
Predicting Online Performance of News Recommender
Systems Through Richer Evaluation Metrics

Andrii Maksai, Florent Garcin, and Boi Faltings
Artificial Intelligence Lab, Ecole Polytechnique Fédérale de Lausanne

Lausanne, Switzerland
{firstname.lastname}@epfl.ch

ABSTRACT
We investigate how metrics that can be measured offline
can be used to predict the online performance of recom-
mender systems, thus avoiding costly A-B testing. In ad-
dition to accuracy metrics, we combine diversity, coverage,
and serendipity metrics to create a new performance model.
Using the model, we quantify the trade-off between differ-
ent metrics and propose to use it to tune the parameters of
recommender algorithms without the need for online test-
ing. Another application for the model is a self-adjusting
algorithm blend that optimizes a recommender’s parameters
over time. We evaluate our findings on data and experiments
from news websites.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering

Keywords
recommender system;online evaluation;evaluation metrics

1. INTRODUCTION
It was recognized early on in the history of recommender

systems (recsys) that the most accurate recommendations
were not always the best. The first approaches for diversi-
fying recommendations were made by Zhang et al. [29] and
Ziegler et al. [31]. Later, many different metrics - such as
novelty, coverage, diversity, and serendipity [17] - have been
introduced with the aim of enhancing the quality of rec-
ommendations. It has even been suggested that the focus
on optimizing the accuracy of recsys has been detrimental
to the field [13]. Ordering algorithms with respect to their
offline accuracy can result in the exact inverse of ordering
them with respect to the online click-through rate (CTR),
which is the metric most site owners care about [6, 27].

The main reason for this is that recommending popular
items is usually accurate – they are popular because peo-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
RecSys’15, September 16–20, 2015, Vienna, Austria.
c© 2015 ACM. ISBN 978-1-4503-3692-5/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2792838.2800184.

Figure 1: Workflow for selecting the best algorithm
using a performance model with multiple metrics.

ple do indeed rate them highly – but such recommendations
have little to no effect as people have already seen the items
elsewhere. A contributing factor in the domain of news rec-
ommendations is that users are often interested in something
entirely new. Finally, users often view recommendations
concerning a variety of different topics more favorably than
the ones concerning several interesting but similar items.

All of the above factors indicate that optimizing the accu-
racy of recommendations using offline data, gathered from
past behavior without a running recommender algorithm, is
neither an effective nor efficient way to select the best al-
gorithm [13, 19]. The fairest way to compare algorithms is
to launch them online and compare the actual reactions of
users to the recommendations. However, this requires the
existence of an online environment and a set of dedicated
users, and it takes a long time. Another problem is the need
of constant re-evaluation of algorithms, especially if they are
sensitive to changes in the item or user set over time [2, 10].
Simulation of an online environment is a potential alterna-
tive [11, 27]. We discuss these solutions later in the paper.

In this work, we leverage recommendations from real news
websites to model their CTR (Fig. 1). Our main contribu-
tions are threefold. First, in Sec. 2, we review the different
metrics, find those that are most likely to affect online per-
formance, and indicate the presence of a trade-off between
them. Next, in Sec. 3, we combine a selected subset of met-
rics into a prediction model of online performance. Finally,
in Sec. 4, using this model and the metric trade-offs, we

179

show how to select the best version of an algorithm and its
parameters using limited online evaluation, and how to cre-
ate a blend of several recommender algorithms that adjusts
over time for optimal performance. Results reported in Sec 5
show that given limited access to online environment, it is
possible to model performance over time far better than by
averaging performance over time.

2. EVALUATION METRICS
Over the years, various metrics have been suggested for

evaluating recsys. In the approach presented here, we con-
sidered 17 metrics classified into five different groups [17].

2.1 Metric groups
Accuracy/Error metrics compute the quality of predic-

tions (i.e., rating movies or a correct/incorrect guess of the
next news item visited). Error metrics usually penalize er-
rors, whereas accuracy metrics reward correct answers. We
ignored metrics, such as RMSE or MAE, that penalize each
item separately; we concentrated instead on metrics for the
task of top-N recommendation. We investigated the follow-
ing metrics: Precision, NDPM, Kendall’s τ , Spearman’s ρ
[8], Success [6], Markedness, Informedness, and Matthew’s
Correlation [15]. All these metrics compute the accuracy of
prediction and, for the case of top-1 recommendation, turn
into binary indicators of the success of recommendation.

Diversity is usually defined as a measure of dissimilar-
ity between items in the recommendation list with respect
to a similarity metric. This “intra-list” diversity has been
presented and used in several forms [29, 31, 28].

Lathia et al. [10] proposed a definition of the temporal
diversity of a recsys which was dependent on the number
of new items a user was shown during different visits. For
news recommendations where users are often anonymous,
we modified the definition to compute the amount of new
items the system recommends to all users at a later time.

