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Reid et al.’s Distance Bounding Protocol and Mafia
Fraud Attacks over Noisy Channels

A. Mitrokotsa, C. Dimitrakakis, P. Peris-Lopez, J. C. Hernandez-Castro

Abstract—Distance bounding protocols are an effective coun-
termeasure against relay attacks including distance fraud, mafia
fraud and terrorist fraud attacks. Reid et al. proposed the
first symmetric key distance bounding protocol against mafia
and terrorist fraud attacks [1]. However, [2] claims that this
is only achieved with a (7/8)n probability of success for mafia
fraud, rather than the theoretical value of (3/4)n (for n rounds)
achieved by distance bounding protocols without a final signature.
We prove that the mafia fraud attack success using the Reid et
al. protocol is bounded by (3/4)n and reduces as noise increases.
The proof can be of further interest as it is the first – to the best of
our knowledge – detailed analysis of the effects of communication
errors on the security of a distance bounding protocol.

Index Terms—Contactless smart cards, RFID, distance bound-
ing protocols, relay attacks, mafia fraud attacks

I. INTRODUCTION

A number of secure and efficient authentication protocols
for RF transponders such as contactless smart cards and RFID
tags have been proposed recently. Most assume proximity
between readers and transponders due to limited radio channel
range. However, an intruder located between the tag T (prover)
and the reader R (verifier), can trick the latter into thinking
that T is in close proximity. This attack can be divided into
three subcategories:

a) Distance fraud: The attacker is a fraudulent tag T .
The attack involves T convincing the legitimate reader R of
being nearer to the legitimate tag T than it really is.

b) Mafia fraud [3]: The attacker A is a pair A = {T ,R}:
T is a fraudulent tag interacting with the legitimate reader R
and R is a fraudulent reader interacting with the legitimate tag
T . Using R, T convinces R that the latter communicates with
the legitimate tag T while in reality it communicates with the
attacker A. This is achieved without the disclosure to A of the
private key shared between T and R.

c) Terrorist Fraud: The attacker A = {T, T} is a pair
of two colluding parties: a legitimate tag T and a terrorist tag
T . The attack enables T to convince the legimate reader R
of an assertion related to the private key of T . In this attack
although the legitimate tag T is dishonest and cooperates with
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the terrorist tag T , the secret key shared between the legitimate
tag and reader is not revealed to the terrorist tag T .

Distance bounding protocols were introduced in [4] to hin-
der distance fraud and mafia fraud attacks, by measuring the
round trip delays during a rapid challenge-response exchange
of n bits to infer an upper bound on the distance between the
verifier and the prover. Subsequently [5] proposed a distance
bounding protocol offering protection against mafia fraud only.
Later, Reid et al. proposed a new protocol [1] with the
objectives of (a) being resistant to both mafia and terrorist
fraud, and (b) suitable for low-cost RFID tags. This work
can be considered a reference point in the design of distance
bounding protocols for constrained RF tags. Indeed, key ideas
of [1] are used in recent proposals as in [6].

Contribution: We analyse the security of Reid et al.’s
protocol (henceforth RP) against mafia fraud attack under
noisy conditions. Due to power constraints and the wireless
medium, RFID systems are particularly susceptible to noise,
but its effect on the attacker has not been studied previously. In
addition, we clarify RP’s security under noise-free conditions.
More specifically, [2] claims that the probability of success
for a mafia fraud attack is bounded by (7/8)n. However,
this claim is based on an incorrect assumption about the Key
Derivation Function (KDF) used in the protocol: that if the
adversary can control 3/4 bits of the input to the KDF, then
he can guess the output of the KDF more easily. However, the
KDF is indistinguishable from a uniform distribution unless
all bits are known [1]. Nevertheless, [2] is commonly cited as
evidence for the low security of RP. In this paper, we prove that
the attack success probability is upper bounded by (3/4)n in
noise-free conditions and refine the results of [5] by showing
that it decreases polynomially as noise increases.

