
Robust Bayesian reinforcement learning through

tight lower bounds

Christos Dimitrakakis1

EPFL, Lausanne, Switzerland
christos.dimitrakakis@epfl.ch

Abstract. In the Bayesian approach to sequential decision making, ex-
act calculation of the (subjective) utility is intractable. This extends to
most special cases of interest, such as reinforcement learning problems.
While utility bounds are known to exist for this problem, so far none of
them were particularly tight. In this paper, we show how to efficiently
calculate a lower bound, which corresponds to the utility of a memo-

ryless policy for the decision problem, which is generally different from
both the Bayes-optimal policy and the policy which is optimal for the
mean MDP. We then show how these can be applied to obtain robust
exploration policies in a Bayesian reinforcement learning setting.

1 Setting

We consider decision making problems where an agent is acting in a (possibly
unknown to it) environment. By choosing actions, the agent changes the state
of the environment and in addition obtains scalar rewards. The agent acts so
as to maximise the expectation of the utility function: Ut ,

∑T
k=t γ

krk, where
γ ∈ [0, 1] is a discount factor and where the instantaneous rewards rt ∈ R are
drawn from a Markov decision process (MDP) µ, defined on a state space S and
an action space A, both equipped with a suitable metric and σ-algebra, with a
set of transition probability measures

{

T s,a
µ

∣

∣ s ∈ S, a ∈ A
}

on S , and a set of

reward probability measures
{

Rs,a
µ

∣

∣ s ∈ S, a ∈ A
}

on R, such that:

rt | st = s, at = a ∼ Rs,a
µ , st+1 | st = s, at = a ∼ T s,a

µ , (1.1)

where st ∈ S and at ∈ A are the state of the MDP, and the action taken by
the agent at time t, respectively. The environment is controlled via a policy
π ∈ P. This defines a conditional probability measure on the set of actions,
such that Pπ(at ∈ A | st, at−1) = π(A | st, at−1) is the probability of the
action taken at time t being in A, where we use P, with appropriate subscripts,
to denote probabilities of events and st , s1, . . . , st and at−1 , a1, . . . , at−1

denotes sequences of states and actions respectively. We use Pk to denote the
set of k-order Markov policies. Important special cases are the set of blind policies
P0 and the set of memoryless policies P1. A policy in π ∈ P̄k ⊂ Pk is stationary,
when π(A | stt−k+1, a

t−1
t−k+1) = π(A | sk, ak−1) for all t.

2 Christos Dimitrakakis

The expected utility, conditioned on the policy, states and actions is used to
define a value function for the MDP µ and a stationary policy π, at stage t:

Qπ
µ,t(s, a) , Eµ,π(Ut | st = s, at = a), V π

µ,t(s) , Eµ,π(Ut | st = s), (1.2)

where the expectation is taken with respect to the process defined jointly by
µ, π on the set of all state-action-reward sequences (S,A,R)∗. The optimal value
function is denoted by Q∗

µ,t , supπ Q
π
µ,t and V ∗

µ,t , supπ V
π
µ,t. We denote the

optimal policy1 for µ by π∗
µ. Then Q∗

µ,t = Q
π∗

µ

µ,t and V ∗
µ,t = V

π∗

µ

µ,t .
There are two ways to handle the case when the true MDP is unknown. The

first is to consider a set of MDPs such that the probability of the true MDP
lying outside this set is bounded from above [e.g. 15, 16, 3, 14, 19, 18]. The
second is to use a Bayesian framework, whereby a full distribution over possible
MDPs is maintained, representing our subjective belief, such that MDPs which
we consider more likely have higher probability [e.g. 9, 6, 22, 1, 8]. Hybrid ap-
proaches are relatively rare [11]. In this paper, we derive a method for efficiently
calculating near-optimal, robust, policies in a Bayesian setting.

1.1 Bayes-optimal policies

In the Bayesian setting, our uncertainty about the Markov decision process
(MDP) is formalised as a probability distribution on the class of allowed MDPs.
Finding the optimal policy under this type of uncertainty is intractable in most
cases of interest [7, 9, 13]. More precisely, assume a probability measure ξ over a
set of possible MDPs M, representing our belief. Our goal is to discover a policy
π maximising the expected utility with respect to the belief ξ:

Eξ,π Ut =

∫

M

Eµ,π(Ut) dξ(µ). (1.3)

Without loss of generality, we may assume that all MDPs in M share the same
state and action space. For compactness, and with minor abuse of notation, we
define the following value functions with respect to the belief:

Qπ
ξ,t(s, a) , Eξ,π(Ut | st = s, at = a), V π

ξ,t(s) , Eξ,π(Ut | st = s), (1.4)

which represent the expected utility under the belief ξ, at stage t, of policy π,
conditioned on the current state and action.

