading the quality of the
aggregated information, as there are numerous reasons for
operators to inject false sensor data. Hence, it is necessary
to track the quality of the sensors over time in order to filter
out low quality and malicious reports. To achieve this, we
construct a reputation system with a guaranteed bounds on
negative impact that malicious sensors can cause, and we
evaluate its performance on a realistic dataset.

Keywords
Reputation Systems; Community Sensing; Online Learning

1. INTRODUCTION
Sensors that monitor important environmental phenom-

ena are becoming smaller, cheaper and more ubiquitous.
When such sensing units become more a↵ordable and widely
adopted by individuals, we arrive at participatory, commu-
nity or crowd sensing [5, 1], where di↵erent entities, public
or private, operate sensors and report the measurements to
a center. The center interprets the reported data and pub-
lishes its results.

We consider a community sensing scenario where the cen-
ter aggregates crowdsensed information in an online man-
ner, from both public and private sensors, to provide real
time estimates of air pollution over a certain urban area. In
this scenario, the center controls a few accurate sensors that
provide spatially or temporally sparse measurements (e.g.,
very accurate particle sensors are slow; similarly NO2 can
be sensed chemically but it’s again slow and expensive), so
to properly monitor the localized features of air pollution, it
complements its own measurements with those obtained by
crowd-participants who own ubiquitous sensor devices.

Figure 1 depicts the particularities of our setting. At the
beginning, the center has only prior information about air
pollution over an urban area. After some time, the center
receives a report and merges it with the current pollution
map P using pollution model M. This process repeats until
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Figure 1: Crowd sensing scenario with online information
fusion.

a trusted sensor reports its measurement, after which the
center can evaluate the reports of crowd-sensors. We con-
sider this to be one period of sensing and we denote it by
t. The crowd sensing process then continues in the same
manner until the period t = T , which we call sensing time.

One of the main challenges in the described scenario is
how to cope with untrustworthy information. While this is-
sue has been partly addressed by the incentive mechanism
design [16, 17], such an approach reaches its limit of e↵ec-
tiveness when a sensor owner intends to be malicious and in-
tentionally misreports values. For example, a factory owner
who wants to hide her own pollution traces could install sen-
sors that misreport values of pollution. Therefore, a more
rigorous approach is needed in order to identify faulty or
malicious sensors. Reputation systems provide such an ap-
proach: bad reports lead to low reputation, which limits the
influence of the later reports.

Existing reputation systems model the trustworthiness of
sensors using reputation scores, and to determine which sen-
sors are trustworthy, they compare the reputation scores
with a predefined threshold (e.g. [3, 9]). These reputa-
tion systems provide only guarantees for particular reporting
strategies, and can be easily manipulated, as we demonstrate
in the paper.

Our reputation model is inspired by the influence lim-
iter algorithm, primarily designed for recommender systems
[20]. The influence limiter is provably resistant to misre-
porting, but its applicability is limited due to the significant
amount of discarded data in the reputation boosting period.
In pollution monitoring, sensors are expected to provide a
large number of reports, so the information loss plays much
smaller role than in recommender systems. However, the
design of the influence limiter is not suitable for our setting,
which we show in the paper.
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Our main contribution is a novel reputation system, called
Community Sensing Influence Limiter (CSIL), suitable for
real time community sensing scenarios where measurements
are aggregated in an online manner. We show that the CSIL
algorithm has provable guarantees on the direct negative
impact that any malicious strategy could have. To the best
of our knowledge, no technique with such guarantees has
ever been proposed for the considered setting. Moreover,
we evaluate the performance of the CSIL algorithm on a
realistic test-bed to confirm its the theoretical properties and
show its advantages over the existing reputation systems.

2. PRELIMINARIES

2.1 Sensors
In our setting, the center controls a small number of sen-

sors, that we refer to as trusted sensors; these sensors are
assumed to report accurate measurements. Other sensors
are in control of private entities, and the center does not
know their character, i.e., whether they are malicious or
not. Non-malicious sensors are considered to be strategic
— rational agents that aim to maximize their scores — or
honest, while malicious sensors do not respond to incentives
and their goal is to lower the quality of produced pollution
maps. In the group of malicious sensors, we can also put
faulty sensors that are not intentionally malicious, but do
provide inaccurate data. Furthermore, notice that a mali-
cious sensor might report accurately in some sensing periods
in order to deceive the center. This means that the decision
on how to use a sensor’s reports in the information fusion
process should be done by monitoring the behaviour of the
sensor over the whole sensing time T .

Each sensor repeatedly performs a measurement
X 2 [0,max] and reports value Y 2 [0,max], where max 2
R is a maximum value that is reasonable to measure and
report. If a sensor is honest, its report is equal to its mea-
surement, i.e., Y = X. In general, however, the value of a
report depends on both the sensor’s measurement and its
reporting strategy. Clearly, apart from their measurements,
sensors also report their location, which we do not explicitly
emphasize in the further text. As mentioned in the intro-
duction, a time period t is defined by the arrival of a trusted
report, which we assume to be stochastic. To simplify the
description of our algorithm, we impose three conditions for
sensors not controlled by the center: a sensor reports one
measurement per time period, measurements between two
time periods are statistically independent, and reports from
di↵erent sensors arrive stochastically one at a time.

