
Semester project report

Tag Your Memory with Colors:
Semi-automatic Recoloring on

Interested Objects via Hypergraph
Learning

Student Alexandre Chappuis <alexandre.chappuis@ep�.ch>

Supervised by Feng Yang <feng.yang@ep�.ch>
Audiovisual Communications Laboratory (LCAV)

Li Pu <li.pu@ep�.ch>
Laboratory of Arti�cial Intelligence (LIA)

Abstract A new image segmentation technique via hypergraph
learning is presented, along with an Android applica-
tion providing semi-automatic recoloring on a region of
interest. Details of both theory and implementation are
given in this report.

January 12, 2012

1

Contents

I Introduction 3

II Image segmentation basics 4
1 Overview . 4
2 Existing work . 4
2.1 Kmeans . 4
2.2 Meanshift mode seeking . 5
2.3 Normalized cut . 6
2.4 Contour detection and hierarchical segmentation 7
2.5 Ensemble methods . 7
2.6 Summary and examples . 7

III Segmentation via hypergraph learning 10
3 Overview . 10
4 Hypergraph creation . 10
5 Hypergraph cut . 12
6 Summary and examples . 12
7 Matlab code . 14
8 Evaluation . 15

IV Android application 18
9 Speci�cation . 19
9.1 Overview . 19
9.2 Application . 19
9.3 Server . 21
10 Implementation details . 21
10.1 Activities . 22
10.2 Server and Matlab interaction . 24
11 Examples . 25
12 Design choices, limitations and possible extensions 25

V Conclusion 28

VI Future work 28

2

List of Algorithms

1 Kmeans clustering . 5
2 Meanshift . 6
3 Normalized cut . 7
4 Contour and hierarchical segmentation 7
5 Segmentation via hypergraph learning 13

List of Figures

1 Example of simple segmentations 8
2 Example of superpixels . 11
3 Example of hypergraph . 11
4 Example of segmentation merging and hypergraph segmentation 13
5 Matlab GUI . 15
6 Overview of the recoloring process 20
7 Home and recoloring screens . 20
8 Java classes of the Android application 22
9 Protocol used between the Android phone and the Java server . . 23
10 The colorpicker used to choose a color. 24
11 Example of expansion and color change 26

List of Tables

1 Summary of representative segmentation algorithms 9
2 Summary of the �elds in a hypergraph structure 14
3 Evaluation results for simple methods 18
4 Evaluation results 1 for hypergraph method 18
5 Evaluation results 2 for hypergraph method 19

3

Part I. Introduction

Image segmentation is the �rst step of image analysis, aiming at grouping image
pixels into meaningful segments. Thousands of clustering algorithms have been
proposed over the last decades, with recent signi�cant progress. In this project,
a new ensemble approach using the concepts of superpixels and hypergraphs
is investigated. Existing segmentations are combined to form superpixels, re-
sulting in a hypergraph that can be cut into a custom number of segments.
The �rst goal of this project was not developing a new segmentation algorithm
which beats all existing approaches, but to demonstrate the e�ectiveness of hy-
pergraph learning techniques in image segmentation.

Applications of image segmentation are omnipresent in today's world. With
the recent growth of pocket devices markets and their embedded digital cameras,
creating cool applications that modify pictures has become a child's play. By us-
ing recoloring applications, one can for example create funny images where some
interested region is colorful and everything else is grayed out. As of January
2012, this procedure has to be done manually in all existing applications. Being
able to recolor one image in a more intelligent way on smartphones was the
second goal of this project. With the knowledge of segmentations of a picture
and by using the new hypergraph approach, an Android application providing
semi-automatic recoloring on region of interest has been created. People can
consequently tap on an object in order to recolor it entirely.

In the �rst part of this report, the goals of image segmentation as well
as some representative image segmentation techniques are carefully explained.
Then, the new segmentation method is developed along with some examples and
its evaluation. In the �nal part, the implementation of the Android application
is detailed.

4

Part II. Image segmentation basics

1 Overview

Image segmentation is a fundamental topic of digital image and video processing.
It seeks to partition an image into K non-overlapping regions, called segments,
whose union is the entire image. Many application in computer vision, digital
entertainment and pattern recognition rely on this challenging and critical step.
Segmenting images has been widely studied and thousands of methods have
been invented since the beginning of the computer era. (See [1] for a brief sur-
vey of this research in the last 40 years). Although some exciting results have
emerged recently, there is no unique solution to that problem, mostly because
of the broad range of applications and the di�culty in having an accurate seg-
mentation. What's more, the process is often computationally expensive.
As segmenting an image strongly depends on the usage scenario, many ap-
proaches are possible while designing an algorithm. Survey [2] gives insight
on some important principles; it distinguishes notably supervised from unsu-
pervised methods. In the former, user interaction is required whereas in the
latter, there is no contextual knowledge assumption regarding to the object being
segmented. This di�erence will play a signi�cant role in the evaluation of the
algorithms.

Five representative methods are explained in the following section: the "K-
means clustering algorithm" (abbreviated later as "Kmeans"), the Meanshift
mode seeking algorithm, the Normalized Cut, the contour detection and hier-
archical based segmentation and �nally some words about ensemble methods.
They will serve as a basis for the new method proposed in part III.

2 Existing work

2.1 Kmeans

Kmeans is a well-known algorithm used to partition data into K clusters. K
random or uniform seeds are initially chosen. The algorithm subsequently al-
ternates between two steps: an assignment step where each point is associated
to its closest mean, and an update step during which every mean is recomputed
according to the previous assignment. It converges when the K means no longer
change. At the end, the within cluster sum of squares is minimized. The pseudo-
code is listed in algorithm 1. Note that in order to speed up the operations,
the squared root operator is not used while computing the Euclidean distance.
This does not a�ect the �nal result.