Notation: We consider sequences x = x1, . . . , xn with all
xi in some alphabet X and x ∈ Xn. We write X ∗ ,

⋃∞
n=0 Xn

for the set of all sequences. The concatenation of x with some
y ∈ Xm is written as x|y ∈ Xm+n. If x, y ∈ Xn then x ⊕
y ∈ Xn, where ⊕ is an appropriate operator (XOR for X =
{0, 1}). P(A) denotes the probability of event A, while ,
implies a definition.

II. REID ET AL.’S PROTOCOL

In RP [1], the reader R and tag T , whose identifiers are
IDR, IDT ∈ X ∗ respectively, share a common secret x ∈ Xn.
The messages exchanged are:

1) R→ T : The reader chooses a random number yB ∈ Xm

and transmits it and its identity IDR to the tag.
2) T → R: The tag chooses a random number yA ∈ Xm

and transmits it and its identity IDT to the reader.
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Fig. 1. Mafia Fraud attack over noisy channels

3) R and T : Both entities now use a key derivation function
fK : Xn × X ∗ → Xn to derive a symmetric encryption
key k = fK(x, IDT |IDR|yA|yB). This key is used to
split the secret key into two shares, k and d = k⊕x. fK
is a pseudo-random function, so when x is a secret of
high enough entropy, fK(x, ·) is indistinguishable from
a uniform distribution.

4) T and R start the rapid bit exchange. The following steps
are repeated for n rounds. At each round i:
a) R→ T : The reader chooses a random bit ci, transmits

it to T and starts a clock.
b) T → R: Upon receiving ci, the tag replies ri(ci), with
ri(ci) = di if ci = 0, and ri(ci) = ki if ci = 1.

c) R: After the reception of ri, the reader stops the clock
and stores the delay time ∆ti and checks ri. If ri is
incorrect, an extra error message is sent to T . The delay
time is highly dependent on the distance1 between the
tag and the reader.

III. MAFIA FRAUD ATTACKS

In this section we prove bounds on the security of RP
against mafia fraud attacks. It is important to note that
these bounds are generally applicable to the class of distance
bounding protocols that do not use signed messages (i.e.
sign(c1|r1|...|cn|rn)) at the end of the rapid bit exchange
phase. In addition, we provide first security results on rapid
bit exchange protocols under noisy conditions.

Theorem 1: In RP, the probability that a mafia fraud attack
can occur is bounded by ( 3

4 )n, when transmission errors due
to the noise in the forward (reader-to-tag) and backward (tag-
to-reader) channels are zero.

Proof (Sketch): An adversary could transmit an antic-
ipated challenge c′i to the tag before the reader sends its
challenge ci. Half of the time, c′i = ci, so the adversary can
correctly reply ri(ci) to the reader. Otherwise, the adversary
can guess randomly, again being correct half of the time.
So, the adversary has 3/4 probability of answering correctly
overall. Assuming that the success probability at each round
is independent of previous successes, the total probability of
success for an adversary is (3/4)n for n rounds.
We only show a sketch proof, as the theorem is a direct
corollary of Theorem 2, which also holds when errors can
appear due to the noise in the channel (see Fig.1). We now

1Assuming that the information can not travel faster that the speed of light
c, the distance between R and T is upper bounded by c ·∆tmax/2, where
∆tmax is the maximum delay time between sending out the bit ci and
receiving the bit ri back.

assume that the communication between entities in {R, T,A}
is not noise free: Whenever a symbol x ∈ X is sent from
Y to Z, the symbol x′ that Z receives may differ from x
due to noise. This is modeled as a probability of erroneous
transmission from Y to Z, εY Z , P(x′ 6= x), for all
Y,Z ∈ {T,R,A}.