Strategy space. We make restrictions to the strategic
space of malicious agents by assuming that their reports do
not have a significant impact on the quality of the informa-
tion provided by non-malicious sensors. As noted by [20],
the restriction to myopic strategies is not a trivial assump-
tion, but still allows a large scope of possible misreport-
ing strategies, including strategies where malicious sensors
change their reporting behaviour over time. Furthermore, it
is likely that non-myopic strategies require complex imple-
mentation. For example, an e↵ective malicious strategy that
is based on the report sequence would require information
about when sensing periods start/end. Since each sensing
period ends when a trusted report is submitted, the cen-
ter can easily obscure the starting point of a sensing period
by, for example, not immediately notifying sensors of their

reputation change. This also provides a justification for the
assumption of stochastic arrival of reports.

2.2 Pollution Model
The center’s goal is to construct and publish a pollution

map P using the current set of measurements. We are par-
ticularly interested in a real-time updating, where pollution
map P is updated after receiving each measurement using
a pollution model, denoted by M. We keep a general form
of pollution model M, where the input is defined by a finite
set of reported measurements {Y1, Y2, ...}, while the output
is a pollution map. Pollution map P contains either levels
of pollution at the points of interest, or in case of proba-
bilistic pollution models, probability distribution functions
over the levels of pollution at the points of interest. Pollu-
tion model M is, thus, assumed to capture well correlations
among measurements taken at di↵erent locations.

Since we want to keep a possibility of having a very gen-
eral pollution model M, we consider it as a black box. This
implies that after receiving report Y

s

from sensor s, the cen-
ter should decide whether to publish a new pollution map
Pnew

s

obtained by incorporating report Y
s

into the existing
pollution map P old

s

, or to keep the existing pollution map
as its output. The rationale behind this is that the pollu-
tion map updating should be computationally e�cient. For
example, the updating procedure of the classical influence
limiter is not consistent with this view, as a new output is
a linear combination of Pnew

s

and P old

s

. However, a proper
procedure for obtaining Pnew

s

in the influence limiter has
exponential time complexity in the number of sensor, as we
argue later on in the paper.

2.3 Evaluating Sensors
We evaluate sensors by their marginal contributions to the

quality of produced pollution maps. More precisely, consider
a pollution map Pnew

s

obtained by fusing sensor s’s report
with a pollution map P old

s

that preceded the report of sen-
sor s. Furthermore, let S(P,X

trust

) be a general scoring
function that evaluates the quality of a pollution map with
respect to the report Y

trust

= X
trust

of a trusted sensor, and
let it take values from a bounded interval [�c/2, c/2]. For
example, a scoring function can be a quadratic scoring rule
defined by equation (2) (in Section 5.2). The score of sensor
s is then defined by the gain G

s

of the center when it fully
incorporates the sensor’s report into the existing pollution
map P old

s

:

score
s

= G
s

=
1
c
[S(Pnew

s

, X
trust

)� S(P old

s

, X
trust

)]

It is easy to see that the score takes values in score
s

2
[�1, 1]. Notice that the center needs not to publish pollution
map Pnew

s

- this decision is separated from the decision on
how to score sensor s. The score can further be used to
define (monetary) incentives given to the sensor.

2.4 Myopic impact
Following the approach from [20], we use the notion of

sensor s’s myopic impact. Since our main method proba-
bilistically decides whether to accept or discard sensor s’s
report, we define the expected myopic impact of sensor s at
time period t as:

�̄
s,t

= ⇡
update

·G
s,t

+ (1� ⇡
update

) · 0 = ⇡
update

·G
s,t

874



where ⇡
update

is the probability of incorporating sensor s’s
report into the existing output. The intuition behind the
definition is straightforward. Whenever the center accepts
to fuse sensor s’s report into the existing pollution map, the
sensor’s impact is equal to the center’s information gain:
G

s,t

= 1
c

[S(Pnew

s

, X
trust

) � S(P old

s

, X
trust

)]. Otherwise,
when the center decides to discard sensor s’s report, the
sensor’s impact is 0 because it does not change the center’s
output P old

s

. Finally, we define the expected total myopic
impact as �̄

s

=
P

T

t=1 �̄s,t

. Notice that the myopic impacts
are functions of G

s,t

. Since G
s,t

is a random variable, we
can associate expected values over G

s,t

for both �̄
s,t

and
�̄

s

, which we denote by E(�̄
s,t

) and E(�̄
s

), respectively.1

3. RELATED WORK
The standard approach of dealing with untrustworthy in-

formation in sensing is by using reputation systems [14, 3,
9, 4, 24, 6], with the Beta reputation system [8] being the
most common way of assigning reputation scores. While in
the literature one can find other ways of assigning reputation
scores, such as using the Gompertz function [13], the classi-
fication of whether a sensor misbehaves is typically based on
a simple thresholding principle: if the reputation of a sensor
is lower than a certain threshold, the sensor is denoted as
misbehaving, otherwise, it is considered to be trustworthy.
A thresholding approach is common even among techniques
that do not necessarily use reputation systems (e.g., [23]).
While such a thresholding principle can cope with simple
attacks where malicious sensors report consistently wrong
values, it fails to protect the center against deceiving at-
tacks, as we describe it later in the paper.

[22] and [19] take a di↵erent approach to fuse informa-
tion from multiple sensors that are not a priori assumed to
be trustworthy. [22] tries to learn the parameters related
to the trustworthiness using a maximum likelihood method
over the assumed (Gaussian) model with unknown parame-
ters. [19] proposes a two stage Bayesian multi-sensor fusion
algorithm that incorporates model of sensors’ trustworthi-
ness. Neither of the two multi-sensor fusion methods have
provable guarantees on the loss of the system experienced
when the majority of sensors is untrustworthy and poten-
tially malicious. As alternatives to reputation systems, we
also mention hardware solutions, such as trusted platform
modules (e.g., [21, 10]). These approaches, however, require
additional hardware on each sensing module, which limits
their applicability.