This algorithm is pretty fast and generic, i.e. it works for many kinds of data,
for examples images represented in RGB or Lab colorspaces. The drawback is
that it's quite sensitive to outliers and works well only for spherical clusters. In
practice, I have downloaded a Matlab Kmeans implementation from [tool1], that
is quicker than Matlab's built-in Kmeans, and I have extended it with somes
ideas found in [3]. Basically, two dimensions are added to the image in order to
have spatial coherence, one for the x coordinate and one for the y coordinate,
and a new parameter, the minimum region area, is used in a post-processing

2 Existing work 5

Algorithm 1 Kmeans clustering

Start with K initial means µk, k = 1..K
repeat

for all datapoint xn, n = 1..N do

1. Compute the squared Euclidean distance from the kth mean:
distk(xn) = ‖xn − µk‖2
2. Assign each data point xn to its closest mean µk, i.e assign xn to class
qk if distk(xn) ≤ distl(xn) ∀l 6= k
3. Replace each mean with the mean of the data points assigned to the
corresponding class

end for

until no further change occurs

step so that regions that are too small to represent a segment are removed. The
vertical and horizontal sensitivities parameters, sx and sy, scale respectively the
two added dimensions. One can therefore give more importance to vertical or
horizontal elements in an image.

2.2 Meanshift mode seeking

The meanshift method [4] �nds modes or local maximum of a density function
in the feature space. The modes of the image are located at the zeros of its
gradient. Given n data points xi, i = 1..n, a density function f , a window of
radius h represented by a kernel function 1 G and a d-dimensional space Rd, the
expression of the gradient is given by the following equation (See [4] for detailed
explanations) :

∇f̂h,K(x) =
2ck,d

nhd+2

[
n∑

i=1

g(

∥∥∥∥x− xih

∥∥∥∥2)
]

︸ ︷︷ ︸
KDE

[∑n
i=1 xig(

∥∥x−xi

h

∥∥2)∑n
i=1 g(

∥∥x−xi

h

∥∥2) − x

]
︸ ︷︷ ︸

Meanshift vector mh,G(x)

The �rst term, the kernel density estimator (KDE), is proportional to the
density estimate at x computed with the kernel G(x) = cg,d(‖x2‖) and the
second term is the mean shift vector. This vector points always toward the
direction of the maximum increase in the density, thus leading to stationary
points, the modes of the image. The overall procedure is listed in algorithm 2.

To sum up, an image has many attraction basins with respect to some fea-
tures. Finding the centers of gravity of those bassins is like climbing up hills
until the peaks are reached. It's also worth noting that convergence is always
guaranteed and that a linear feature space, such as the Lab or Luv colorspace,
is required for accurate results.

1 A function K : X → R is said to be a kernel if there exists a pro�le, k : [0,∞] → R s.t.

1. K(x) = k(‖x‖2)
2. k is non-negative and non-increasing

3. k is piecewise continuous and
∫∞
0 k(r)dr < ∞

2 Existing work 6

Algorithm 2 Meanshift

1. Find features (color, texture, etc.)
2. Initialize windows at individual feature points
repeat

A. Compute the meanshift vector mh(x
t) for each window

B. Translate each window by its meanshift vector : xt+1 = xt +mh(x
t)

until convergence
4. Merge windows that end up near the same peak or mode
5. (Optional) Eliminate spatial regions containing less than M pixels

The EDISON Matlab interface [tool2] has been used to segment images with
the meanshift procedure. There are three parameters to specify : hs, hr andM ,
the minimum region area. The spatial bandwidth hs de�nes the radius of the
window in the spatial domain (x,y), whereas the range bandwidth hr de�ne its
radius in the color domain.

Meanshift is clearly robust to outliers and doesn't constrain the shape of
the clusters. What's more, a variable number of modes is found. However, this
method is computationally expensive.

2.3 Normalized cut

Images can be seen as a graph with a node for every pixel, and an edge between
any (su�ciently close) pairs of pixels. Each edge is weighted by a similarity
function measured between two nodes. The normalized cut algorithm [5] treats
segmentation as a spectral clustering problem and extends the idea of traditional
graph cut2. Usual graph cuts tends to cut o� very small, isolated component,
whereas there is no such problem with the normalized cut approach. An image
is �rst mapped to a weighted graph with a�nity matrix W , whose elements are
de�ned by a similarity measure between pixels. The goal is to �nd the normal-
ized cut of this graph, de�ned as

Ncut(A,B) = cut(A,B)
assoc(A,V) +

cut(A,B)
assoc(B,V) with assoc(A, V) =

∑
u∈A,t∈V w(u, t).

The main idea is to minimize the dissociation between groups and maximize
the association within each group. The solution is given by the eigenvector cor-
responding to the 2nd smallest eigenvalue (by the Rayleigh quotient criterion)
of the following equation:

(D−W)y = λDy where W = (Wij) is the weight matrix and D is the NxN
degree matrix with the vector d on its diagonal, d(i) =

∑
j w(i, j).

The pseudocode is given in algorithm 3.
In order to use this method, I've downloaded its Matlab code from [tool3].

Only one parameter is needed: K, the desired number of regions. Although the
normalized cut is much better than traditional graph cuts, its high complexity
(O(n3)) is an important drawback for large and complex images.

2 A graph cut is de�ned as cut(A,B) =
∑

i∈A,j∈B w(i, j) where w(i, j) represent a weight

between nodes i and j. Minimizing this cut value leads to an ideal bi-partitioning of the

graph.

2 Existing work 7

Algorithm 3 Normalized cut

1. Set up a weighted graph G = (V,E) with an edge between each pair of
pixels. Choose a similarity measure and compute matrices W and D
2. Solve (D −W)x = λDx ≡ D−1/2(D −W)D−1/2x = λx for eigenvectors
with the smallest eigenvalues
3. Use the eigenvector with the second smallest eigenvalue to bipartite the
graph
4. Recurse if needed !

2.4 Contour detection and hierarchical segmentation

Accurate contour detection is closely related to image segmentation. The re-
cently published method [6] presents a state-of-the-art contour detection algo-
rithm, the gPb contour detector, that can be used to partition an image into
hierarchical regions. Two steps are needed: �rst, an Oriented Watershed Trans-
form (OWT) is used to construct a set of initial regions, then an Ultrametric
Contour Map (UCM) is constructed from the boundaries of these regions. The
goal is to form a set of closed contours by estimating the probability that a con-
tour is signi�cant in an image. A hierarchy of regions is �nally built by using a
greedy graph-based region merging algorithm. For detailed explanations of each
of these steps, please refer to [6]. High-level pseudocode is given in algorithm 4.