Definition 1 (Bayes-optimal policy). A Bayes-optimal policy π∗
ξ with re-

spect to a belief ξ is a policy maximising (1.3). Similarly to the known MDP
case, we use Q∗

ξ,t, V
∗
ξ,t to denote the value functions of the Bayes-optimal policy.

It is important to note that a Bayes-optimal policy is not necessarily the same as
the optimal policy for the true MDP. Rather, it is the optimal policy given that
the true MDP was drawn at the start of the experiment from the distribution
ξ. All the theoretical development in this paper is with respect to ξ.

1 We assume that there exists at least one optimal policy. If there are multiple optimal
policies, we choose arbitrarily among them.

Robust Bayesian reinforcement learning through tight lower bounds 3

1.2 Related work and main contribution

Computation of the Bayes-optimal policy is generally intractable [9]. In this
work we provide a simple algorithm for finding near-optimal memoryless policies
in polynomial time. By definition, for any belief ξ, the expected utility under
that belief of any policy π is a lower bound on that of the optimal policy π∗

ξ .
Consequently, the near-optimal memoryless policy gives us a tight lower bound
on the subjective utility.

A similar idea was used in [8], where the stationary policy that is optimal
on the expected MDP is used to obtain a lower bound. This is later refined
through a stochastic branch-and-bound technique that employs a similar upper
bound. In a similar vein, [12] uses approximate Bayesian inference to obtain
a stationary policy for the current belief. More specifically, they consider two
families of expectation maximisation algorithms. The first uses a variational
approximation to the reward-weighted posterior of the transition distribution,
while the second performs expectation propagation on the first two moments.
However, none of the above approaches return the optimal stationary policy.

It is worthwhile to mention the very interesting point-based Beetle algo-
rithm of Poupart et al. [17], which discretised the belief space by sampling a
set of future beliefs (rather than MDPs). Using the convexity of the utility with
respect to the belief, they constructed a lower bound via a piecewise-linear ap-
proximation of the complete utility from these samples. The approach results
in an approximation to the optimal non-stationary policy. Although the algo-
rithm is based on an optimal construction reported in the same paper, sufficient
conditions for its optimality are not known.

In this paper, we obtain a tight lower bound for the current belief by cal-
culating a nearly optimal memoryless policy. The procedure is computationally
efficient, and we show that it can be used in practice to perform robust Bayesian
exploration in unknown MDPs. This is achieved by computing a new optimal
memoryless policy once our belief has changed significantly. The latter technique
was also employed by other approaches [14, 2, 1, 20, 22]. In addition, it can be
seen as a principled generalisation of the sampling approach suggested in [20].
The crucial difference is that, unlike previous approaches which use some form of
optimistic policy, we instead employ a more conservative policy in each station-
ary interval. This can be significantly better than the policy which is optimal
for the expected MDP.

The first problem we tackle is how to compute this policy given a belief over
a finite number of MDPs. For this, we provide a simple algorithm based on
backwards induction [see 7, for example]. In order to extend this approach to an
arbitrary MDP set, we employ Monte Carlo sampling from the current posterior.
Unlike other Bayesian sampling approaches [6, 20, 1, 4, 21, 8, 22], we use these
samples to estimate a policy that is nearly optimal (within the restricted set
of memory policies) with respect to the distribution these samples were drawn
from.

4 Christos Dimitrakakis

2 Backwards induction on multi-MDPs

Even when our belief ξ is a probability measure over a finite set of MDPs M,
the problem of finding an optimal policy remains intractable. We reduce it to
the problem of finding the memoryless policy π maximising the expected utility,
if the policy will be applied to an MDP randomly chosen with distribution ξ.