3.1 Current Approach
Let us now describe the thresholding approach. When

the center receives a report Y
s,t

of sensor s, it fuses the re-
port with the existing information if sensor s’s reputation
is greater than a certain classification threshold ⇥, and oth-
erwise discards it. The approach is depicted by Algorithm
1. Function Update(P, Y

s,t

) uses the existing set of included
reports (the set of reports that produced pollution map P ),
adds to it report Y

s,t

, and applies model M to obtain a new
pollution map. RepUpdate updates the reputation of sen-
sor s using score

s,t

, and has one condition: if score
s,t

has a
strictly positive constant value, the reputation converges to
its maximum value; if score

s,t

has a strictly negative con-
stant value, the reputation converges to its minimum value.

1E(�̄
s

) is the expectation over gains from all time periods.

Data: Initial reputation ⇢0, threshold ⇥
begin

for Sensor s do

⇢
s,1  � ⇢0;

end

for t = 1 to t = T do

Compute prior map P ;
Publish P ;
for Sensor s do

Receive s’s report Y
s,t

;

P old

s

 � P ;
Pnew

s

 � Update(P, Y
s,t

) ;
if ⇢

s,t

� ⇥ then

P  � P s

new

;
Publish P ;

end

end

Receive report Y
trust,t

= X
trust,t

;
for Sensor s do

score
s,t

 �
1
c

[S(Pnew

s

, X
trust,t

)� S(P old

s

, X
trust,t

)];
⇢
s,t+1  � RepUpdate(⇢

s,t

, score
s,t

);
end

end

end

Algorithm 1: Thresholding

This simple reputation system can be considered to be a
part of a large family of reputations systems that use fix
thresholds to classify whether a certain sensor misbehaves
or not. These reputation systems can cope with simple at-
tacks where malicious sensors report consistently wrong val-
ues. For example, they can limit the e↵ectiveness of the
malicious strategy that consists of reporting low pollution
values. However, they fail to protect the system against
deceiving attacks.

One particular deceiving strategy of a malicious sensor
could be to report informative values when its reputation
is below threshold ⇥, while report low quality information
when its reputation is above the threshold. The intuition
behind this attack is that a sensor reports useful information
only when the center does not use it, and when the center
uses its information, it deliberately misreports.

Proposition 1. Consider a pollution model M that al-
lows arbitrary generation of gains G

s,t

related to sensor s.
Then, there exists a sequence of gains such that the total my-
opic impact �̄

s

of sensor s in Algorithm 1 is negative and
monotonically decreases with T , i.e., lim

T!1 �̄
s

= �1.

Proof. Consider a sequence of gains such that when-
ever ⇢

s,t

< ⇥, gain G
s,t

is equal to G
s,t

= g > 0, while
⇢
s,t

� ⇥ implies negative gain G
s,t

= �g < 0. In other
words, ⇡

update

= 1 for G
s,t

< 0 and ⇡
update

= 0 for G
s,t

� 0.
Since reputations converge to the maximum possible reputa-
tion if score

s,t

(i.e., G
s,t

) is fixed to g > 0, we know that ⇢
s,t

will infinitely often be greater than ⇥ for T ! 1. There-
fore, �̄

s

is negative (because ⇡
update

= 0 for G
s,t

� 0) and
lim

T!1 �̄
s

= �1 (because ⇢
s,t

� ⇥ infinitely often).

In Section 5.5, we simulate such a behaviour to show that
the thresholding does not prevent the center from experi-
encing an unbounded negative influence.
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3.2 The Influence Limiter
The influence limiter, when transformed to our setting,

has the same skeleton structure as the thresholding algo-
rithm with the main di↵erences in three components, which
we point out in this section. We show, however, that all the
three components should be modified in order to obtain a
practical algorithm.

Information fusion. The standard version of the influ-
ence limiter has a deterministic information fusion compo-
nent. In particular, the influence limiter incorporates all the
reports, but assigns di↵erent weights to di↵erent reports. In
our scenario, this would mean that when a report from a sen-
sor s is received, the new pollution map Pnew

s

is calculated
and the published pollution map P is updated to:

P  � (1� w
s,t

) · P old

s

+ w
s,t

· Pnew

s

(1)

Here, the weight is equal to w
s,t

= min(⇢
s,t

, 1). The crucial
part of the algorithm is how Pnew

s

should be calculated, i.e.,
the structure of the Update function.

In the influence limiter, a sensible updating function has
to include the fact that all reports are fused, but with dif-
ferent weights. Since pollution model M is assumed to be a
black box, one has to additionally ensure that the reports are
properly weighted (limited) when updating pollution map
P . For example, consider two reports Y

s1 and Y
s2 that ar-

rive sequentially. Initially, P should be set to M(;). Once
Y
s1 is reported, the update of P , denoted by P1, is easy to

calculate: we simply make a linear combination of P and
M({Y1}), with weights 1� w1 and w1 (see (1)). The prob-
lem, however, arises when we update the current pollution
map P1 for report Y

s2. Namely, the new update should
be a linear combination of the current pollution map P1

and the pollution map Pnew

s2 that does not limit Y
s2, but

does appropriately limit the reports that had arrived be-
fore Y

s2. In our case, the limited report in Pnew

s2 would be
Y
s1. Since Y

s1 should in Pnew

s2 be limited in the same way
as in P1 (otherwise report Y

s2 has influence on the limit-
ing process of prior information), we obtain that Pnew

s2 is
equal to Pnew

s2  � (1 � w1) · M({Y2}) + w1 · M({Y1, Y2}).
Now, notice that for report Y

s1 we only needed to query
model M once because there were no prior reports. For
report Y

s2, we needed to query model M twice. This can
be easily generalized; for example, for the third report Y

s3,
we would need to query model M four times to obtain pol-
lution maps: M({Y

s3}), M({Y
s1, Ys3}), M({Y

s2, Ys3}) and
M({Y

s1, Ys2, Ys3}). By using induction, we prove the fol-
lowing claim:

Proposition 2. The number of queries to a black box
model M of the influence limiter algorithm in one time pe-
riod t is ⌦(2n), where n is the number of reported values.