Algorithm 4 Contour and hierarchical segmentation

1. Use the gPb contour detector
2. Create an Oriented Watershed Transform of the contour
3. Estimate the importance of the contours by using an Ultrametric Contour
Map
4. Create a hierarchical tree and use a region merging algorithm to eventually
create segments

Matlab code for this segmentation algorithm can be downloaded from [tool4].
Although providing excellent results in an unsupervised manner, this method is
too slow for a real-time usage.

2.5 Ensemble methods

Another type of method called ensemble methods tries to combine results from
simple methods in order to improve the accuracy of a segmentation. For exam-
ple, the Maximum Weight Independent Set (MWIS) [7] problem can be used in
order to intelligently combine segmentations. This approach will be used in the
new segmentation algorithm explained in the next part of this report.

2.6 Summary and examples

As an example, �gure 1 displays an image segmented with each of the above-
mentioned method. Each segmentation is di�erent from the others. Evaluating
them is a hard task, and more thoughts will be presented in section 8.

The methods described in the previous subsections represent only a tiny
subset of all existing work about segmentation. One can't say that one method

2 Existing work 8

Fig. 1: Example of segmentations. On top: the original image. Then, from left
to right: Kmeans, Meanshift, Normalized cut and Contour/Hierarchical
segmentations

2 Existing work 9

Method Parameters Advantages Drawbacks

Kmeans K, sx, sy,M Fast, generic Assumes spherical
clusters, sensitive
to outliers, intial-
ization (choose k)

Meanshift hs, hr,M Robust to out-
liers, �nds vari-
able number of
modes, does not
constrain the
shape of clusters

Sensitive to inital-
ization, computa-
tionally expensive

Normalized cut K Generic, works
with many di�er-
ent features

High memory
usage, segments
tend to have the
same size

Contour detection
and hierarchical
segmentation

None No parameter
needed, excellent
segmentation
accuracy

Very high time
complexity

Hybrid Various Better accu-
racy, freedom
in combining
segmentations

Slower than a sim-
ple method

Tab. 1: Summary of representative segmentation algorithms

is clearly better than the other, but still some positive and negative points can
be drawn. A short summary is listed in table 1 for a better overview of their
parameters, advantages and drawbacks.

10

Part III. Segmentation via hypergraph

learning

3 Overview

The new segmentation proposed can be quali�ed as an ensemble method. It
�rst combines existing segmentations (at least two) in order to create super-
pixels. A hypergraph is then constructed from both the information present in
the superpixels and the original segmentation. Finding a good segmentation is
�nally achieved by cutting the hypergraph into a maximum of K regions.
The idea of this new method is similar to what is found in [7], except that
hypergraphs are used instead of traditional graphs. What's more, cutting a
hypergraph is slightly di�erent than cutting a simple graph and provide some
advantages.
In the following subsections, details of both theory and Matlab implementation
will be given. After some important de�nitions are given, the hypergraph cre-
ation and cut are explained. Finally, the algorithm is summarized, examples
are given and the new method is evaluated versus the simple methods.

4 Hypergraph creation

De�nitions

De�nition 1. A superpixel is a set of contiguous pixels.

De�nition 2. Let V be a �nite set of vertices and E a family of subsets of V
such that ∪e∈E = V . G = (V,E, ω) is called a hypergraph, with the vertex set
V and the hyperedge set E, and each hyperedge e is assigned a positive weight
ω(e) (De�nition given by [8])

A set of superpixels can therefore be viewed as an over-segmented image.
The notion of superpixels comes from [9] and an example is shown on �gure 2.
A hypergraph is a generalization of a simple graph, allowing more than 2 ver-
tices for an edge. An example of hypergraph along with its incident matrix is
displayed in �gure 3. The incident matrix links hyperedges (rows) with vertices
(columns). Note that there might be more than two ones in each row.

In the next paragraph, the link between original segmentations, superpixels
and the hypergraph is made.

Merging simple algorithms

The �rst step toward hypergraph creation is to intersect at least two segmenta-
tion results, say for example the Kmeans S1 and the Meanshift S2segmentations.
If more than two segmentations are given, say S1...SM , then the process can be
continued in an iterative way. Let the �nal segmentation be I, given by

I = ((((S1 ∩ S2) ∩ S3) ∩ S4)... ∩ SM)

I can be viewed as a set of superpixels. Each superpixel is then represented
as one vertex in a hypergraph. Hyperedges are subsequently de�ned as the link

4 Hypergraph creation 11

Fig. 2: Example of image divided into superpixels (Image courtesy of [9])

v1

v2

v3

v4

v5

v6

e1

e2

e3

H =

v1 v2 v3 v4 v5 v6

e1 1 1 1 0 0 0
e2 0 1 0 1 0 0
e3 0 0 0 0 1 1

Fig. 3: Example of hypergraph with 6 vertices and 3 hyperedges, along with its

incidentMatrix H.

5 Hypergraph cut 12

between the segments in each original segmentation and their corresponding
superpixels. That is to say, if R is the set of all segments of a segmentation Si,
then for each segment Rj , j = 1..N , there will be one hyperedge representing
the set of superpixels covering that particular segment. After all hyperedges are
computed, the incident matrix of the hypergraph is known.

Hyperedge weights are computed at the time each single segmentation is pro-
cessed. The weight should represent the quality of a segment. Many measures
exist [10], such as the color error, the entropy of a segment or the (squared)
intensity error. The weights of the hypergraph will be used by the hypergraph
cut algorithm in order to segment the hypergraph in K regions. One could easily
scale the weights coming from each segmentation, thus giving more importance
to one method or another.