Zhou et al. [30] proposed a metric called “personalization”
that is effectively the normalized pairwise Jaccard similarity
between items recommended to each pair of users; it can be
viewed as the “extra-list” diversity.

Novelty is the quality of an item of being new to a user
(i.e., the recommendation of an item from the category that
the user already likes is not novel). A variation of such a
metric, called “surprisal”, is a weighted sum of negative log
frequencies of the items in the recommendation list [30].

Coverage is defined as the percentage of items that are
ever recommended, and prediction coverage is the number
of users for whom a recommendation can be made. We also
considered the Gini Index and Shannon’s Entropy [17].

Serendipity is the quality of being both unexpected and
useful. One component penalizes the expectedness of the
most popular items, whereas the other component measures
usefulness – typically just accuracy [7, 14].

2.2 Metric correlations
We investigated the correlation between the metrics in

each group by applying three different algorithms to the
Swissinfo dataset, described later. Each data point was gen-
erated by averaging metric values for all the recommenda-
tions at equal time intervals. For metrics that are computed
cumulatively over recommendations (i.e., temporal diver-
sity) we computed the metric value at each point in time
and used the cumulative difference as the metric value.

Figure 2: Pairwise plots between representative
metrics from four groups (average over 10 minutes).
Example of 3 clusters separated by the dotted lines.

The metrics in the Accuracy group (NDPM, Kendall’s
τ , Success, Spearman’s ρ, Markedness, Informedness and
Matthews correlation) showed correlations higher than 0.9
between all the pairs of metrics for the recommendation lists
given by the algorithms. The same results were obtained for
the other metric groups – Diversity (Intralist diversity, Per-
sonalization, and Temporal diversity), Coverage (Gini In-
dex, Shannon’s Entropy, and Coverage), and Serendipity
(Serendipity by Ge [7], and Serendipity by Murakami [14]).
We therefore examined correlation between pairs of “repre-
sentative” metrics from each of these groups (Fig. 2). There
was no strong agreement between metric groups (except for
Coverage and Serendipity). This indicates that different
metric groups all express different features of the recom-
mendations and therefore at least one representative of each
group should be used as a feature of the performance model.

Points often formed three distinct clusters. The clusters
corresponded to recommendations given by the different al-
gorithms, indicating that the relationship between metrics
might be different for recommendations given by different
algorithms.

The results in Fig. 2 were obtained from the recommen-
dation lists comprising three items. We studied the effect
of the length of recommendation lists on metric correlations
(Fig. 3). For all metric pairs, we first observed a drop, and
then almost no change in the absolute value of correlations.
This indicates that different sets of metrics might be im-
portant for domains with different numbers of items to be
recommended.

Figure 3: Absolute value of correlations between
metrics in different groups for different numbers of
recommendations.

2.3 Metric trade-off
Algorithms often have hyperparameters that affect their

performance, and by varying the values of such hyperpa-

180

Figure 4: Coverage–accuracy trade-off curves for
three variations of the CT algorithm [5]

rameters different sets of recommendations can be obtained.
The average metric values for all the sets of recommenda-
tions given can be computed in order to observe how they
change when varying a hyperparameter. The example shown
in Fig. 4 was obtained using the Yahoo dataset and several
variations of the Context Tree (CT) algorithm, described
later in the paper. Each of the algorithms produced a curve
that clearly indicated the trade-off between metrics – in this
case, Accuracy and Coverage. We also observed these trade-
offs using other datasets and algorithms. Getting the best
performance requires selecting which metrics to optimize.
The next section describes how we build a regression model
of performance to achieve this.

3. PREDICTING ONLINE FROM OFFLINE
In this section, we first briefly describe the definitions of

offline and online accuracy, and click-through rate. We then
describe our method of feature selection for the regression
model of online metrics, and finally the model itself.

Offline accuracy is the percentage of clicks predicted by
the recsys when it is applied to a log of user browsing which
occurred without the recommender system present.

Online accuracy is the percentage of clicks predicted by
the recsys when it is online. If a recsys predicted that the
user would browse to a particular page and she did so, but
without clicking on its recommendations, this still counts
towards online accuracy.

Click-through rate (CTR) is the percentage of clicks
made on recommendations.

For any random user, the model assumes that all the items
she visits without a recsys are included in the set of items
she would visit with one. This means that if the user visits
an item when using the recsys, that she would visit anyway
when the recsys was absent, then that click should not be
taken into account when measuring the impact of the recsys.
A broader discussion of this topic is presented by Garcin et
al. [6].

CTR and online accuracy are both important metrics for
recsys. Therefore, we build a regression model for each of
them. The regression model will use not only offline accu-
racy, as it is something different from the two above.