We can approximate the optimal memoryless policy with respect to ξ, by set-
ting ξ(µ | st = s, π) = ξ(µ), and then using the backwards induction procedure
shown below. By definition:

Qπ
ξ,t(s, a) = Eξ,π(rt | st = s, at = a) + γ Eξ,π(Ut+1 | st = s, at = a), (2.1)

where the expected reward term can be written as

Eξ,π(rt | st = s, at = a) =

∫

M

Eµ(rt | st = s, at = a) dξ(µ), (2.2a)

Eµ(rt | st = s, at = a) =

∫ ∞

−∞

r dRs,a
µ (r). (2.2b)

The next-step utility can be written as:

Eξ,π(Ut+1 | st = s, at = a) =

∫

M

Eµ,π(Ut+1 | st = s, at = a) dξ(µ), (2.3a)

Eµ,π(Ut+1 | st = s, at = a) =

∫

S

V π
µ,t+1(s

′) dT s,a
µ (s′). (2.3b)

Putting those steps together, we obtain Algorithm 1, which greedily calculates
a memoryless policy for a T -stage problem and returns its expected utility. The

Algorithm 1 MMBI - Backwards induction on multiple MDPs.

1: procedure MMBI(M, ξ, γ, T)
2: Set Vµ,T+1(s) = 0 for all s ∈ S.
3: for t = T, T − 1, . . . , 0 do

4: for s ∈ S, a ∈ A do

5: Calculate Qξ,t(s, a) from (2.1) using {Vµ,t+1} .
6: end for

7: for s ∈ S do

8: a∗

ξ,t(s) = argmax {Qξ,t(s, a) | a ∈ A}.
9: for µ ∈ M do

10: Vµ,t(s) = Qµ,t(s, a
∗

ξ,t(s)).
11: end for

12: end for

13: end for

14: end procedure

calculation is greedy, since optimising over π implies that at any step t+ k, we

Robust Bayesian reinforcement learning through tight lower bounds 5

must condition the belief on past policy steps ξ(µ | st+k = s, πt, . . . , πt+k−1) to
calculate the expected utility correctly. Thus, the optimal πt+k depends on both
future and past selections. Nevertheless, it is easy to see that Alg. 1 returns the
correct expected utility for time step t. Theorem 1 bounds the gap between this
and the Bayes-optimal value function when the difference between ξ(µ | st =
s, π) and ξ(µ) is small:

Theorem 1. For any k ∈ [t, T], let ξk , ξ(· | sk, ak) be the posterior after k
observations. If ‖ξt − ξT ‖λ,1 ≤ ǫ, where λ is a dominating measure on M, then
the value function Vξ,t(s) obtained by Algorithm 1 satisfies:

‖Vξ,k(s)− E
π
ξt(Uk | sk, ak)‖λ,1 ≤

rmax

(1− γ)2
γk−tǫλ (M) . (2.4)

Proof. For k > t, we have:

|Vξ,k(s)− Eξ(Uk | st, at)| =

∣

∣

∣

∣

∫

M

[ξt(µ)− ξk(µ)(s)]Vµ,k(s) dλ (µ)

∣

∣

∣

∣

≤
rmax

1− γ

∫

M

|ξt(µ)− ξk(µ)(s)| dλ (µ) ≤
rmax

1− γ
ǫλ (M) .

The final result is obtained via the geometric series. ⊓⊔

Finally, the ξ-optimal memoryless policy is generally different from the policy
which is optimal with respect to the expected MDP µ̂ξ , Eξ µ, as can be seen
via counterexample where Eξ V

π
µ 6= V π

µ̂ξ
, or even where Eξ µ /∈ M. This will also

be seen in the experiments described in Sec. 3, where near-optimal memoryless
policies are compared against the µ̂ξ-optimal policy.

2.1 Computational complexity

When M is finite and T < ∞, MMBI (Alg. 1) returns a greedily-optimised
policy πMMBI and its value function. When T → ∞, MMBI can be used to
calculate an ǫ-optimal greedy approximation by truncating the horizon, as shown
below.

Lemma 1. Assuming rt ∈ [0, rmax], Alg. 1 requires O
(

[

|M||S|2(|A|+ 1) + (1 + |M|)|S||A|
]

logγ
ǫ(1−γ)
rmax

)

operations to bound the value function error by ǫ.

Proof. Since rt in[0, rmax], if we look up to some horizon T , our value function
error is bounded by γT c, where c = Hrmax and H = 1

1−γ is the effective horizon.