5 Hypergraph cut

Partitioning an hypergraph into K regions can be solved via a matrix eigenvalue
problem. A new e�cient formulation preserving the invariance property 3 has
been proposed by Li Pu. This work is to be published soon, so only a brief
explanation can be given in this report.

The clustering algorithm �rst gets an embedding of the vertices in the hy-
pergraph, then uses Kmeans to partition them. Let W be a matrix with the
hyperedges weights on its diagonal,A be the adjacency matrix of the hyperedges
4 and D be the diagonal matrix of column sums of WA. An ideal partitioning
is found by using the eigenvectors corresponding to the k smallest eigenvalues
of the following matrix

P0 =

[
2D −W
−WA 2W

]
By ignoring the smallest eigenvector, one can multiply the transposed inci-

dent matrix of the hypergraph with the eigenvector matrix. Running kmeans
would then give an ideal partitioning and getting the �nal segmentation is �nally
achieved by mapping each superpixel to its cluster.

The main advantages of using hypergraphs instead of graphs are that the
resulting cut does not depend on the size of the clusters and that unbalanced
clusters are avoided.

6 Summary and examples

The procedure leading to a segmentation is summarized in algorithm 5. As an
example, consider �gure 4. First, 4 di�erent segmentations are computed and
combined into superpixels. Each color represent one superpixel. A hypergraph
cut with K = 3 is eventually made, leading to a nice segmentation result with
3 regions.

3 The invariance property of a clustering objective function holds whenever the size of

hyperedges are not taken into account, but only the connectivity of the hypergraph and the

hyperedges weights.
4 An element (i, j) is set to 1 if two di�erent hyperedges i and j share at least a common

vertex

6 Summary and examples 13

Algorithm 5 Segmentation via hypergraph learning

Given N segmentations S = S1...SM

Compute the intersection of all segmentations
I ← ((((S1 ∩ S2) ∩ S3) ∩ S4)... ∩ SM)
Initialize incidentMatrix with zeros
for all segmentation Si in S do
Let R bet the set of all segments in segmentation Si

for all segment Rj , j = 1..N in R do

Add one hyperedge (= line) to the incidentMatrix with the value 1 in
column k if superpixel k is part of segment Rj

Assign the weight of segment Rj to this new hyperedge
end for

end for

Cut the hypergraph into K regions
Recover the image segmentation from the hypergraph cut

Fig. 4: Example of segmentation merging and hypergraph segmentation. On
top, the original image with its segmentations (Kmeans, Meanshift, Nor-
malized cut and Contour/Hierarchical segmentations). On the bottom,
the superpixels and the resulting segmentation via hypergraph cut.

7 Matlab code 14

Field Name Description
pixelMapping The superpixels coming from the intersection of all segmen-

tations
incidentMatrix The incident matrix of the hypergraph
edgeWeights The list of all hyperedge weights
trueSegments The ground truth segmentation(s) if existing
vertexNames An array containing all vertices names
edgeNames An array containing all edge names
isSimpleGraph Logical value, set to 1 for simple graphs, 0 for hypergraphs
graphName The name of the hypergraph
notes Some optional notes

Tab. 2: Summary of the �elds in a hypergraph structure

7 Matlab code

Some important details about the Matlab implementation are presented here.
For more information, refer to the comments in the code.

Simple segmentations

A written in part II, the basis Matlab code for simple methods has been
downloaded from [tool1, tool2, tool3, tool4]. The code can be found in the
codes_others directory. As already mentioned, I've extended some methods
and I've created functions that share a common format for each of these meth-
ods. The Matlab code can be found in the folder codes/seg. This folder also
contains a function assign_weights that assigns a weight to each original seg-
ment. The user can choose between three measures: the entropy of a region,
the intensity error or the squared intensity error. From experience, the squared
intensity error is the one that works best.

Hypergraph creation and cut

The code for segmentation merging, hypergraph creation and cut is located in
the codes/hypergraph directory.

A hypergraph is saved as a structure containing many �eld. Along with
the incident matrix, the hyperedge weights and the superpixels, some other
useful �elds are saved to a hypergraph structure. For instance, if a ground-
truth segmentation exists, it is saved to the trueSegments �eld. Table 2 lists
all �elds of such a structure.

Graphical user interface and recoloring

A Matlab GUI (Graphical User Interface) has been created in order to play
with simple algorithms and with the hypergraph method. Its organisation is
the following (see �gure 5 : on the left-hand side, each simple method can
be used according to its parameters. The original image and its ground truth
segmentation (if existing) are displayed on the top right corner. The rest of the
right-hand side is dedicated for the hypergraph method and for the evaluation
against a ground-truth image : the superpixels are �rst displayed, followed

8 Evaluation 15

Fig. 5: Matlab GUI

by the segmentation resulting from the hypergraph cut. In order to use the
new method, the user must select at least two methods with the checkboxes
and indicate the desired maximum number of regions for the hypergraph cut.
He/She can also assign a weight for each method, before the intersection is done.
What's more, a console is located at the bottom left corner of the GUI. Error
messages as well as feedback is written to the console for each event.

Some menus are proposed to the user, so that he/she can save the images or
the hypergraph to an output directory. The help menu is intended to give some
hints about the parameters needed for each method.

An interactive recoloring process is also available for the segmentation results
via hypergraph cut. The user has to press the "Recolor!" button, select the
regions he/she wants to recolor and eventually choose a new color. The recolored
image would then be displayed in a pop-up window.

Last but not least, the GUI can be started by calling the gui_segmentation
function from the codes/gui directory.

8 Evaluation

Evaluating a segmentation algorithm is not as simple as it might appear. Firstly,
the notion of segmentation is subjective. Not only human beings perceive im-
ages and scenes in di�erent ways, but applications have di�erent usages and
requirements. Hence, there is no way to say that one perception is the right
one. Some evaluation indices have been thought to overcome this problem, i.e
they evaluate a segmentation against one or multiple ground-truth images, that
have been labelled by di�erent human subjects.

Secondly, many methods have some input parameters that must be chosen.
Evaluating supervised algorithms with the entire space of parameters is infeasi-

8 Evaluation 16

ble, even with greatest processing power. That's why only a reasonable subset
of parameter values must be chosen.