3.1 Feature selection
To verify the finding that multiple groups of metrics, such

as Diversity and Coverage, are important for predicting on-

line performance metrics, we carried out feature selection
using the Least Angle Regression (LAR, [4]). The LAR as-
sumes a linear model of the relationship between indepen-
dent variable y and n dependent variables x = (x1, . . . , xn)ᵀ,
with an L1 regularizer:

y = βᵀx+ λ

n∑
j=1

|xj |

The L1 regularizer promotes sparsity in β. By decreasing
λ, it is possible to assign each predictor a value of λ at which
it first enters the model with a non-zero weight. The order
of the predictors given by these λ values serves as a proxy
for their importance. The LAR allows efficient computation
of this value for each regressor [4].

The average order position among folds was calculated
using average metric values in time intervals of length ∆t
as predictors and average CTR as responses. Details of this
approach are given in Alg. 1. Several ∆t interval sizes were
tested, but all values of ten minutes or longer were found
to work reasonably well. Ten minute intervals were chosen
as shorter intervals gave results with very high variance and
longer intervals meant fewer data points and, therefore, less
significant results. We used F = 100 folds.

Algorithm 1: Average model entering time for each met-
ric. t(i) indicates time when recommendation i was given.

input : Offline, online data D,D′,metrics M ,∆t,F
output: Average model entering time T (m)∀m ∈M
T (m) ← 0 ∀m ∈M
for f ← 1 to F do

Df ← Random 10% of D
D′

f ← Random 10% of D′

Data ← ∅
for w = mini∈D∪D′ t(i) : ∆t : maxi∈D∪D′ t(i) do

Fw
m←Avg({m(i)|i ∈ Df , t(i) ∈ [w;w + ∆t]}

Rw←Avg({CTR(i)|i ∈ D′
f , t(i) ∈ [w;w+∆t]}

Data ← Data ∪(Fw
1 , . . . , F

w
m, R

w)
end
T (m) += LAREntryIdx(Data, m) / F ∀m ∈M

end

3.2 Regression model
After identifying the best predictors, we used the multi-

ple linear regression y = βᵀx. This simple model allowed us
to interpret coefficients of β as trade-offs between different
metrics for a particular model, or as derivatives of the per-
formance with respect to metrics. We expand on this idea
in Sec. 4. More complex models, such as Gaussian process
regression or penalized linear regression, do not allow such a
simple interpretation. Nevertheless, the results obtained us-
ing simple linear regression were compared to those of more
complex methods. To build such a model, a limited amount
of training data is required. Features should be collected
simultaneously using the metrics from a recsys run on a log
of offline data (user browsing without the recsys), and the
online performance metric should be collected from the live
website that is using a recsys.

181

4. ALGORITHM OPTIMIZATION
In this section we discuss two possible ways of using the

model of online performance metric. The first allows an
effective comparison between several variations of the algo-
rithm, without the need for lengthy access to online data,
and the selection of the optimal hyperparameters. The sec-
ond describes an algorithm able to rebuild the model over
time, continually aiming for optimal online performance.

4.1 Optimal algorithm selection
A typical task for recsys designers is the comparison of

several variations of an algorithm, and the selection of the
hyperparameter value and algorithm that perform best. An
obvious solution would be to evaluate each of the algorithms
online using several values of hyperparameter.

In our model, online performance can be approximated by
a weighted combination of two offline metrics (i.e. Accuracy
and Coverage). To simplify the argument below, we assume
that weights are positive but approach trivially extends to
the case when they are negative. Such a model is learned
by evaluating one of the algorithm variations online and is
assumed to be similar for other variations.

As described in Sec. 2.3, varying an algorithm’s hyper-
parameter produces the metrics trade-off curve. When the
curve for one algorithm is located above the curve for a
second, the first algorithm is strictly better in terms of per-
formance. Note that curves are produced using offline data.

Given the trade-off curves, there is no need for an on-
line evaluation of all the combinations of algorithms and
hyperparameters, but only those that produce points on the
upper envelope of the curves. Furthermore, by inspecting
the model coefficients it is possible to select an algorithm
without evaluating it: if a model gives a much larger weight
to one of the metrics, this can be used as a proxy for perfor-
mance and the best algorithm is the one reaching the highest
values for that metric.

Examples of real trade-off curves are shown in Fig. 4. We
used several variations of the CT recommender as a source
of recommendations ordered by Accuracy [5]. The standard
CT algorithm makes predictions based on a count of the
items viewed. CT with additional experts exploit the item
click count and the last time an item was clicked. We used
the items’ Shannon’s Entropy as a coverage score. Items
were ordered by the weighted combinations of Accuracy and
Coverage, and we varied the weight ratio, which was thus
regarded as a hyperparameter for the algorithms. Curves
were computed using the Yahoo dataset, described later.