Scoring rule. The properties of the influence limiter are
proven only for a quadratic scoring rule (see Lemma 5 in
[20]). Since our goal is not to make restrictions on the form
of model M, allowing general scoring techniques is crucial in
our design. For example, if a model M is non-probabilistic,
a quadratic scoring rule is not applicable.
Furthermore, the influence limiter uses a binary outcome

in its scoring rule (this is a requirement of Lemma 5 in [20]).
In our scenario, the report Y

trust

= X
trust

of a trusted sensor
is a real number, so one needs to transform it into a binary
variable in order to apply it in the influence limiter. This can
be done by defining a threshold and a binary variable equal

to 0 if X
trust

is smaller than the threshold, and 1 otherwise.
An issue with this approach is that the evaluation process
is much less accurate. For example, if the threshold is equal
to 30, then this scoring technique would assign the same
quality evaluations for both X

trust

= 35 and X
trust

= 50.
Reputation update. The reputation updating rule of

the influence limiter is defined by ⇢
s,t+1  � ⇢

s,t

+ w
s,t

·
score

s,t

, and resembles the information fusion updating.
In our approach, which is described in the following sec-

tion, we use a non-deterministic information fusion to lower
the query complexity and we allow general scoring rules
based on non-binary outcomes. These changes also imply
a di↵erent reputation updating rule. All these structural
di↵erences point out that the influence limiter is not triv-
ially transformable to our setting.

4. COMMUNITY SENSING INFLUENCE
LIMITER

The Community Sensing Influence Limiter (CSIL) is a
version of the influence limiter reputation system with an
exponential reputation boosting. Furthermore, it shares
some similarities with randomized weighted majority algo-
rithms (e.g., see [15]), where the decision making rule is
non-deterministic and uses weights that have a multiplica-
tive updating rule.

Data: Initial reputation ⇢0 > 0
begin

for Sensor s do

⇢
s,1  � ⇢0;

end

for t = 1 to t = T do

Compute prior map P ;
Publish P ;
for Sensor s do

Receive s’s report Y
s,t

;

P old

s

 � P ;
Pnew

s

 � Update(P, Y
s,t

) ;
if rand(0, 1) <

⇢

s,t

⇢

s,t

+1 then

P  � Pnew

s

;
Publish P ;

end

end

Receive report Y
trust,t

= X
trust,t

;
for Sensor s do

score
s,t

 �
1
c

[S(Pnew

s

, X
trust,t

)� S(P old

s

, X
trust,t

)];
⇢
s,t+1  � ⇢

s,t

· (1 + 1
2 · score

s,t

);
end

end

end

Algorithm 2: Community Sensing Influence Limiter

The exact description of CSIL can be found in Algorithm
2, and it has the following steps. Initially, sensors’ reputa-
tions are set to ⇢0 > 0. At time period t, upon the arrival of a
sensor s’s report, the reputation system calculates pollution
map Pnew

s

using function Update(P, Y
s,t

), which adds report
Y
s,t

to the existing set of included reports (the set of reports
that produced pollution map P ) and applies model M to
obtain a new pollution map. In the next step, the algorithm
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decides whether the current pollution map should be re-
placed with the update or not. The decision is probabilistic
— with probability equal to

⇢

s,t

⇢

s,t

+1 , the center sets pollution

map P to Pnew

s

, while otherwise, it discards sensor s’s re-
port. The final step of the repetitive algorithm is to update
the reputation of sensor s when the report Y

trust

= X
trust

of a trusted sensor is received. The reputation updating rule
assigns a new reputation to sensor s by adding to the current
reputation ⇢

s,t

the score of sensor s modulated by
⇢

s,t

2 .

4.1 Theoretical Analysis
Since the deterministic information fusion rule of the stan-

dard influence limiter has an exponential query complexity,
we have applied a stochastic information fusion rule in the
CSIL algorithm. Because of that, CSIL has a significantly
lower query complexity, in particular, it makes only a con-
stant number of queries per report.

Theorem 1. (Query Complexity) The number of queries
to a black box model M of the CSIL algorithm in one time
period t is O(n), where n is the number of reported values.

Proof. The CSIL’s function Update is simple: it uses
the set of reports that produced P , say {Y1, ..., Yk

} where
P  � M({Y1, ..., Yk

}), adds to it the report Y
s,t

of sensor
s and calculates Pnew

s

 �M({Y1, ..., Yk

} [ {Y
s,t

}). There-
fore, CSIL makes O(1) queries to M for i� th sensor, thus,
for n sensors in one time period t we have O(n) queries.

An important characteristic of CSIL is that the probabilis-
tic decision making rule allows a possibility of incorporating
reports of sensors that are not necessarily considered to be
reliable. To make the procedure sound, the probability of
fusing a report of a sensor with low reputation is low. For
example, a sensor with reputation 0.1 can a↵ect the current
pollution map, but only with probability 0.1

0.1+1 . This way,
one makes deceiving malicious strategies less e↵ective. In
particular, their overall impact cannot be highly negative,
meaning that the sum of a sensor’s contributions, which can
be positive and negative, is bounded from below.