Before evaluating the algorithm, a choice had to be made regarding the
dataset to use. Two well-known datasets are the BSD500 [tool4] and the Voc2011
[11] datasets. The former contains 5 ground-truths per image and tackles only
the problem of segmentation, whereas the latter contains only 1 ground-truth
per image and targets more problems, for example object classi�cation. Both
datasets are available within the created Matlab GUI. However, batch evaluation
has only been carried out on the BSD500 dataset.

In the following, the �rst subsection tries to de�ne what is a good segmen-
tation. Three evaluation measures are then presented: the probabilistic Rand
Index (PRI), the Variation of Information (VI) and the global consistency er-
ror (GCE). In the �nal subsection, each simple algorithm along with the new
hypergraph approach are evaluated against the BSD500 test images.

What is a good segmentation?

De�ning what is a good segmentation is not trivial at all; one has �rst to know
what is a good segment. Haralick gave already in 1985 some important rules to
follow [12] :

1. Regions of an image segmentation should be uniform and homogeneous
with respect to some characteristic such as gray tone or texture.

2. Region interiors should be simple and without many small holes.

3. Adjacent regions of a segmentation should have signi�cantly di�erent val-
ues with respect to the characteristic on which they are uniform.

4. Boundaries of each segment should be simple, not ragged, and must be
spatially accurate.

Since then, much progress has been made toward objective evaluation, see
for example [10] for a survey of unsupervised methods and [13] for a discussion
about a fundamental question, "What is a good segment?". The measures
described below are intended to compare one segmentation against a ground-
truth. In order to be more objective, the evaluation can easily be averaged over
a set of ground-truths for each image.

Probabilistic Rand Index

De�nition 3. The Probabilistic Rand Index (PRI) [14] counts the fraction
of pairs of pixels whose labellings are consistent between the computed segmenta-
tion and the ground truth, averaging across multiple ground truth segmentations
to account for scale variation in human perception. (source : [tool5])

Once normalized, the value of the PRI lies in the interval [0, 1]. The closer
to 1, the better will be the segmentation.

8 Evaluation 17

Variation of Information

De�nition 4. The Variation of Information (VI) metric [15] de�nes the
distance between two segmentations as the average conditional entropy of one
segmentation given the other, and thus roughly measures the amount of ran-
domness in one segmentation which cannot be explained by the other. (source :
[tool5])

As for the GCE, the closer the VI score to 0, the better !

Global Consistency Error

De�nition 5. The Global Consistency Error (GCE) [16] measures the ex-
tent to which one segmentation can be viewed as a re�nement of the other.
Segmentations which are related in this manner are considered to be consistent,
since they could represent the same natural image segmented at di�erent scales.
(source : [tool5])

The closer the GCE score will be to 0, the better should be the segmentation.

Results

Code from [tool5] has been used to compute the PRI, GCE and VI indices. The
results displayed in this subsection are averaged over 5 ground-truths for each
image, and over the 200 images located in the test directory of the BSD500
dataset. The processing time PTIME has also been considered : it's the time in
seconds taken by a 3Ghz Quad-Core AMD machine to compute a segmentation.

Table 3 displays the results for the simple methods. The Meanshift method
seems to be the best one, both in terms of PRI and processing time. Kmeans is
also fast, especially when the number of regions K is low. Its quality is not too
bad when K = 4. The contour detection and hierachical segmentation method
(abbreviated as contour) beats all others regarding the GCE and VI, but is re-
ally slow. Finally the Normalized cut lies in the middle range. For all methods,
parameters have been arbitrarily �xed with reasonable values. Assigning one set
of �xed parameters per image (or even better, deducing them from the image)
has not been investigated.

Table 4 lists the results for the new hypergraph method with �xed parame-
ter hypergraph_K = 7. Many experiments have been carried out, by combining
various methods. In this table, the time added to generate the hypergraph, do
the cut and provide the segmentation is summarized in the Added PTIME col-
umn. In all cases, the overhead is very low. However, we don't get signi�cant
improvements by using this new method with the chosen parameters.

I've also tried to set the hypergraph_K in a more dynamic way, for example
by taking the minimum, maximum or the average number of segments in the
combined segmentations. By using the ceiling of the average, both the PRI
and GCE are slightly improved for some methods, but it's still not better than
existing segmentation algorithms.

8 Evaluation 18

Results with the average are listed in table 5.

Due to a lack of time, the evaluation could not be done with other set
of parameters and every possible combination. Nevertheless, the functions
to process the sets of images and evaluate them are ready to be used in the
codes/evaluation directory. Although the averages are not really encourag-
ing, the new method worked better than all others for some images. Perhaps
some more adaptive parameters could be used for both simple method param-
eters and the hypergraph K parameter, cutting the hypergraph into K regions.

In spite of those relatively "bad" results, a practical and functional applica-
tion has been created with this new approach : an Android application providing
semi-recoloring on region of interest. Details are given in the following part.

8 Evaluation 19

Method PRI VI GCE PTIME

Kmeans4 0.7523 2.4924 0.3209 1.7458
Kmeans10 0.6418 2.7090 0.3191 10.1133
Ncut10 0.7429 2.6013 0.3136 101.5119

Meanshift 0.7817 2.4802 0.2203 1.3102
Contour 0.7604 1.6350 0.1511 239.6692

Tab. 3: Evaluation results for simple methods. KmeansX stands for Kmeans
with K = X, sx = 1.5, sy = 1.5,M = 3200. NcutX stands for the
normalized cut with K = X. Meanshift has been computed with �xed
parameters hs = 3, hr = 7,M = 3200

Method PRI VI GCE Added PTIME

Kmeans4/Ncut10 0.7474 2.5852 0.3338 0.2878
Kmeans10/Meanshift 0.7445 2.5471 0.3156 0.3073
Kmeans4/Meanshift 0.7635 2.5065 0.3129 0.3226
Meanshift/Ncut10 0.7375 2.5728 0.3437 0.3294

Kmeans4/Meanshift/Ncut10 0.7586 2.4645 0.3153 0.5799

Tab. 4: Evaluation results for hypergraph method. The hypergraph was cut into
7 regions to produce a segmentation. The 'X/Y' operator means that
methods X and Y have been combined.