Results such as these can be used for tuning a recommen-
dation algorithm to a new site by picking the optimal value
of a hyperparameter and the best algorithm. For example,
for a site where the learned model gives a significant coeffi-
cient to coverage, the plain CT algorithm will be the best,
whereas in cases where the accuracy coefficient dominates
strongly, the ”fresh” expert will be useful. Note also that
the ”popular” expert is never going to be best. The trade-off
curves obtained from offline data can therefore be used to
save on online experiments to determine the optimal algo-
rithm and hyperparameter.

4.2 Self-adjusting algorithm blend
We applied the online performance model to a setting

where we wanted to optimize the blend of several algorithms
over time, given full access to the online environment. Let

the algorithm give each item a rating based on the weighted
combination of ratings assigned by several base recommenders:
F (i) = W ᵀ(F1(i), . . . , Fm(i)). For each recommender Fa, we
introduce a latent variable Za. Za(t) measures how close the
items, recommended at time t by the main algorithm, are to
the top items recommended by Fa(t). Alternatively, Za(t)
can measure how high this recommender rates them. We
build a regression model of online performance at each time
t, based on the regressors Z1(t), . . . , Zm(t). In this model,
the positive weight of a regressor Za suggests that giving
recommendations with increased Za in the future would im-
prove online performance. Coefficients of linear regression
βᵀ effectively form a gradient of online performance with
respect to the latent variables. We can therefore perform a
gradient descent, updating the weights, with which we mix
different base recommenders: WT+1 = WT + λ ∗ βT , with
T and T + 1 corresponding to two consecutive time frames,
and βT being the coefficients of LR model, fitted on the data
from frame T . This could be an effective alternative to A–B
testing, which is analogous to a grid search in the space of
all possible weight coefficients. In a simple case where Za

are ratings given by base recommenders to the items rec-
ommended by the main algorithm, and recommenders Fa

optimize a particular set of metrics, this approach is equiva-
lent to modeling CTR using the set of metrics as regressors
over time. This is especially important for sites with a dy-
namic user base, that, for example, prefers fresh news in the
morning and a more diverse set in the evening.

5. RESULTS
In this section, the datasets used in the present experi-

ments are described and then the results of several of those
experiments are shown. First, feature selection showed that
multiple groups of metrics were important for the predic-
tion of online performance. Second, we demonstrate the
regression model’s performance using different feature sets
on different datasets. We subsequently offer examples of the
applications we described in the previous section. We fin-
ish by describing the results obtained using unbiased offline
evaluation [11] and by discussing why this method is not
generally applicable.

5.1 Datasets
We use two news datasets which have online and offline

browsing logs and online evaluation on a news website.
Swissinfo dataset is a combination of three weeks’ worth

of offline and online browsing logs from the live news web-
site swissinfo.ch. The offline data includes more than 227k
clicks on 28,525 stories by around 188k users. The online
data was gathered in the presence of three recommendation
algorithms – random recommendations, most popular rec-
ommendations, and Context Tree (CT, [5]). 168k clicks were
distributed almost equally between the three algorithms.
Three recommendations were made to each user, and items
to be recommended were selected from the pool of the last
200 unique articles visited. All users were identified solely
by their browsing session, and the only information gathered
about the users was from their browsing behavior.

Yahoo! Front page dataset is specifically tailored for
unbiased offline evaluation [11]. It comprises 15 days’ worth
of clicks data from the main page of Yahoo!News. Each visit
to the page was described by a binary vector of features. The

182

item pool for recommendations always contains 20 items.
The log consists of nearly 28M visits to a total of 653 items.

To make the dataset more suitable for news recommen-
dations, we identified visits belonging to the same browsing
session by selecting only visits with at least 50 binary fea-
tures present. For visits with the same binary features, we
assumed that visits were same session if the time between
visits did not exceed 10 minutes. Otherwise, we assumed
that these were visits from different sessions. This procedure
decreased the total number of clicks in the log to ≈ 5.7M.

With sessions established, online browsing logs were gen-
erated using the algorithm from [11] (Section 5.5). For each
algorithm, the number of clicks in the simulated browsing
logs was around ≈ 285k. To generate offline browsing logs,
we took a random 10% of user sessions; they contained 573k
clicks by 401k users.

LePoint dataset contains 3.5 days worth of data from the
live news website lepoint.fr (4.6M clicks and 3.3M users).
Sessions that did not result in clicks on recommendations
were used as offline data.

5.2 Feature selection
The procedure for feature selection described in Section 3

was applied to the Swissinfo dataset using the CT algorithm.
Due to the nature of the LAR, if there are several correlated
predictors, one of them will enter the model earlier, and
the others will enter much later (as their contribution would
be smaller after first correlated predictor was used). How-
ever, the order in which correlated predictors will enter the
model, is unknown. As we are not interested in the pre-
dictors themselves, but rather in showing the importance of
metric groups (Accuracy, Coverage, Diversity, Serendipity,
and Novelty), we calculated the average time for the first
metric of each metric group to enter the model (Tab. 1).

Table 1: Average index at which metrics entered
the model. Second column shows the metric that
typically entered the model first.