Now consider that an attacker A performs a mafia fraud
attack against the communication between a legitimate RFID
reader R and a genuine RFID tag T . We use ci ∈ X to
denote the challenge sent during the ith round of the rapid
bit exchange and ri(ci) for the correct response. Before the
rapid bit exchange starts, the attacker A sends a sequence of
n challenge guesses {ĉi}ni=1 to the legitimate tag T , which
receives ĉ′i, with error probability εAT , P(ĉ′i 6= ĉi). Then the
legitimate tag T calculates the appropriate response ri(ĉ′i) and
sends it back to the attacker A, who receives r′i. If c′i = ĉi the
attacker sends r̂i = r′i, the reply received by the tag; otherwise,
he selects r̂i uniformly from X . The reader R sees r̂′i, and
εAR , P(r̂′i 6= r̂i).

If the response ri(ci), calculated by the legitimate reader
R, equals r̂′i, then the adversary is successful. We denote this
event by si , I{r̂′i = ri(ci)}, where I is an indicator function
such that I{A} = 1 if A is true and 0 otherwise. The attack
is completely successful when si is 1 for all i.

Theorem 2: Using RP for n rounds, with alphabet X and
channel noise ε, the probability of success of a mafia fraud
attack is:

P(s1, . . . , sn) = [A
1

k
+

1

k
(1− 1

k
)]n

where A , (F+1)F
2 + (1−F )2

k−1 , F , ε
(k−1)

1−z2

1+z2 + z2 and z ,
k(1−ε)−1

k−1 , k , |X |. In addition, we assume that ∀ci, c′i ∈ X
such that ci 6= c′i, θ , P(r(ci) = r(c′i)) = 1/k.

Proof: The probability of correctly guessing the i-th
challenge is:

P(si) = P(si|ĉi = c′i)P(ĉi = c′i) + P(si|ĉi 6= c′i)P(ĉi 6= c′i).

∀g, ĉi ∈ X and |X | = k, P(ĉi = g) = 1
k , so P(ci 6= c′i) =

1− P(ĉi = c′i) = 1− 1
k . Combining the above, we obtain:

P(si) = P(si|ĉi = c′i)
1

k
+ P(si|ĉi 6= c′i)(1−

1

k
) (1)

It also holds that P(si|ĉi 6= c′i) = P(r̂′i = ri(ci)|ĉi 6= c′i).
In addition, whenever c′i 6= ĉi, the attacker sends a random
response r̂i. In that case, the success probability is:

P(si|ĉi 6= c′i) = P(r̂′i = ri(ci)|ĉi 6= c′i) =
1

k
.

Consequently, equation (1) can be written as:

P(si) = P(si|ĉi = c′i)
1

k
+

1

k
(1− 1

k
) (2)

For the case when c′i = ĉi, we define the following quantities:

A , P(si|ĉi = c′i) = P(r̂′i = ri(ci)|ĉi = c′i)

B , P(r̂′i = ri(ci)|ĉi = c′i, r̂
′
i = ri(ĉ

′
i))

C , P(r̂′i = ri(ci)|ĉi = c′i, r̂
′
i 6= ri(ĉ

′
i))

D , P(r̂′i = ri(ĉ
′
i)|ĉi = c′i)
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It is easy to see that:

A = P(si|ĉi = c′i) = BD + C(1−D) (3)

In order to further simplify the derivation, we shall also define
the following: x0 , ci, x1 , c′i = ĉi, x2 , ĉ′i, ε1 , εRA,
ε2 , εAT .

It can now be easily seen that x0, x1, x2 form a three stage
Markov chain, which satisfies the assumptions of Lemma 1
(see Appendix) for n = 2. Applying the lemma, we obtain:

P(xn = x0) = P(x2 = x0) = P(ĉ′i = ci) =
2∑

l=1

εl
k − 1

2∏
j=l+1

k(1− εj)− 1

k − 1
+

2∏
j=1

k(1− εj)− 1

k − 1
= F

(4)

Similarly, we may set: y0 , ri(ĉ
′
i), y1 , r̂i = ri

′, y2 , r̂′i,
ε1
′ , εTA, ε2′ , εAR to obtain:

P(yn = y0) = P(y2 = y0) = P(r̂′i = ri(ĉ
′
i)|ĉi = c′i) =

2∑
l=1

ε′l
k − 1

2∏
j=l+1

k(1− εj ′)− 1

k − 1
+

2∏
j=1

k(1− εj ′)− 1

k − 1
= D

(5)

After some calculations, we can simplify the expressions
for B,C to B = F + θ − θF and C = 1−F

k−1 , since:

P(r̂′i = ri(ci)|ĉi = c′i, r̂
′
i 6= ri(ĉ

′
i), ĉ

′
i 6= ci) =

1

k − 1
.

If we assume εAT = εTA = εRA = εAR = ε, Corollary 1
applies and equations (4) and (5) can be condensed to:

F = D =
ε

(k − 1)

1− zn

1 + zn
+ zn, (6)

where z = k(1−ε)−1
k−1 and n = 2.

Finally, by equation (3) and the theorem’s assumption that
θ = 1/k and substituting B and C we get:

A =
F 2(k − 1) + F

k
+

(1− F )2

k − 1
(7)

Using (6), (7) and (3) we obtain the final result, where the
probability of a successful attack only depends on the noise
ε, the alphabet size k and the number of rounds n.
For ε = 0, equation (6) becomes P(si) = 2k−1

k2 . Assuming k =
2, we obtain P(si) = 3

4 and via independence of consecutive
successes, a total success probability of (3/4)n over n rounds
in the rapid bit exchange. Thus, we recover Theorem 1 and
the original result of [1].

The success probability for increasing ε is shown in Fig. 2
for k ∈ {2, 4, 6, 8}. One may also see that a successful attack
becomes less likely with increased alphabet size, or noise. A
larger alphabet may result in either a longer transmission time
(which is undesirable) or larger error probabilities, depending
on the encoding. On the other hand, increased noise reduces
the probability of successful authentication of a legitimate tag
(see [5], Sec. 3.2). We may choose n, k, and a tolerance thresh-
old [1], [5] to trade off transmission times with guarantees for
false accept or reject rates. This is possible if a bound on
the error is known, and the costs of transmission and false
acceptance or rejection are well defined. However, we do not
examine this issue here.

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5

P
(s

n)

ε

Probability of a successful attack vs. noise

k=2
k=4
k=6
k=8

Fig. 2. Probability of Mafia Fraud attack vs. Noise for alphabet size k

IV. CONCLUSIONS

We have proved that Reid et al.’s protocol is secure against
mafia fraud attacks. The probability that an intruder can trick
the verifier into thinking that the prover is in close proximity
is bounded by (3/4)n and reduces as noise increases. The
result can be extended to the use of a threshold for tolerating
a small number of errors [5] by plugging the expression for
P(si) in the binomial cumulative distribution function. The
security of this protocol can be further increased to (1/2)n

by the inclusion of a signed message of the 2n bits sent in
the rapid-bit exchange phase [4], [6]. However, such a signed
message must be sent by normal communication with error
correction [7], which increases authentication time.
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V. APPENDIX

Lemma 1: Assume a Markov chain x0, x1, . . . , xn with
xi ∈ X and |X | = k. The chain has the property that,
for some {εi}ni=1 with εi ∈ [0, 1]: P(xi 6= xi−1) = εi,
for i = 1, . . . , n. In addition, P(xi = x|xi 6= xi−1) = 1

k−1 ,
∀x 6= xi−1. Then, P(xn = c|x0 = c) equals:

n∑
l=1

εl
k − 1

n∏
j=l+1

k(1− εj)− 1

k − 1
+

n∏
j=1

k(1− εj)− 1

k − 1
.

Corollary 1: If εi = ε for all i, then for any n ≥ 1 :

P(xn = c|x0 = c) =
ε

k − 1

1− zn

1− z
+ zn, z =

k(1− ε)− 1

k − 1
.