Theorem 2. (Limited Damage) The expected total my-

opic impact �̄
s

=
P

T

t=1 �̄s,t

of sensor s is in the CSIL
algorithm bounded from below by:

�̄
s

> �2 · ⇢0

where ⇢0 is the initial reputation of sensor s.

Proof. The expected myopic impact �̄
s,t

is equal to
⇢

s,t

⇢

s,t

+1 · G
s,t

=
⇢

s,t

⇢

s,t

+1 · score
s,t

. On the other hand, for

reputation ⇢
s,T+1 we have:

ln(⇢
s,T+1 + 1) = ln(⇢

s,T

· (1 + 1
2
· score

s,T

) + 1)

= ln((⇢
s,T

+ 1) · (1 + ⇢
s,T

⇢
s,T

+ 1
· 1
2
· score

s,T

))

= ln(⇢
s,T

+ 1) + ln(1 +
1
2
· �̄

s,T

) = ...

= ln(⇢0 + 1) +
TX

t=1

ln(1 +
1
2
· �̄

s,t

)

 ln(⇢0 + 1) +
1
2

TX

t=1

�̄
s,t

= ln(⇢0 + 1) +
1
2
· �̄

s

where we used the fact that ln(1 + x)  x for x > �1.
By noting that the updating rule for reputations keeps the
reputations positive, i.e., ⇢

s,t

> 0, we have that ln(⇢
s,T+1 +

1) > 0, so �̄
s

is lower bounded by:

�̄
s

> �2 · ln(⇢0 + 1) � �2 · ⇢0
were we again applied ln(1 + x)  x for x > �1.

The consequence of Theorem 2 is that the direct damage
of a group ofmmalicious sensors can be controlled by setting
the sensors’ initial reputation to a low value. Namely, the
impact �̄

s,t

of sensor s at time period t is measured by
its marginal contribution, so the total myopic impact of all
malicious sensors over sensing period T is by Theorem 2
at least �2 · m · ⇢0 (i.e., the absolute value of the negative
impact is at most 2 · m · ⇢0). By choosing a small value of
⇢0, one can make the (negative) impact of malicious sensors
close to 0, regardless of the reporting strategies they use
and their reporting time frame. This also implies that when
average over a longer sensing period, their negative impact
is negligible.

Theorem 2, however, is not su�cient to state that CSIL
performs well against malicious strategies. For example, a
simple reputation system that discards all the reports com-
pletely limits the negative influence of malicious sensors, but
in doing so, it discards all the valuable information coming
from non-malicious sensors.

The CSIL decision making procedure also induces a cer-
tain information loss due to the fact that valuable infor-
mation might be discarded. This is especially true for the
initial sensing periods where all sensors have relatively low
reputations, including the ones that are not malicious. For
example, if the reputations are set to ⇢0 = 0.1, the prob-
ability of including a report from an honest and accurate
sensor is initially equal to 0.1

0.1+1 . Since only information
that comes from sensors with large reputation scores has
a good chance of being considered, accurate sensors should
build up their reputation quickly, which is indeed the case
for the CSIL algorithm because the reputation increase is
exponential. Namely, the increase in the reputation is equal
to 1

2 · ⇢
s,t

· score
s,t

, which for a non-malicious sensor with
predominantly positive scores implies an exponential reputa-
tion growth. Therefore, by using the exponential reputation
boosting, CSIL is capable of limiting the negative influence
of malicious sensors, while not discarding too many reports
of non-malicious sensors.

We measure the expected information loss for partially
limiting an accurate sensor s as the di↵erence between the
total score of the sensor

P
T

t=1 scores,t =
P

T

t=1 Gs,t

and its
impact �̄

s

. The rationale is that a sensor’s scores reflect its
contributions — information gains — that the sensor would
have made had it not been limited. The following theorem
formally shows that if a sensor reports accurate and precise
measurements, i.e., its scores are positive in expectation and
have small variances, then there is a bound to the amount
of sensor s’s information discarded by CSIL.

Theorem 3. (Bounded Information Loss) Consider a sen-
sor s whose reporting strategy does not depend on its repu-
tation ⇢

s,t

and that has:

• Expected scores greater than 0: E(score
s,t

) > 0

• Variance of the scores bounded from above by:
V ar(score

s,t

) < E(score
s,t

).
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Furthermore, let us denote: g
s,t

= ln(1 + 1
2 · score

s,t

) 2
[g

min,t

, g
max,t

] and h
s,t

= E(g
s,t

). Then the expected infor-

mation loss
P

T

t=1(E(scores,t)� E(�̄s,t

)) of the CSIL algo-
rithm for potentially discarding sensor s’s reports is bounded
from above by:

TX

t=1

(E(score
s,t

)�E(�̄
s,t

)) < z ·
"

e�
1
2 ·d

1� e�
1
2 ·d

+
2 · ln ⇢0+1

⇢0

h

#

where z = max1tT

E(score
s,t

)  1,
h = min1tT

( 1
t

P
t

⌧=1 hs,⌧

) � min1tT

h
s,t

> 0 and d =

min1tT

1
t

(
P

t

⌧=1 h

s,⌧

)2P
t

⌧=1[gmax,⌧

�g

min,⌧

]2
> h

2

2 .