Metric group First to enter Avg. first entry±std

Diversity Personalization 2.53±0.65
Serendipity Serendipity [14] 2.71±0.58
Accuracy Markedness 2.82±0.76
Coverage Shannon’s Entropy 5.94±0.80
Novelty Novelty [24] 10.27±2.77

Metrics from the Serendipity, Accuracy and Diversity groups
are usually the first three to enter the model. This is a strong
indicator that these three groups relate to different parts of
performance metric and are all important for predicting it.

We also noticed that if we removed the Diversity or Serendip-
ity predictors, then Coverage metrics showed a low average
first entry time. This indicates that two out of three groups
from Diversity, Serendipity and Coverage might be enough.
For Accuracy metrics, it did not matter which predictor was
used, and Markedness was easily replaceable by precision or
any of the other Accuracy metrics. A very strong correlation
was seen to exist between different Accuracy group metrics.

The results obtained with the other two algorithms were
similar to those above. In all of the results below, when
we say that we have used a predictor from a certain metric
group, we mean that we used the predictor that was first to
enter in the LAR model from this metric group.

5.3 Regression model performance
We used the approach described in Section 2 to generate

data points for the regression model. We divided the time
interval into parts of 30%, 50% and 20%. The first 30% were
used for training the algorithm itself and were not used in
the regression model. The recommendations made by the
algorithm on the next 50% were used to train the model,
and the last 20% were used to test the model’s performance.

Table 2: CTR prediction quality for different sets of
features, reported values are RMSE×104. Lowest er-
rors of linear regression models are in bold. Results
per algorithm are shown for the Swissinfo dataset.
S, Serendipity; C, Coverage; D, Diversity; A, Accu-
racy. Last three columns: averages for datasets.

Set of fea-
tures

Most
popu-
lar

Ran-
dom

CT Swiss-
info

Yahoo Le-
Point

All 2.28 8.54 1.33 4.05 2.92 2.37
S+A+C+D 2.08 2.60 1.40 2.03 1.79 2.35
S+A+D 2.24 2.04 4.17 2.81 2.50 4.90
S+A+C 15.3 1.98 6.47 7.95 2.62 4.36
S+C+D 3.81 2.12 6.07 4.00 1.84 6.52
A+C+D 5.32 5.73 6.06 5.70 1.87 3.01
A 2.98 5.91 6.23 5.04 2.90 5.38
S 14.4 1.84 1.55 5.94 2.92 9.46
C 10.2 5.93 6.22 7.46 2.64 7.06
D 3.23 4.87 4.59 4.23 2.49 6.67
Const 1.75 5.99 6.01 4.58 2.45 10.01
All+L2 1.97 2.30 1.17 1.81 1.67 2.15
GP+RBF 1.85 2.11 1.06 1.67 1.58 2.03

CTR prediction.
For CTR prediction (Tab. 2), the lowest average error was

indeed obtained using one predictor from each of the four
metric groups (we omitted novelty here and later on due to
its poor results in feature selection). The error for the full set
of metrics was much higher, probably due to overfitting. Di-
versity seemed to be very important in the first dataset, since
it gave the best individual result as a predictor. Combina-
tions of different groups including diversity also gave better
results than combinations that did not. More complex mod-
els, such as penalized LR (All+L2) or the Gaussian process
with an RBF kernel (GP+RBF), gave even better results,
however these models are more difficult to interpret and use.
Note that results were consistent among datasets and that
the best ones significantly outperformed the baseline model,
which assumes constant CTR through time (Const).

Fig. 5 shows that the aforementioned metrics indeed have
a predictive power. The shape of the curve of the perfor-
mance metric over time was repeated in the predicted re-
sults, indicating that there was high probability that the
model would be able to predict the behavior and approxi-
mate values of the performance metric over time.

The p-values associated with the regression coefficients of
different metrics indicated that these predictors were sig-
nificant for the model. A possible explanation for the only
exception to this (Serendipity was not found to be an im-
portant predictor for Most Popular algorithm) is that all the
Serendipity values for recommendations made by the Most

183

Figure 5: Performance metric prediction for the CT
and Most Popular algoithms.

Popular algorithm were 0 or close to 0. According to defini-
tions of Serendipity, its values are high for items not recom-
mended by the “naive” recommender, which is precisely the
Most Popular recommender.

Inspection of the coefficients revealed that the models were
different for different datasets and algorithms. That is an ex-
pected indicator that a linear model made to predict the per-
formance regardless of the algorithm, would perform worse
than a set of models specifically trained for each algorithm.

Online accuracy prediction.
The results above were obtained assuming that the target

online metric was CTR. We also trained a model to predict
success, also called online accuracy (Tab. 3).

Table 3: Online success prediction quality for differ-
ent sets of features, RMSE×104. Lowest errors are
bold. Results per algorithm are shown for Swissinfo
dataset. S, Serendipity; C, Coverage; D, Diversity;
A, Accuracy. Last 3 columns: averages for datasets.