Consequently, we need T ≥ logγ(ǫ/c) to bound the error by ǫ. For each t, step 5
is performed |S||A| times. Each step takes O(|M|) operations for the expected
reward and O(|S||M|) operations for the next-step expected utility. The second
loop is O(|S|(|A|+ |M||S|)), since it is performed |S| times, with the max oper-
ators taking |A| operations, while inner loop is performed |M| times with each
local MDP update step 10 takes |S| operations. ⊓⊔

6 Christos Dimitrakakis

It is easy to see that the most significant term is O(|M||S|2|A|), so the algo-
rithmic complexity scales linearly with the number of MDPs. Consequently, when
M is not finite, exact computation is not possible. However, we can use high
probability bounds to bound the expected loss of a policy calculated stochasti-
cally through MSBI (Alg.2).

Algorithm 2 MSBI: Multi-Sample Backwards Induction

1: procedure MSBI(ξ, γ, ǫ)

2: n =
(

3rmax

ǫ(1−γ)

)3

.

3: M = {µ1, . . . , µn}, µi ∼ ξ.

4: MMBI(M, p, γ, logγ
ǫ(1−γ)
rmax

), with p(µi) = 1/n for all i.
5: end procedure

MSBI simply takes a sufficient number of samples of MDPs from ξ, so that
in ξ-expectation, the loss relative to the optimal stationary policy is bounded
according to the following lemma.

Lemma 2. The expected utility Eξ U is within 3cn−1/3 of the optimal stationary
policy. Thus, n = (3c/ǫ)3 is sufficient to bound the loss by ǫ, where c = Hrmax

and H = 1
1−γ is the effective horizon.

Proof. Let Ê
n
U = 1

n

∑n
i=1 Eµi

U denote the empirical expected utility over the
sample of n MDPs, where the policy subscript π is omitted for simplicity. Since

Eξ Ê
n
U = Eξ U , we can use the Hoeffding inequality to obtain:

ξ
({

µn
∣

∣

∣
Ê
n
U ≥ Eξ U + ǫ

})

≤ e−2nǫ2/c2 .

This implies a bound

Eξ(Ê
n
U − Eξ U) ≤ cδ + c

√

ln(1/δ)

2n
≤ c(8n)−1/3 + c

√

(8n)1/3

2n
= 3cn−1/3.

Let P̄1 ⊂ P1 be the set of stationary policies. Since the bound holds uniformly

(for any π ∈ P), the policy π̂∗ ∈ P̄1 maximising Ê
n
is within 3cn−1/3 of the

ξ-optimal policy in P̄1. ⊓⊔

Finally, we can combine the above results to bound the approximation error of
MSBI with respect to expected loss:

Theorem 2. MSBI (Alg. 2) requires O

(

(

6rmax

ǫ(1−γ)

)3

|S|2|A| logγ
ǫ(1−γ)
2rmax

)

opera-

tions to be ǫ-close to the best MMBI policy.

Proof. From Lem. 2, we can set n = (6c/ǫ)3 to bound the regret by ǫ/2. Using
the same value in Lem. 1, and setting |M| = n, we obtain the required result. ⊓⊔

Robust Bayesian reinforcement learning through tight lower bounds 7

10

20

30

40

50

60

70

80

0 20 40 60 80 100

Eξ V
π∗(µ̄ξ)
µ

maxπ∈P1
Eξ V

π
µ

Eξ maxπ V
π
µ

ex
p
ec
te
d
u
ti
li
ty

ov
er

al
l
st
at
es

Uncertain ⇐ ξ ⇒ Certain

Fig. 1. Value function bound.

MMBI can be used to obtain a
much tighter value function bound
than the mean-MDP-optimal policy.
This can be seen in Fig. 1, where the
lower bounds are compared with a
simple upper bound.

2.2 Application to robust
Bayesian reinforcement learning

While MSBI can be used to obtain
a stationary policy which is in expec-
tation close to the optimal stationary
policy for a given belief, the question
is how to extend the procedure to on-
line reinforcement learning. The sim-
plest possible approach is to simply recalculate the stationary policy after some
interval B > 0. This is the approach followed by MCBRL (Alg. 3), shown below.