Method PRI VI GCE Added PTIME

Kmeans4/Ncut10 0.7503 2.6684 0.3246 0.2574
Kmeans10/Meanshift 0.7476 2.7628 0.2937 0.3297
Kmeans4/Meanshift 0.7625 2.6294 0.2947 0.3194
Meanshift/Ncut10 0.7499 2.7773 0.2853 0.3256

Kmeans4/Meanshift/Ncut10 0.7599 2.5780 0.3110 0.5385

Tab. 5: Evaluation results 2 for hypergraph method. The hypergraph was cut
into K regions where K is the mean of the number of regions in the
combined segmentations. The 'X/Y' operator means that methods X
and Y have been combined.

20

Part IV. Android application

An Android application in the second part of this semester project, in order to
demonstrate a practical example of the previous work. People love playing with
pictures taken with their Iphone or Android phone and there exist many appli-
cation in the market, such as ColorTouch or ColorSplash Photo that let the user
recolor one part of an image in a funny way, the original image being turned
into grayscale. However, none of them (as of November 2011) is able to provide
semi-automatic recoloring on a region of interest. That is to say, the user has to
go over the whole region they want to recolor with their �ngers, including the
border. This is quite time-consuming and having a precise recolored region is
not always possible. An intelligent application is presented in this part, where
the recoloring process takes advantage of multiple segmentations of an image.
The user will just have to tap on an object in order to recolor it entirely!
In this part, the speci�cation is �rst described, followed by some relevant imple-
mentation details. Finally, some examples and possible extensions are presented.

9 Speci�cation

9.1 Overview

The main goal was to demonstrate the use of hypergraphs for image segmen-
tation, while having fun with images. Figure 6 shows the big picture of the
process, at a very high level. The segmentation part is not done on the cell
phone, as it requires quite a lot of processing. For that purpose, a server serves
requests, computes the di�erent segmentations and sends back the hypergraph
to the user. Then, the client just has to recolor the segments he/she likes, either
with the original color, or with a custom color. One important fact is that the
client just has to communicate with the server once! What's more, an image is
always resized and compressed on the phone, before it is sent over the channel,
so that costly 3G communication is reduced if WIFI is not enabled.

9.2 Application

The application requires two di�erent screens, one for choosing an image, let's
call it the home screen, and another for the recoloring part. The following
subsections lists the requirements of each screen. See �gure 7 for a capture of
each screen.

Home Screen

A list of actions is proposed to the user:

• Pick a picture from the gallery

• Take a picture with the embedded camera

• Ping the server in order to test connectivity

When a picture is selected, a loading symbol will appear and the picture
will be �rst resized to a maximum weight of 100Kb, and maximum dimensions

9 Speci�cation 21

User

Java ServerAndroid Phone

Select / Take a picture

resizing &
compression Send image

MATLAB

Image segmentation
Kmeans combined with
Meanshift results

MatlabProxy

Results

Statistics

Send hypergraph

Recoloring
Activity

Tap on Interesting Object

Auto recoloring

Fig. 6: Overview of the recoloring process

Fig. 7: Home and recoloring screens

10 Implementation details 22

of 400x400px, then sent to the server. Feedback is given to the user. The
application jumps to the recoloring screen as soon as the phone successfully
receives results from the server. Would the segmentation fail or any other error
occur, a message would then be displayed. The following menus should also be
available:

1. Help: display a dialog with some hints and explanations about the appli-
cation

2. About: display a dialog with copyright and contact information

3. Exit: quit the application

Recoloring Screen

The original image is displayed in grayscale. It is zoomable (multi-touch) and
movable. There are three buttons stacked on top of the image:

1. A color picker. A new color or the original color can be selected

2. A seekbar that controls the size of the expansion. It de�nes the number
of superpixels that must be recolored, starting from the point where the
user tapped the image (seed). More explanations about the expansion can
be found in section 10.1.

3. A reset button: it clears all recolored segments

Three more menus should be added to this screen:

1. Home: Go back to the Home screen

2. Save: Save the image to the external memory in JPEG format

3. Share: export the image to other applications, such as Facebook, Flickr
or Emails

9.3 Server

The server has to handle clients' requests. It should be able to interact with
Matlab and provide a results 100% of the time. It also collects some statistics:
the IP and port of the client connection, the timestamps of a request (Start &
End date) and the results of the segmentation. For privacy purposes, the results
for each image are kept on the server for a �xed amount of time, then deleted.
The number of history days should therefore be customizable.

10 Implementation details

Some comments on tricky parts of the implementation are presented here below.
For a quick reference, Figure 8 displays an overview of all important Java classes
used in the application. Refer to the comments of the code if you feel like
learning more about one part of the implementation.

10 Implementation details 23

Fig. 8: Java classes

10.1 Activities

PictChooserActivity

The home screen is implemented in the PictChooserActivity class. On startup,
a connectivity test to the server is made. If it fails, a warning message will be
shown to the user, saying that the server might be down. Once the user has
chosen or taken a picture, a thread is started. It will resize and compress the
image, initiate a TCP connection to the server, send the image and get the
resulting segmentation. The data and messages exchanged between the server
and the client form the protocol displayed in �gure 9.
Error messages will be displayed as Toast messages, which are short duration
noti�cations that pop up on the window, whereas feedback to the user is given
via a ProgressDialog. In order to pass messages (feedback or error) from the
ProcessImageThread to the main thread, a Handler object is used. The special
message next is sent when the processImage() function successfully �nishes,
thus allowing the application to jump to the recoloring screen.
All information needed by the recoloring screen is stored in an ImageInfo ob-
ject. The most important �elds are the incidentMatrix, edgeWeights that
describe the hypergraph and pixelMapping that maps each pixel to its super-
pixel. Refer to part 4 for more information about those �elds. In order to use
Matrix operations, the Jama Toolkit [tool6] has been used extensively.