Sets of fea-
tures

Most
popu-
lar

Ran-
dom

CT Swiss-
info

Yahoo Le-
Point

All 6.25 7.94 1.98 5.39 3.90 3.17
S+A+C+D 13.7 1.81 1.18 5.57 2.19 3.10
S+A+C 2.94 1.39 2.53 2.28 3.07 3.24
S+A+D 22.2 1.89 1.89 8.66 2.30 5.15
S+C+D 15.7 1.97 9.77 9.16 2.06 4.09
A+C+D 15.8 4.55 6.90 9.10 2.08 2.15
A 17.1 4.98 6.47 9.53 2.83 3.95
S 11.9 1.64 13.0 8.87 2.96 6.23
C 30.1 4.99 22.1 19.1 3.15 9.19
D 11.2 4.35 4.61 6.72 1.95 7.19

Prediction errors were less consistent among datasets, but
a combination of Accuracy, Coverage, and Diversity predic-
tors obtained high results for all datasets. On the Swissinfo
dataset, best predictors came from three groups that did
not include Diversity; on Yahoo, Diversity is the single best
predictor (possibly due to the imperfect the visits were iden-
tified); and on the LePoint dataset the best predictors did
not include Serendipity. Note that the predicted results for
the Random algorithm are more accurate than for the Most
Popular algorithm – an expected result, as Random perfor-
mance does not change much over time.

5.4 Self-adjusting algorithm blend
For this experiment, we ran algorithms on a live news

website. We used four algorithms based on the linear com-
bination of recommendations given by the Context Tree and
Most Popular recommenders, as described in Section 4.2.
We had two latent metrics, ZCT and Zpop, that measured
the closeness of the recommendation to that of the two al-
gorithms. Weights for the recommendations from the Most
Popular algorithm varied from 20% to 80% in steps of 20%.
In each time frame and for each recommender, the updated
weight increased or decreased the trade-off. We examined
whether changing the algorithm weighting in the direction
indicated by the gradient really did give higher CTR (Fig. 6).

In the third, fifth and seventh periods – during daytime –
all coefficients suggested increasing the weight of the CT al-
gorithm. At night, the algorithm with 20% of Most Popular
was still best, but by a smaller margin, and the magnitude
of the coefficients agreed with these results.

For the first two time periods the results were different,
probably due to a lack of data. However, the changes sug-
gested for increasing CTR were still consistent and correct
– the regression coefficient for the algorithm using 40% of
Most Popular was positive, suggesting an increase in weight,
which lead to the algorithm using 60% of Most Popular, that
did indeed obtain a higher CTR in this time frame.

The performance clearly changed over time, but followed
a periodic pattern. This suggests that coefficients from the
current time frame should provide suggestions to the same
time frame next day, rather than the next chronological time
frame.

Figure 6: CTR for four different algorithms in three
different time frames. Arrow indicates the sign and
magnitude of popularity regression coefficient, sug-
gesting the direction of trade-off change.

184

5.5 Unbiased offline evaluation
In this subsection, we discuss and apply the unbiased of-

fline evaluation procedure [11]; this is another approach to
predicting an algorithm’s online performance. This proce-
dure was developed for contextual bandit algorithms and re-
quires the log of interaction with the world of an algorithm
that recommends articles at random with equal probabil-
ity. Based on this log, a simulation of online execution can
be made for any other algorithm. If the original log from
the random algorithm had I events, then the simulation will
contain approximately I

H
events, where H is the number of

items available for recommendation. In the Yahoo dataset,
which is specifically tailored to this procedure, H = 20.
However, in more realistic scenarios of news recommenda-
tions, such as the Swissinfo dataset, three out of 200 candi-
date items should be recommended, giving H = 2003 = 8M.
This does not produce enough events in the simulation to
give significant results.

We used the Swissinfo dataset to test this algorithm. We
used the output of the random algorithm to create a log
and tested the CT algorithm on it. Due to the limitations
described above, we were only able to compare algorithms
for the task of top-1 recommendation. Even in the case
of top-1 recommendation, after sampling we were left with
only 266 points, compared to 55,587 points in the log. Fig. 7
(bottom part) shows the plot using the real and predicted
CTR values. If we ignore a slight bias, probably due to the
small number of points sampled, the shapes of the curves are
quite similar, which proves the effectiveness of the unbiased
offline evaluation for single-item recommendation. However,
when we tried to use it for top-2 or top-3 recommendations,
the number of sampled points decreased exponentially.