Algorithm 3 MCBRL: Monte-Carlo Bayesian Reinforcement Learning

1: procedure MCBRL(ξ0, γ, ǫ, B)
2: Calculate ξt(·) = ξ0(· | s

t, at−1).
3: Call MSBI(ξt, γ, ǫ) and run returned policy for B steps.
4: end procedure

3 Experiments

Selecting the number of samples n according to ǫ forMCBRL is computationally
prohibitive. In practice, instead of setting n via ǫ, we simply consider increasing
values of n. For a single sample (n = 1), MCBRL is equivalent to the sampling
method in [20], which at every new stage, samples a single MDP from the current
posterior and then uses the policy that is optimal for the sampled MDP.

We also compared MCBRL against the common heuristic of acting accord-
ing the policy that is optimal with respect to the expected MDP µ̂ξ , Eξ µ.
The algorithm, referred to as the Exploit heuristic in [17], is shown in detail
in Alg. 4. At every step, this calculates the expected MDP by obtaining the
expected transition kernel and reward function under the current belief. It then
acts according to the optimal policy with respect to µ̂ξ. This policy may be much
worse than the optimal policy, even within the class of stationary policies P̄1.

We compared the algorithms on the Chain task [5], which is commonly used
to evaluate the quality of exploration in reinforcement learning algorithms. Tra-
ditionally, the task has a horizon of 1000 steps, a discount factor γ = 0.95 is

8 Christos Dimitrakakis

Algorithm 4 Exploit: Expected MDP exploitation [17]

1: procedure Exploit(ξ0, γ)
2: for t = 1, . . . do

3: Calculate ξt(·) = ξ0(· | s
t, at−1).

4: Estimate µ̂ξt , Eξt µ.
5: Calculate Q∗

µ̂ξt
(s, a) using discount parameter γ.

6: Select at = argmaxa Q
∗

µ̂ξt
(s, a)

7: end for

8: end procedure

250

300

350

400

450

500

550

2 4 6 8 10 12 14 16

n

L

Alg. 3
Alg. 4

(a) Expected regret estimate

0

100

200

300

400

500

1 1.5 2 2.5 3 3.5 4 4.5 5

total reward ×10−3

n
u
m
b
er

o
f
ru
n
s n = 1

n = 8

Alg. 4

(b) Empirical performance distribution

Fig. 2. Performance on the chain task. Figure 2(a) shows the expected regret during
the first 103 steps of the chain task, relative to the optimal (oracle) policy. The sampling

curve shows the estimated expected regret of Alg. 3, as the number of samples increases,
averaged over 104 runs, with 95% confidence interval calculated via a 104-boostrap. The
expected curve shows the performance of an algorithm acting greedily with respect to
the mean MDP. Figure 2(b) shows the empirical distribution of total rewards obtained
in 104 runs, for: the expected MDP approach and MCBRL with n = 1 and n = 8
samples.

Robust Bayesian reinforcement learning through tight lower bounds 9

used, and the expected total reward Eµ,π

∑T
t=1 rt is compared. We also report

the expected utility Eµ,π Ut, which depends on the discount factor. All quantities
are estimated over 104 runs with appropriately seeded random number genera-
tors to reduce variance.2 The initial belief about the state transition distribution
was set to be a product-Dirichlet prior [see 7] with all parameters equal to |S|−1,
while a product-Beta prior with parametrs (1, 1) was used for the rewards.

Figure 2 summarises the results in terms of total reward. The left hand
side (2(a)) shows the expected difference in total reward between the optimal
policy π∗ and the used policy π, over T steps, otherwise known as the regret:
L = Eµ,π

∑T
t=1 rt−Eµ,π

∑T
t=1 rt. The averages are calculated over 104 runs, while

the error bars denote 95% confidence intervals obtained via a 104-bootstrap [10].
We can see that for n = 1, MCBRL performs worse than the expected MDP
approach, in terms of total reward. On the other hand, as the number of sam-
ples increase, the performance of the multi-sample estimation monotonically
improves.

Some more detail on the overall behaviour of the algorithms can be seen
in Figure 2(b), which shows the empirical performance distribution in terms of
total reward. It is clear that the expected MDP approach has a high probabil-
ity of getting stuck in a sub-optimal regime. On the other hand MCBRL, for
n = 1, results in significant over-exploration of the environment. However, as n
increases, MCBRL explores significantly less, while the number of runs where
we are stuck in the sub-optimal regime remains small (< 1% of the runs).