RecoloringActivity

The �rst thing that this activity does is displaying the chosen image in grayscale
embedded in a TouchImageView object. Before any modi�cation is made to the
image, an original copy is saved so that it can be restored at any time with the
reset button.
I have used and extended the multi-touch image view toolkit available at [tool7]
so that touch events would call the recoloring function with the good seed point,
without regard of the actual zoom and displacement of the image. For that
purpose, I had to �nd the relative coordinates of the image with respect to the
current view and add one listener listening to click events. One click event is
triggered when the user touches the image and the displacement is smaller than
3 pixels.

The color chooser has been slightly adapted from the code found at [tool8].
It is shown in �gure 10. As the user wants to recolor some segments of the image
while keeping its visual content, only the hue value of a color can be used. The

10 Implementation details 24

Connection Test

Send Picture

String Name

boolean ready

Size of Image

Object Bytes

boolean OK

Receive Results boolean done

double[][] pixelMapping

double[][] incidentMatrix

double[] edgeWeights

boolean OK

Matlab worker

name = ping
String "pong" yes

no

Fig. 9: Protocol used between the Android phone and the Java server

10 Implementation details 25

Fig. 10: The colorpicker used to choose a color.

intensity is therefore unchanged and the saturation can be slightly enhanced or
reduced via the hard-coded �eld SATURATION_ENHANCEMENT. By default, there
is no saturation enhancement. If the user presses the button "Keep original
color", then the currentHue �eld is set to -1. The recoloring process would
then keep the color of the original pixels.

The image is recolored when the user taps on the image or when the value
of the SeekBar is changed. In the former, the seed (location (x,y) on the image)
is �rst given to an algorithm 5 that will assign a weight to each superpixel. The
closer to 1, the closer the superpixel will be to the seed. The superpixels with
the nbSuperPixels highest weights will be selected for recoloring and thanks
to the pixelMapping matrix, all pixels that matches thoses selected superpixels
will be recolored. At the end, the current �gure is replaced with the modi�ed
image. In the latter, another listener was needed in order to react to changes
of the SeekBar value. Once it is changed, the number of superpixels is changed
accordingly (the minimum being 2) and the previous seed and expansion are
used to recolor the image.

10.2 Server and Matlab interaction

The Java server listens on port 12345 and starts a new Connection for each
client. Then, it follows the protocol described in �gure 9. The Matlab interac-
tion has been made possible thanks to the Matlabcontrol library [tool9]. Once

5 This expansion algorithm is based on the work presented in section 5.

11 Examples 26

the received image has been successfully written to the disk, a Matlab function
is called via a MatlabProxy:

[pixelMapping incidentMatrix edgeWeights] =

processImageForAndroid(filename,myresultsdir)

This function computes two segmentations of the given image: Kmeans with
K=5, sx=1.5, sy=1.5, M=3200 and Meanshift with hs=3, hr=7, M=3200. The
segmentations are combined and the hypergraph is generated.
The results are �nally converted back to Java's types via a MatlabTypeConverter
object and sent to the device.

11 Examples

On the top row of �gure 11, one can see the role of the expansion: increasing the
number of superpixels will expand the recolored region to similar segments. On
the bottom row, the di�erence between a recoloring process with the original
versus a new color is shown. One can easily turn a ripe mandarin into green
colors when the seed is carefully chosen.

12 Design choices, limitations and possible extensions

• This application has been developed for Android 2.2 (Froyo) and tested
on a HTC desire. It should theoretically work on more recent devices and
for other brands.

• The choice of combining the Kmeans and Meanshift methods seems to be
reasonable, as they both always converge. From experience, both methods
are rather quick and their intersection is always rich, meaning that the
expansion algorithm would bene�t from having more superpixels in the
hypergraph. The chosen parameters are quite general and should work
for most images.

• A server is used to compute the di�erent segmentations and the resulting
hypergraph. There is no problem with this approach for a demo appli-
cation like the one developed. However, this is clearly not scalable if
the number of client increases. So, if this application is to be published
one day, the developer has either to include the segmentation algorithms
(Kmeans and Meanshift) on the device, or use multiple servers with load-
balancing. The former might be preferred for privacy reasons, but would
maybe fail because of the small memory and processing power pocket de-
vices have compared to a real computer.

• The application has not been released yet in the Android Market. So, in
order to install it, the user has to enable the "Unknown sources" checkbox
in the application settings of the device, and then install the application
from the "apk" installation archive.

• There are some hard-coded constants that could be replaced in the future
by a Preference Screen, for instance the name and port of the server or
the maximum dimensions of the images.

12 Design choices, limitations and possible extensions 27

Fig. 11: Example of expansion and color change. In the top row, the number of
superpixels is increased. In the bottom wor, a new color is chosen in
order to recolor one ripe mandarin in green tones.

12 Design choices, limitations and possible extensions 28

• In order to improve the accuracy of the application, one could easily extend
it with user feedback. The user could for example rate the recoloring
process with "stars".

29

Part V. Conclusion

The developed Android application has shown how a new hypergraph method
for segmentation can be applied to recolor images in an intelligent manner.
Thanks to the segmentation information computed by a server, an image can
be divided into a set of superpixels and summarized in a hypergraph structure.
Expanding the recolored superpixels with the help of the hypergraph and from
the user seed subsequently allow objects to be recolored automatically. The new
segmentation approach does not beat existing work yet, but has practical usage
with only low computational overhead.

I've had much pleasure to work on this project; I could �rst learn basic
segmentation algorithms, see how hypergraphs can be used to solve clustering
problems, and �nally learn the basics of application development for Android
phones. I'm pretty sure that extending this work would be an exciting task.

Part VI. Future work

This work could easily be continued and improved with more time available.
After some small changes, the Android Application could for example be pub-
lished on the Android Market, its user interface could be extended and the code
for the recoloring process could slightly be optimized. Some ideas of extensions
have already been given in section 12.