To overcome this problem, we applied the same technique
in order to predict the third recommendation only: all the
algorithms returned their third best prediction and we com-
puted a CTR using this data. However, it is clearly visible
that there was little correlation between real and predicted
values (Fig. 7, top). This was caused by the fact that the
presence or absence of clicks on the third item depends on

Figure 7: CTR, real and predicted by an unbiased
evaluation: for the first (bottom part), and the third
(top part) items in the list of recommendations.

the first two items in the recommendation list, and this is
not taken into consideration in this approach. Statistical
tests showed the significance of our findings (Student’s t-
test, p-value < 0.05).

Other approaches for evaluating multiple recommenda-
tions by simulating clicks on the second and later items [23,
27] are not suitable for our task as they do not account for
temporal effects in the data, and their hindsight models do
not take into account parameters such as coverage, etc.

6. RELATED WORK
The work presented here concentrates on using different

metrics to predict the online performance of news recom-
mendations. Several recommender systems have been im-
plemented and evaluated on live news websites [3, 12, 20,
21]. A number of previous works have advocated the use
of multiple metrics for these evaluations [13, 17]. Below,
we describe separately works that introduced and optimized
new metrics, and works that combined existing metrics into
multi-objective optimization.

Recommendations using multiple metrics.
The need to provide more diverse and unexpected rec-

ommendations that cover the items from the ’long tail’ was
identified early in the history of recsys. Zhang et al. [29,
28] proposed optimizing the trade-off between the average
accuracy of the recommendations and the average diversity
between each pair of recommended items. They pose this
as a quadratic programming problem with binary variables
that they relaxed by solving in the continuous domain. How-
ever, they only measured the results via their newly intro-
duced novelty metric and, they performed neither an online
evaluation nor a user study.

Ziegler et al. [31] proposed a greedy strategy for solving
a similar problem, where each item was selected in a way
that minimized the average similarity to previously selected
items. The subsequent user survey and, as well as the re-
gression model built on the top of it, indicated that both
diversity and accuracy contributed positively to user sat-
isfaction. To the best of our our knowledge, this work is
the only one to have built a regression model to study how
performance depends on metrics.

Two serendipity metrics [7, 14] have been proposed for the
domains of music and TV show recommendation. The au-
thors compared different algorithms with respect to a newly
introduced metric, without any attempt to draw a rela-
tionship between the desired performance metric and the
serendipity metric.

Vargas et al. [24] proposed multiple probabilistic defini-
tions of novelty and diversity metrics that incorporate cer-
tain previous definitions. They showed how probabilities
can be used as building blocks for metric definitions and
compared several state-of-the-art algorithms. Although the
authors clarified the reasoning behind the probabilistic def-
initions they used, they proposed no algorithm to optimize
towards any particular metric, and they drew no relation-
ships with the performance metrics.

Zhou et al. [30] proposed the concepts of “personalization”
and “surprisal”, and they used a heat diffusion model on a
bipartite graph representing links between items and users
in order to optimize a linear combination of Accuracy and
Diversity. The actual selection of tuning parameters, how-
ever, was done by hand.

185

Multi-objective optimization.
Multi-objective optimization of a list of items has been

well investigated in the field of information retrieval [22,
25]. In the area of recsys, one of the first attempts at multi-
objective optimization [28] used a quadratic objective func-
tion that involved a linear combination of Accuracy and Di-
versity. Jambor et al. [9] enhanced this idea by adding
the variance of ratings to the objective function in order to
promote items from the “long tail”. Rodriguez et al. [18]
optimized a smoothed version of the average precision and
normalized discounted cumulative gain (NDCG) metrics by
using gradient-based methods. Their framework optimized
the trade-off between the quality of recommendations and
the deviation between given recommendations and the ex-
pected ground truth, but did not consider competing ob-
jectives. Other works [1, 23] have expanded on ideas about
optimizing a linear combination of metrics by using soft clus-
tering of users. In [23], a linear combination of Variance
and Accuracy for a contextual bandit algorithm was opti-
mized and the recommendations were shared between dif-
ferent clusters through the similarity of clusters, expressed
as a Gaussian kernel. Another line of research has been find-
ing a Pareto-optimal frontier among multiple metrics, using
genetic algorithms [16, 26].

7. CONCLUSION
We investigated predicting the online performance of news

recommendation algorithms by a regression model using of-
fline metrics. Our results confirmed that there is more to
online performance than just offline Accuracy. Other met-
rics, such as Coverage or Serendipity, play important roles in
predicting or optimizing online metrics such as click-through
rates. The model can then be applied to trade-off curves for
each algorithm constructed from offline data to select the
optimal algorithm and parameters.

Regression models are best constructed for the particu-
lar user and item population; we did not find a universal
formula for predicting online performance that would work
for all settings. However, training a model separately from
the algorithms still saves a lot of effort over blind A–B test-
ing. Another application is to adapt parameters continu-
ously in response to changes in user characteristics. In a
setting where recommendations are obtained by mixing dif-
ferent algorithms, we proposed a method using latent met-
rics defined by the algorithms themselves, and showed that
it correctly predicted the right adaptations in a live recom-
mender system.