Model
∑1000

t=1 rt (EU) 80% percentile confidence interval

Alg. 4 3287 (26.64) 2518 – 3842 3275 – 3299
n = 1 3166 (28.50) 2748 – 3582 3159 – 3173
n = 8 3358 (29.65) 2932 – 3800 3350 – 3366
n = 16 3376 (29.95) 2946 – 3830 3368 – 3384

Model
∑1000

t=1 rt Standard interval

Beetle [17] 1754 1712–1796
AMP-EM [12] 2180 2108–2254

SEM [12] 2052 2000 –2111
Table 1. Comparative results on the chain task. The 80% percentile interval is such
that no more than 10% of the runs were above the maximum or below the minimum
value respectively. The confidence interval shows the accuracy of the mean estimate,
calculated as the 95% bootstrap interval. The results for Beetle and the EM algo-
rithms were obtained from the cited papers, with and the interval based on the reported
standard deviation.

Table 1 presents comparative results on the chain task for Alg. 4 and for
MCBRL for n ∈ {1, 8, 16} in terms of the total reward received in 103 steps.
This enables us to compare against the results reported in [17, 12]. While the

2 In both cases this expectation is with respect to the distribution induced by the
actual MDP µ and policy π followed, rather than with respect to the belief ξ.

10 Christos Dimitrakakis

performance of Alg. 4 may seem surprisingly good, it is actually in line with
the results reported in [17]. Therein, Beetle only outperformed Alg. 4 in the
Chain task when stronger priors were used. In addition, we would like to note
that while the case n = 1 is worse than Alg. 4 for the total reward metric, this
no longer holds when we examine the expected utility, where an improvent can
already be seen for n = 1.

4 Discussion

This paper introduced MMBI, a simple backwards induction procedure, to ob-
tain the optimal stationary policy with respect to a belief over a finite number
of MDPs. We subsequently generalised this to MSBI, a stochastic procedure,
which finds a policy whose loss is in expectation close to that of the optimal
stationary policy, with a gap that depends polynomially on the number of sam-
ples, for a belief on arbitrary set of MDPs. This is then applied to reinforcement
learning problems by using the MCBRL algorithm to sample a number of MDPs
at regular intervals. This can be seen as a principled generalisation of [20], which
only draws one sample at each interval. Then MSBI is used to calculate a near-
optimal stationary policy within each interval. This performs significantly better
than the simple method of following the policy which is optimal with respect to
the expected MDP. It is also shown that the performance increases as we make
the bound tighter by increasing the number of samples taken.

Compared to results reported for other Bayesian reinforcement learning ap-
proaches on the Chain task, this rather simple method performs surprisingly
well. This can be attributed to the fact that at each stage, the algorithm selects
actions according to a nearly-optimal stationary policy.

In addition, MSBI itself could be particularly useful for inverse reinforce-
ment learning problems where the underlying dynamics are unknown. Then it
would be possible to obtain good stationary policies that take into account the
uncertainty over the dynamics, which should be better than using the expected
MDP heuristic. In addition, MSBI could be used in the inner loop of some
more sophisticated method than MCBRL. For example, it could be employed
to obtain tight lower bounds for the leaf nodes of a planning tree. Finally, in
future work, we hope to obtain nearly-Bayes performance by considering semi-
stationary policies.

Acknowledgments

Many thanks to Matthijs Snel and Shimon Whiteson for extensive discussions on
conditions for the optimality of the MMBI algorithm, which were instrumental in
discovering an error, and on its applicability to multi-task problems. This work
was partially supported by the EU-Project IM-CLeVeR, FP7-ICT-IP-231722,
and the Marie Curie Project ESDEMUU, Grant Number 237816.

Bibliography

[1] J. Asmuth, L. Li, M. L. Littman, A. Nouri, and D. Wingate. A Bayesian
sampling approach to exploration in reinforcement learning. In UAI 2009,
2009.

[2] Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret
bounds for reinforcement learning. In Proceedings of NIPS 2008, 2008.

[3] R.I. Brafman and M. Tennenholtz. R-max-a general polynomial time al-
gorithm for near-optimal reinforcement learning. The Journal of Machine
Learning Research, 3:213–231, 2003. ISSN 1532-4435.