As for the new hypergraph approach, more evaluation thoughts and exper-
iments need to be done. One could evaluate the segmentation algorithms with
other sets of parameters, try to �nd better combinations or try to estimate pa-
rameters from the image. There exist much work on clustering improvement
techniques and some ideas of [17] or [18] could for example be applied to the
problem of image segmentation.

Acknowledgements

I'd like to thank my supervisors Li Pu and Feng Yang for their good advice
and help given during the semester. Special thanks also to Jonathan, Oriane
and Valter for their nice feedback regarding the beta version of the Android
application.

Appendix

A DVD containing all the Matlab code, the Java code for the application, the
references and this report in tex+pdf format. See the README �les in the direc-
tory for more information about the organization of the code.

30

References

[1] Y J Zhang. An overview of image and video segmentation in the last 40
years. Advances in Image and Video Segmentation, pages 1�15, 2006.

[2] Hongliang Li and King Ngi Ngan. Image/video segmentation: Current sta-
tus, trends, and challenges. In King Ngi Ngan and Hongliang Li, editors,
Video Segmentation and Its Applications, pages 1�23. Springer New York,
2011.

[3] M. Luo, Yu-Fei Ma, and Hong-Jiang Zhang. A spatial constrained k-means
approach to image segmentation. In Information, Communications and Sig-
nal Processing, 2003 and the Fourth Paci�c Rim Conference on Multimedia.
Proceedings of the 2003 Joint Conference of the Fourth International Con-
ference on, volume 2, pages 738 � 742 vol.2, dec. 2003.

[4] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward
feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24:603�619,
May 2002.

[5] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
In Proceedings of the 1997 Conference on Computer Vision and Pattern
Recognition (CVPR '97), CVPR '97, pages 731�, Washington, DC, USA,
1997. IEEE Computer Society.

[6] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Con-
tour detection and hierarchical image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell., 33:898�916, May 2011.

[7] William Brendel and Sinisa Todorovic. Segmentation as maximum-weight
independent set. In J. La�erty, C. K. I. Williams, J. Shawe-Taylor, R.S.
Zemel, and A. Culotta, editors, Advances in Neural Information Processing
Systems 23, pages 307�315. 2010.

[8] Yuchi Huang, Qingshan Liu, Fengjun Lv, Yihong Gong, and D.N. Metaxas.
Unsupervised image categorization by hypergraph partition. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on, 33(6):1266 �1273, june
2011.

[9] X. Ren and J. Malik. Learning a classi�cation model for segmentation. In
Computer Vision, 2003. Proceedings. Ninth IEEE International Conference
on, pages 10 �17 vol.1, oct. 2003.

[10] Hui Zhang, Jason E. Fritts, and Sally A. Goldman. Image segmentation
evaluation: A survey of unsupervised methods. Comput. Vis. Image Un-
derst., 110:260�280, May 2008.

[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman. The pascal visual object classes challenge 2011 (voc2011)
results. http://www.pascal-network.org/challenges/VOC/voc2011/

workshop/index.html.

[12] Robert M. Haralick and Linda G. Shapiro. Image segmentation techniques.
Computer Vision, Graphics, and Image Processing, 29(1):100 � 132, 1985.

31

[13] Shai Bagon, Oren Boiman, and Michal Irani. What is a good image seg-
ment? a uni�ed approach to segment extraction. In Proceedings of the 10th
European Conference on Computer Vision: Part IV, pages 30�44, Berlin,
Heidelberg, 2008. Springer-Verlag.

[14] R. Unnikrishnan, C. Pantofaru, and M. Hebert. A measure for objective
evaluation of image segmentation algorithms. In Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR'05) - Workshops - Volume 03, pages 34�, Washington, DC,
USA, 2005. IEEE Computer Society.

[15] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic
measures for clusterings comparison: is a correction for chance necessary? In
Proceedings of the 26th Annual International Conference on Machine Learn-
ing, ICML '09, pages 1073�1080, New York, NY, USA, 2009. ACM.

[16] David R. Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A
database of human segmented natural images and its application to evalu-
ating segmentation algorithms and measuring ecological statistics. Techni-
cal Report UCB/CSD-01-1133, EECS Department, University of California,
Berkeley, Jan 2001.

[17] Greg Hamerly and Charles Elkan. Learning the k in k-means. In Sebastian
Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural
Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

[18] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. In
Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neu-
ral Information Processing Systems 17, pages 1601�1608. MIT Press, Cam-
bridge, MA, 2005.

Tools

[tool1] Yi Cao. E�cient k-means using jit (matlab code). http://www.cs.

ucf.edu/~vision/Code/k_means_JIT.zip, March 2008.

[tool2] Chris M. Christoudias and Bogdan Georgescu. Code for the edge detec-
tion and image segmentation system. http://coewww.rutgers.edu/

riul/research/code/EDISON/index.html, 2003.

[tool3] Stella Yu Timothee Cour and Jianbo Shi. Normalized cuts segmen-
tation code, for matlab. http://www.seas.upenn.edu/~timothee/

software/ncut/ncut.html, January 2004.

[tool4] C. Fowlkes P. Arbelaez, M. Maire and J. Malik. Contour detection
and image segmentation resources. http://www.eecs.berkeley.edu/
Research/Projects/CS/vision/grouping/resources.html, 2011.

[tool5] John Wright and Allen Y. Yang. Image segmentation benchmark
indices package. http://www.eecs.berkeley.edu/~yang/software/

lossy_segmentation/, 2007.

32

[tool6] Jama : A java matrix package. http://math.nist.gov/

javanumerics/jama, 2005.

[tool7] Mike Ortiz. Panning and pinch zoom added to android imageview.
https://github.com/MikeOrtiz/TouchImageView, September 2011.

[tool8] A photoshop like color picker for your android
application. http://www.yougli.net/android/

a-photoshop-like-color-picker-for-your-android-application,
September 2010.

[tool9] A java api to interact with matlab. http://code.google.com/p/

matlabcontrol, 2011.

Images

[img1] Superpixels image. http://www.cs.sfu.ca/~mori/research/

superpixels/figs/sp_996.jpg.

Woooow, that's the end !
Thanks for having read this report :-)