8. REFERENCES
[1] D. Agarwal, B.-C. Chen, P. Elango, and X. Wang. Click

shaping to optimize multiple objectives. In KDD, 2011.

[2] R. Burke. Evaluating the dynamic properties of
recommendation algorithms. In RecSys, 2010.

[3] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google
news personalization: scalable online collaborative filtering.
In WWW, 2007.

[4] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al.
Least angle regression. The Annals of statistics,
32(2):407–499, 2004.

[5] F. Garcin, C. Dimitrakakis, and B. Faltings. Personalized
news recommendation with context trees. In RecSys, 2013.

[6] F. Garcin, B. Faltings, O. Donatsch, A. Alazzawi,
C. Bruttin, and A. Huber. Offline and online evaluation of
news recommender systems at swissinfo. In RecSys, 2014.

[7] M. Ge, C. Delgado-Battenfeld, and D. Jannach. Beyond
accuracy: evaluating recommender systems by coverage and
serendipity. In RecSys, 2010.

[8] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl.
Evaluating collaborative filtering recommender systems.
Transactions on Information Systems, 22(1):5–53, 2004.

[9] T. Jambor and J. Wang. Optimizing multiple objectives in
collaborative filtering. In RecSys, 2010.

[10] N. Lathia, S. Hailes, L. Capra, and X. Amatriain. Temporal
diversity in recommender systems. In SIGIR, 2010.

[11] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline
evaluation of contextual-bandit-based news article
recommendation algorithms. In WSDM, 2011.

[12] J. Liu, P. Dolan, and E. R. Pedersen. Personalized news
recommendation based on click behavior. In IUI, 2010.

[13] S. McNee, J. Riedl, and J. Konstan. Being accurate is not
enough: how accuracy metrics have hurt recommender
systems. In CHI, pages 1097–1101, 2006.

[14] T. Murakami, K. Mori, and R. Orihara. Metrics for
evaluating the serendipity of recommendation lists. In New
frontiers in artificial intelligence, pages 40–46. 2008.

[15] D. M. Powers. Evaluation: from precision, recall and
f-measure to roc, informedness, markedness and correlation.
In Bioinfo Publications, 2011.

[16] M. Ribeiro, A. Lacerda, E. de Moura, A. Veloso, and
N. Ziviani. Multi-objective pareto-efficient approaches for
recommender systems. ACM Transactions on Intelligent
Systems and Technology, 9(1):1–20, 2013.

[17] F. Ricci, L. Rokach, and B. Shapira. Introduction to
recommender systems handbook. Springer, 2011.

[18] M. Rodriguez, C. Posse, and E. Zhang. Multiple objective
optimization in recommender systems. In RecSys, 2012.

[19] A. Said. Evaluating the Accuracy and Utility of
Recommender Systems. PhD thesis, 2013.

[20] A. Said, A. Belloǵın, J. Lin, and A. de Vries. Do
recommendations matter?: news recommendation in real
life. In CSCW, 2014.

[21] A. Said, J. Lin, A. Belloǵın, and A. de Vries. A month in
the life of a production news recommender system. In
CIKM-LL Workshop, 2013.

[22] K. Svore, M. Volkovs, and C. Burges. Learning to rank
with multiple objective functions. In WWW, 2011.

[23] H. Vanchinathan, I. Nikolic, F. De Bona, and A. Krause.
Explore-exploit in top-n recommender systems via gaussian
processes. In RecSys, 2014.

[24] S. Vargas and P. Castells. Rank and relevance in novelty
and diversity metrics for recommender systems. In RecSys,
2011.

[25] H. Wang, A. Dong, L. Li, Y. Chang, and E. Gabrilovich.
Joint relevance and freshness learning from clickthroughs
for news search. In WWW, 2012.

[26] S. Wang, M. Gong, L. Ma, Q. Cai, and L. Jiao.
Decomposition based multiobjective evolutionary algorithm
for collaborative filtering recommender systems. In
Evolutionary Computation, IEEE Congress on, pages
672–679, 2014.

[27] J. Yi, Y. Chen, J. Li, S. Sett, and T. W. Yan. Predictive
model performance: Offline and online evaluations. In
KDD, pages 1294–1302, 2013.

[28] M. Zhang and N. Hurley. Avoiding monotony: improving
the diversity of recommendation lists. In RecSys, 2008.

[29] Y. Zhang, J. Callan, and T. Minka. Novelty and
redundancy detection in adaptive filtering. In SIGIR, 2002.

[30] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. Wakeling, and
Y.-C. Zhang. Solving the apparent diversity-accuracy
dilemma of recommender systems. Proceedings of NAS,
107(10):4511–4515, 2010.

[31] C.-N. Ziegler, S. McNee, J. Konstan, and G. Lausen.
Improving recommendation lists through topic
diversification. In WWW, 2005.

186