Proof. The expected value of the myopic impact is:

E(�̄
s,t

) = E(
⇢
s,t

⇢
s,t

+ 1
· score

s,t

)

Since scores are stochastically generated (they are indepen-
dent of reputation ⇢

s,t

), we obtain that:

E(�̄
s,t

) = E(
⇢
s,t

⇢
s,t

+ 1
) ·E(score

s,t

)

Furthermore, Markov’s inequality gives us:

E(
⇢
s,t

⇢
s,t

+ 1
) � Pr(⇢

s,t

� ⇢0 · at

) · ⇢0 · at

⇢0 · at

+ 1

where we used: a
t

= e
1
2

P
t

⌧=1 h

s,⌧ , h
s,⌧

= E(ln(1 + 1
2 ·

score
s,⌧

)). Let us also denote: h = min1tT

1
t

P
t

⌧=1 hs,⌧

.
Using ln(1 + x) � x � x2 for x � � 1

2 , it follows that
h
s,t

� 1
2 · E(score

s,t

) � 1
4 · E((score

s,t

)2). By applying the
conditions of the theorem, and the fact that E((score

s,t

)2)�
(E(score

s,t

))2 = V ar(score
s,t

) < E(score
s,t

) and
0 < (E(score

s,t

))2  E(score
s,t

)  1, we obtain that h
s,t

>
0 (and, hence, h > 0). Now, notice that:

Pr(⇢
s,t

� ⇢0 · at

) = Pr(ln ⇢
s,t

� ln(⇢0 · at

))

= Pr(ln ⇢
s,t

� ln ⇢0 +
1
2
·

tX

⌧=1

h
s,⌧

)

= Pr(ln ⇢
s,t

�
tX

⌧=1

h
s,⌧

� ln ⇢0 � �
1
2
·

tX

⌧=1

h
s,⌧

)

� 1� Pr(ln ⇢
s,t

�
tX

⌧=1

h
s,⌧

� ln ⇢0  �
1
2
·

tX

⌧=1

h
s,⌧

)

= 1� p
t

where we denoted the last term Pr(.) by p
t

. Since ln ⇢
s,t

�
ln ⇢0 is a sum of t independent random variables g

s,⌧

=
ln(1 + 1

2 · score
s,⌧

) (with 1  ⌧  t) that are in expectation
equal to h

s,⌧

= E(g
s,⌧

), using Hoe↵ding’s inequality, we
obtain:

p
t

 e
� 2·(

P
t

⌧=1 h

s,⌧

)2

4·
P

t

⌧=1[g
max,⌧

�g

min,⌧

]2  e

�
2·
 P

t

⌧=1 h

s,⌧

t

!2
·t

4·
P

t

⌧=1[g
max,⌧

�g

min,⌧

]2

t

 e�
1
2 ·d·t

where we put d = min1tT

✓P
t

⌧=1 h

s,⌧

t

◆2

P
t

⌧=1[g
max,⌧

�g

min,⌧

]2

t

, which is

greater than d > h

2

2 because 1
2 · score

s,⌧

2 [�0.5, 0.5] (and,
hence, [g

max,⌧

� g
min,⌧

]2 < 2). The expected information

loss (the di↵erence between the sensor’s score and its im-
pact) in round t is bounded by:

E(score
s,t

)�E(�̄
s,t

) = E(score
s,t

) · (1�E( ⇢
s,t

⇢
s,t

+ 1
))

 E(score
s,t

) ·

1� (1� e�

1
2 ·d·t) · ⇢0 · at

⇢0 · at

+ 1

�

= E(score
s,t

) ·


1
⇢0 · at

+ 1
+ e�

1
2 ·d·t · ⇢0 · at

⇢0 · at

+ 1

�

Therefore, over time period T , the information loss in ex-
pectation upper bounded by:

z ·
"

TX

t=1

1
⇢0 · at

+ 1
+

TX

t=1

e�
1
2 ·d·t · ⇢0 · at

⇢0 · at

+ 1

#

where z = max1tT

E(score
s,t

). We examine bounds for
each of the terms in the bracket. We have:

TX

t=1

e�
1
2 ·d·t · ⇢0 · at

⇢0 · at

+ 1


TX

t=1

e�
1
2 ·d·t

= e�
1
2 ·d ·

T�1X

t=0

e�
1
2 ·d·t < e�

1
2 ·d ·

1X

t=0

e�
1
2 ·d·t =

e�
1
2 ·d

1� e�
1
2 ·d

where we applied
P1

t=0 x
t = 1

1�x

for x 2 (0, 1). Further-
more, using the fact that:

a
t

= e
1
2

P
t

⌧=1 h

s,⌧ � e
1
2 ·t·h

we obtain:
TX

t=1

1
⇢0 · at

+ 1


TX

t=1

1

⇢0 · e
1
2 ·t·h + 1


Z

T

t=0

1

⇢0 · e
1
2 ·t·h + 1

dt <

Z 1

t=0

1

⇢0 · e
1
2 ·t·h + 1

dt

=
2
h
· ln(⇢0 + 1

⇢0
)

Which completes the proof.

