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Abstract—We propose FedGP, a framework for privacy-preserving data release in the federated
learning setting. We use generative adversarial networks, generator components of which are
trained by FedAvg algorithm, to draw private artificial data samples and empirically assess the
risk of information disclosure. Our experiments show that FedGP is able to generate labelled data
of high quality to successfully train and validate supervised models. Finally, we demonstrate that
our approach significantly reduces vulnerability of such models to model inversion attacks.
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1. Introduction
The rise of data analytics and machine learn-

ing (ML) presents countless opportunities for
companies, governments and individuals to bene-
fit from the accumulated data. At the same time,
their ability to capture fine levels of detail po-
tentially compromises privacy of data providers.
Recent research [1] suggests that even in a black-
box setting it is possible to detect the presence of
individual examples in the training set or recover
certain features of these examples.

Among methods that tackle privacy issues of
ML is the recent concept of federated learning
(FL) [2]. In the FL setting, a central entity
(server) trains a model without actually collecting
user data. Instead, users (clients) update models
locally, and the server aggregates these models.
One popular approach is the federated averaging,
FedAvg [2], where clients do on-device gradient
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Figure 1: Architecture of our solution for two clients. Sensi-
tive data is used to train a GAN (local critic and federated
generator) to produce a private artificial dataset.

descent using their data, then send these updates
to the server where they get averaged. Privacy
can be enhanced by using secure multi-party
computation (MPC) to disallow the server access
individual updates before averaging.

Despite many advantages, federated learning
does have a number of challenges. First, the
result of FL is a single trained model (therefore,
we will refer to it as a model release method),
which does not provide much flexibility in the
future. For instance, it would significantly reduce
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possibilities for further aggregation from different
sources, e.g. different hospitals trying to combine
federated models trained on their patients data.
Second, this solution requires data to be labelled
at the source, which is not always possible, be-
cause user may be unqualified to label their data
or unwilling to do so. A good example is again a
medical application where users are unqualified to
diagnose themselves but at the same time would
want to keep their condition private. Third, it
does not offer provable privacy guarantees and
is vulnerable to attacks like model inversion [1].
Some papers propose to augment FL with differ-
ential privacy (DP) [3] to alleviate this issue and
provide rigorous theoretical guarantees. While
these approaches perform well in ML tasks and
provide theoretical privacy guarantees, they are
often restrictive (e.g. many DP methods for ML
assume, implicitly or explicitly, access to public
data of similar nature or abundant amounts of
data, which is not always realistic).

We address these problems by combining
the strengths of federated learning and recent
advancements in generative models to perform
privacy-preserving data release. The main idea
of our approach, named FedGP, for federated
generative privacy, is to train generative adver-
sarial networks (GANs) [4] on clients to produce
artificial data that can replace clients real data.
These generated samples can then be used for
analytics and training machine learning models.
Since some clients may have insufficient data to
train a GAN locally, we instead train a federated
GAN model. This way, user data always remain
on their devices. Moreover, the federated GAN
will produce samples from the common cross-
user distribution and not from a single user,
which adds to overall privacy. Figure 1 depicts
the schematics of our approach.

This approach allows releasing entire datasets,
which has many immediate advantages compared
to model release. First, the released data could
be used to train any ML model (we refer to
it as downstream task or downstream model)
without additional assumptions. Second, data
from different sources could be easily pooled,
allowing for hierarchical aggregation and building
stronger models. Third, labelling and verification
can be done later down the pipeline, relieving
some trust and expertise requirements on users.

Fourth, released data could be traded on data
markets (https://www.datamakespossible.com/
value-of-data-2018/dawn-of-data-marketplace),
where anonymisation and protection of sensitive
information is one of the biggest obstacles.
Finally, data publishing would facilitate
transparency and reproducibility of research.

To evaluate potential privacy risks, we use our
post hoc privacy analysis framework [5] designed
for private data release using GANs. Its key idea
is to estimate KL divergence between pairs of
synthetic data distributions produced by GANs
with one-point difference in the original dataset.

Our contributions are the following:

• we extend our approach for private data release
to the federated setting, broadening its appli-
cability and enhancing privacy;

• we modify the federated learning protocol to
allow a range of benefits mentioned above;

• we demonstrate that downstream models
trained on artificial data achieve high accuracy
while maintaining good average-case privacy
and resilience to model inversion attacks.

2. Related Work
In recent years, as machine learning applica-

tions become a commonplace, several important
vulnerabilities and corresponding attacks on ML
models have been discovered. Model inversion [1]
is based on observing output probabilities of the
target model for a given class and performing
gradient descent to obtain the training data recon-
struction. Note that this attack can be performed
in a black-box setting, without access to internal
model parameters.

Most of the ML-specific literature in the area
concentrates on privacy-preserving model release.
Major solutions use differentially private training
and have also been extended to federated learn-
ing [3].

A more recent line of research focuses on
private data release and providing privacy via
generating synthetic data [6]. In this scenario,
DP is hard to guarantee, and thus, such models
either relax the privacy notion or remain limited
to simpler data. A recent approach explored by
the community is training GANs with DP [6].
However, it proved extremely difficult to stabilise
training with the necessary amount of noise,
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which makes these methods inapplicable to more
complex datasets without resorting to unrealistic
(at least for some areas) assumptions, like access
to public data from the same distribution. Finally,
a hybrid model/data release solution by Fioretto
and Van Hentenryck [7] employs decision trees
and guarantees stronger ε-differential privacy, al-
though like other data release approaches, it is
less suitable for complex and continuous data like
images.

3. Preliminaries
This section provides necessary definitions

and background. Let us commence with approx-
imate differential privacy.