[4] P. Castro and D. Precup. Smarter sampling in model-based bayesian
reinforcement learning. Machine Learning and Knowledge Discovery in
Databases, pages 200–214, 2010.

[5] Richard Dearden, Nir Friedman, and Stuart J. Russell. Bayesian
Q-learning. In AAAI/IAAI, pages 761–768, 1998. URL
citeseer.ist.psu.edu/dearden98bayesian.html.

[6] Richard Dearden, Nir Friedman, and David Andre. Model based Bayesian
exploration. In Kathryn B. Laskey and Henri Prade, editors, Proceedings
of the 15th Conference on Uncertainty in Artificial Intelligence (UAI-99),
pages 150–159, San Francisco, CA, July 30–August 1 1999. Morgan Kauf-
mann, San Francisco, CA.

[7] Morris H. DeGroot. Optimal Statistical Decisions. John Wiley & Sons,
1970.

[8] Christos Dimitrakakis. Complexity of stochastic branch and bound for belief
tree search in Bayesian reinforcement learning. In 2nd international confer-
ence on agents and artificial intelligence (ICAART 2010), pages 259–264,
Valencia, Spain, 2009. ISNTICC, Springer.

[9] Michael O’Gordon Duff. Optimal Learning Computational Procedures for
Bayes-adaptive Markov Decision Processes. PhD thesis, University of Mas-
sachusetts at Amherst, 2002.

[10] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap,
volume 57 of Monographs on Statistics & Applied Probability. Chapmann
& Hall, November 1993. ISBN 0412042312.

[11] Mahdi Milain Fard and Joelle Pineau. PAC-Bayesian model selection for
reinforcement learning. In NIPS 2010, 2010.

[12] Thomas Furmston and David Barber. Variational methods for reinforce-
ment learning. In Yee Whye Teh and Mike Titterington, editors, Proceedings
of the 13th International Conference on Artificial Intelligence and Statis-
tics (AISTATS), volume 9 of JMLR : W&CP, pages 241–248, Chia Laguna
Resort, Sardinia, Italy, 2010.

[13] C. J. Gittins. Multi-armed Bandit Allocation Indices. John Wiley & Sons,
New Jersey, US, 1989.

citeseer.ist.psu.edu/dearden98bayesian.html

12 Christos Dimitrakakis

[14] Thomas Jacksh, Ronald Ortner, and Peter Auer. Near-optimal regret
bounds for reinforcement learning. Journal of Machine Learning Research,
11:1563–1600, 2010.

[15] Leslie Pack Kaelbling. Learning in Embedded Systems. PhD thesis, ept of
Computer Science, Stanford, 1990.

[16] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning
in polynomial time. In Proc. 15th International Conf. on Machine Learn-
ing, pages 260–268. Morgan Kaufmann, San Francisco, CA, 1998. URL
citeseer.ist.psu.edu/kearns98nearoptimal.html.

[17] P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analytic solution to
discrete Bayesian reinforcement learning. In ICML 2006, pages 697–704.
ACM Press New York, NY, USA, 2006.

[18] A.L. Strehl and M.L. Littman. An analysis of model-based interval esti-
mation for Markov decision processes. Journal of Computer and System
Sciences, 74(8):1309–1331, 2008. ISSN 0022-0000.

[19] A.L. Strehl, L. Li, and M.L. Littman. Reinforcement learning in finite
MDPs: PAC analysis. The Journal of Machine Learning Research, 10:2413–
2444, 2009. ISSN 1532-4435.

[20] Malcolm Strens. A bayesian framework for reinforcement learning. In ICML
2000, pages 943–950. Citeseer, 2000.

[21] Tao Wang, Daniel Lizotte, Michael Bowling, and Dale Schuurmans.
Bayesian sparse sampling for on-line reward optimization. In ICML ’05,
pages 956–963, New York, NY, USA, 2005. ACM. ISBN 1-59593-180-5.
doi: http://doi.acm.org/10.1145/1102351.1102472.

[22] J. Wyatt. Exploration control in reinforcement learning using optimistic
model selection. In A. Danyluk and C. Brodley, editors, Proceedings of the
Eighteenth International Conference on Machine Learning, 2001.

citeseer.ist.psu.edu/kearns98nearoptimal.html

	Robust Bayesian reinforcement learning through tight lower bounds