The intuition behind this results is fairly simple. If a sen-
sor has mostly positive scores, i.e., the expected scores are
positive and their variances are low, it will boost up its repu-
tation rather quickly to the values where its reports are prac-
tically no longer limited. Notice that the bound on the total
information loss does not (directly) depend on time (i.e.,
does not monotonically increase with time), which means
that when averaged over a long sensing period T (typical
for crowdsensing), the information loss becomes negligible.
Furthermore, the bound multiplicatively depends on param-
eter z that represents a sensor’s expected score: the better
the sensor is, the more quality information the center looses
when it discards the sensor’s reports. The second multi-
plicand in the bound describes how quickly a sensor can
boost up its reputation, which depends on how informative
the sensor is: the more useful the sensor’s reports are, the
higher its score is, and, thus, the greater its reputation in-
crease is. This is captured by parameters h and d, which
are related to the performance of a sensor through random
variable g

s,t

= ln(1 + 1
2 · score

s,t

). In the next section, we
give an example scenario for which we estimate the values
of z, h and d. Notice that by Theorem 3, we can set z = 1

and d = h

2

2 in order to obtain a looser upper bound that
does not require estimates of z and d.
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Theorem 2 and Theorem 3 provide guarantees on the per-
formance of the CSIL algorithm that depend on the initial
reputation. The bounds of the theorems indicate that the
value of the initial reputation ⇢0 should be such that it limits
the negative impact of malicious sensors, while not discard-
ing too much information from non-malicious sensors. Since
for a longer sensing period, accurate sensors have enough
time to build up their reputations, the initial reputation ⇢0
can be set to a relatively small value so that the CSIL algo-
rithm is more robust against malicious reporting strategies.

Finally, we analyze the incentive component of the CSIL
algorithm. The important property of sensors’ scores, which
can be used to define monetary payments, is that they in-
centivize non-malicious sensors to provide reports that max-
imize the information gain of the center. Notice that the
most useful information is not necessarily the true measure-
ment. This is due to the presence of malicious sensors, as
well as the possible imperfections of pollution model M. In
other words, a strategic behaviour is often desirable.

Theorem 4. (Informed Reporting) If a sensor s maxi-
mizes its expected score E(score

s,t

), then it also maximizes
its expected impact E(�̄

s,t

).

Proof. The myopic impact of sensor s, �̄
s,t

, is propor-
tional to its score �̄

s,t

=
⇢

s,t

⇢

s,t

+1 · G
s,t

=
⇢

s,t

⇢

s,t

+1 · score
s,t

.

Hence, a sensor s that aims to maximize its expected score,
is also incentivized to submit a report that maximizes its
expected impact.

5. EXPERIMENTAL EVALUATION
Considering that, in a real dataset, one cannot identify

upfront the strategies adopted by di↵erent sensors, we simu-
late di↵erent malicious strategies to experimentally validate
our approach. Our pollution sensing scenario is based on
four weeks of hourly measurements of NO2 concentrations
from an area in Strasbourg (France) covering 116 locations,
with each week coming from a di↵erent season. The data
is the output from the physical model ADMS Urban V2.3
[7] collected by ASPA [2], denoting estimations of pollu-
tion concentrations calculated from the emission inventory
and actual measurements. In total, the dataset contains ap-
proximately one month of hourly measurements - the larger
sensing periods can be simulated by looping over the dataset
several times, which we do 12 times to obtain the sensing
time of T = 12 · 4 · 7 · 24 hours. Our main reputation system
is CSIL with the initial reputation set to ⇢0 = 0.1.

5.1 Pollution Model
We use a probabilistic air pollution model that is based

on Gaussian process regression, as described in [18]. For any
point of interest (in our case 116 locations), the pre-trained
Gaussian Process (GP) model produces a probability dis-
tribution function over the possible levels of pollution from
the reports of sensors placed at di↵erent locations. This
posterior distribution is a normal distribution N (µ,�), with
parameters µ and � derived from the GP model. We are
interested in predicting the value of pollution level that a
trusted sensor measures at its location, so we denote the
corresponding prediction by p(X

trust

).

5.2 Scoring Function
The standard way of measuring the quality of a probabil-

ity distribution function is by strictly proper scoring rules

[11, 12], that take as argument both the predicted probabil-
ity distribution and the outcome of the predicted event. In
our case, the event that we aim to predict is measurement
X

trust

of a trusted sensor, and the prediction we want to
evaluate is the posterior density function p(X

trust

), which
represents the output of the model at the location of the
trusted sensor. We focus on a quadratic scoring rule, that,
for events whose outcomes take real values, has the form:

S(p,X) = p(X)� 1
2

Z 1

�1
p(y)2dy (2)

Model M outputs a normal distribution N (µ,�) for a point
of interest (x, y). Therefore, we apply scoring rule (2) on

probability density function p of the form p(x) = 1p
2⇡�

2
e
� (x�µ)2

2�2

to obtain:

S(p,X
trust

) =
1p
2⇡�

e
� (X

trust

�µ)2

2�2 � 1

4�
p
⇡

The score takes values in [� 1
4�

p
⇡

, 1
�

p
⇡

( 1p
2
� 1

4 )], and can

be further scaled so that score
s,t

2 [�1, 1]. In our case, no
specific scaling was needed.

5.3 Sensors
We consider 40 mobile crowd-sensors and 1 trusted sensor

that are at each time period placed at one of 116 available
locations. The 40 crowd-sensors are either honest (25% of
them) or are malicious sensors (75% of them) that report
according to one of the following four strategies. In the
Vary strategy, sensors build up their reputations by report-
ing honestly for the first 1000 iterations, and from then on,
they report only a low level of pollution. In the Deceive
strategy, sensors report honestly when their reputation is
below 0.5; otherwise, they report a low level of pollution.
Vary and Deceive is a mixed strategy where malicious sen-
sors first build up their reputation by reporting honestly
for 1000 iterations, and from then on, they use the Deceive
strategy. Cover is a strategy that mimics a situation where
malicious sensors try to boost up their reputation when it
is not important for them to misreport, and then, on spe-
cific events, they report wrong values. In our case, malicious
sensors boost up their reputation for 1000 iterations. Then,
they report honestly whenever the pollution is below 35 ppb
of NO2 or their reputation is lower than 0.5; otherwise, they
report a low level of pollution. The low level of pollution in
the above strategies is defined as 10 ppb of NO2 plus a
Gaussian noise with 0 mean and standard deviation equal
to 5.

5.4 Theoretical Bound
By Theorem 2, it follows that 0.75 ·40 = 30 malicious sen-

sors can cause an immediate damage of at most 2·30·0.1 = 6
score units (units used in (2)). To calculate the bound from
Theorem 3, one needs to estimate parameters z, h and d.
We can approximate these values by investigating averages
of score

s,t

, log(1+ 1
2 ·scores,t) and max

s

log(1+ 1
2 ·scores,t)�

min
s

log(1 + 1
2 · score

s,t

) over time t. Assuming that the
scores of honest sensors are similar in most of the sensing
periods, these averages lead to the estimates:2 z ⇡ 0.002,
h ⇡ 0.001 and d ⇡ 0.005, from which we can estimate the
2If k << T sensing periods have significantly di↵erent val-
ues from the average values, to achieve a higher precision,
one can exclude these k periods when estimating the upper
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the upper bound from Theorem 3: 10.39. By multiplying the
estimate with the number of honest sensors (i.e., 10), we con-
clude that the total information loss should be no more than
103.9 score units. Notice that the bounds from Theorem 2
and Theorem 3 have di↵erent meanings: the bound from
Theorem 2 describes how much a malicious sensor could in-
tentionally shift the result, while the bound from Theorem
3 describes an implicit damage whose nature is not con-
trolled by a malicious sensor. Nevertheless, it follows from
the bounds that the quality degradation should not be more
than 109.9 score units in total. This can be averaged over
time, so that at each time step t, we have an average degra-
dation of at most 109.9

t

score units. The average goes to 0
as time increases, implying a no-regret property in terms of
sensors’ myopic impact.

5.5 Simulations

5.5.1 Baseline: Beta Reputation System

In the Beta reputation system, we quantify the behaviour
of a sensor using two parameters, ↵ and �, which represent
the parameters of beta distribution B(↵,�). In the setting
we analyze, the parameters can be updated as follows (e.g.,
see [8]). If the marginal information gain G

s,t

= score
s,t

of
updating the current pollution map with a sensor s’s report
is positive, parameter ↵

s,t

is updated to ↵
s,t+1 = ↵

s,t

+G
s,t

.
Otherwise, parameter � is updated to �

s,t+1 = �
s,t

+ G
s,t

.
The reputation of sensor s is at time t calculated as the
mean of beta distribution B(↵

s,t

,�
s,t

), i.e., ⇢
s,t

=
↵

s,t

↵

s,t

+�

s,t

.

In other words, the reputation of sensor s characterizes the
fraction of the positive impact that the sensor had on the
system. The decision on whether to include the report of
sensor s is based on its reputation and determined using the
thresholding principle. We set the initial values of ↵ and
� parameters to 0.01 and 0.1, respectively, with threshold
⇥ = 0.5.

5.5.2 Evaluation Metric

We define a measure of an average regret that evaluates
the quality of the aggregates produced by the center with
respect to the aggregates obtained by fusing the reports of
honest sensors. More precisely:

AvgRegret
t

=
Score

honest,t

� Score
center,t

t

where Score
honest,t

is the total score (until time period t) of
the aggregates obtained from the reports of honest sensors,
and Score

center,t

is the total score of the center (with a par-
ticular reputation system) until time period t. Both scores
are calculated using the quadratic scoring rule, as described
by the previous subsections, applied on the pollution map
published prior to the report of a trusted sensor. There-
fore, the regret is measured in the same score units as the
theoretical bound computed in Section 5.4.

5.5.3 Results

Figures (2a, 2b, 2c, 2d) show the performance of the CSIL
algorithm and the Beta reputation system in terms of the av-
erage regret for four di↵erent misreporting strategies. Along
with those results, we put the theoretical estimate of the
upper bound on the regret of CSIL algorithm ( 109.9

t

), which

bound from Theorem 3 and simply add to the calculated
bound k ·max

⌧2kPeriods

E(score
s,⌧

).

(a) Vary (b) Deceive

(c) Vary and Deceive (d) Cover

Figure 2: Average regrets (times 10) for di↵erent strategies

is truncated to 0.1 for large values. The Beta reputation
system is able to limit the negative influence of malicious
sensors that use the Vary strategy. However, in the Vary
strategy, malicious sensors misreport in a simple and con-
sistent way. For the other three misreporting strategies, the
Beta reputation system experiences an average regret that is
clearly away from 0, and in two of the cases, the regret is in-
creasing, which means that the total negative impact of ma-
licious sensors is not bounded. The CSIL algorithm is much
better in dealing with malicious sensors: its average regret
over a longer sensing period is for all the malicious strategies
close to 0, as expected by the theoretical results. Finally, the
strategy independent upper bound on the CSIL’s regret is
often below the regret of the Beta reputation system.

6. CONCLUSION
We discus a problem of having malicious sensors in com-

munity sensing with online information fusion. Due to the
abundance of crowdsourced data, one can partially discard
useful information to limit the overall negative influence of
malicious participants. We have designed a novel reputation
system, called CSIL, that has a manageable complexity and
puts an upper bound on the total negative impact that mali-
cious sensors can have on the fused result, regardless of their
reporting strategy. This is in contrast to the standard rep-
utation systems proposed for sensing which do not provide
any theoretical guarantees and for which the total negative
impact of malicious sensors can increase with time. We have
empirically confirmed that the theoretical results hold in a
realistic air pollution sensing scenario, and have shown that
in an average-case simulation, CSIL outperforms a state of
the art reputation system for sensing, whose performance is
often worse than the worst case performance of CSIL.
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