Definition 1. A randomised function (mechanism)
M : D → R with domain D and range R
satisfies (ε, δ)-differential privacy if for any two
adjacent inputs d, d′ ∈ D and for any outcome
o ∈ R the following holds:

Pr [M(d) = o] ≤ eε Pr [M(d′) = o] + δ. (1)

Definition 2. Privacy loss of a randomised mech-
anism M : D → R for inputs d, d′ ∈ D and
outcome o ∈ R takes the following form:

L(M(d)‖M(d′)) = log
Pr [M(d) = o]

Pr [M(d′) = o]
. (2)

When clear from the context, we omit the
subscript and simply denote privacy loss by L.

Definition 3. The Kullback–Leibler (KL) diver-
gence between two continuous probability distri-
butions P and Q with corresponding densities p,
q is given by:

DKL(P‖Q) = Ex∼p(x)

[
log

p(x)

q(x)

]
. (3)

Combining Definitions 2 and 3, we see that
the expectation of the privacy loss random vari-
able E[L] is actually the KL divergence between
the distributions of M(d) and M(d′).

Finally, we use the Bayesian perspective on
estimating mean from the data to get sharper
bounds on expected privacy loss compared to the
original work [5].

Proposition 1. Let [l1, l2, . . . , lm] be a random
vector drawn from the distribution p(L) with
some common mean and variance, and let L and

S be the sample mean and the sample standard
deviation of the random variable L. Then,

Pr

(
E[L] > L+

F−1m−1(1− γ)√
m− 1

S

)
≤ γ, (4)

where F−1m−1(1 − γ) is the inverse CDF of the
Student’s t-distribution with m − 1 degrees of
freedom at 1− γ.

The proof of this proposition can be obtained
in the following way. Assuming the existence
of the common mean and variance, we can use
the maximum entropy principle for the likelihood
function of these samples to ensure the highest
uncertainty, and thus, conservativeness of the es-
timate. Combined with a flat prior, this likelihood
function gives us the marginal distribution of
the true mean E[L], and we observe that the
random variable E[L]−L

S/
√
m−1 follows the Student’s t-

distribution with m − 1 degrees of freedom [8].
We can then use the inverse of the Student’s t
CDF to arrive to Proposition 1.

4. Federated Generative Privacy
In order to keep participants data private while

still maintaining flexibility in downstream tasks,
our algorithm produces a federated generative
model. This model can output artificial data, not
belonging to any real user in particular, but com-
ing from the common cross-user data distribution.

Let {u1, u2, . . . , un} be a set of clients
holding private datasets {d1, d2, . . . , dn}. Before
starting the training protocol, the server is pro-
viding each client with generator G0

i and critic
C0

i models, and clients initialise their models
randomly. Like in a normal FL setting, the train-
ing process afterwards consists of communication
rounds. In each round t, clients update their
respective models performing one or more passes
through their data and submit generator updates
4Gt

i to the server through MPC while keeping
Ct

i private. In the beginning of the next round, the
server provides an updated common generator Gt

to all clients.
This approach has important advantages:

• Data do not physically leave user devices.
• Only generators (that do not come directly

into contact with data) are shared, and critics
remain private.
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• Using artificial data in downstream tasks adds
another layer of protection and limits informa-
tion leakage to artificial samples.

What remains to assess is how much informa-
tion would an attacker gain about original data.
We do so by employing a notion introduced in
an earlier work [5] that we name Differential
Average-Case Privacy (DAP).

It is important to clarify why we do not use
the standard DP to provide stronger theoretical
guarantees: we found it extremely difficult to
train GANs with the amount of noise required
for meaningful DP guarantees. Despite a number
of attempts (e.g. [6]), we are not aware of any
technically sound solution that would generalise
beyond simple datasets.

4.1. Differential Average-Case Privacy
Our framework builds upon ideas of empirical

DP (EDP) and on-average KL privacy (for more
details on related literature, we refer the reader
to [5]). The first can be viewed as a measure of
sensitivity on posterior distributions of outcomes
(in our case, generated data distributions), while
the second relaxes DP notion to the average case.

More specifically, we say the mechanism M
is (µ, γ)-DAP if for two neighbouring datasets
D,D′, where data come from an observed distri-
bution, it holds that

Pr(E[|L|] > µ) ≤ γ, (5)

where L is the privacy loss (see Definition 2).
Compare with a slightly rewritten definition of
(ε, δ)-DP (which implies Definition 1):

Pr(L > ε) ≤ δ. (6)

For the sake of example, let each data
point in D,D′ represent a single user. Then,
(0.01, 0.001)-DAP could be interpreted as fol-
lows: with probability 0.999, a typical user sub-
mitting their data will change outcome probabil-
ities of the private algorithm on average by 1%
(because e0.01 ≈ 1.01.).

4.2. Generative Differential Average-Case
Privacy

In the case of generative models, and in
particular GANs, we don’t have access to ex-
act posterior distributions, a straightforward EDP

procedure in our scenario would be the following:
(1) train GAN on the original dataset D; (2)
remove a random sample from D; (3) re-train
GAN on the updated set; (4) estimate probabil-
ities of all outcomes and the maximum privacy
loss value; (5) repeat (1)–(4) sufficiently many
times to approximate ε, δ.

If the generative model is simple, this pro-
cedure can be used without modification. Oth-
erwise, for models like GANs, it becomes pro-
hibitively expensive due to repetitive re-training
(steps (1)–(3)). Another obstacle is estimating the
maximum privacy loss value (step (4)). To over-
come these two issues, we propose the following.

First, to avoid re-training, we imitate the
removal of examples directly on the generated
set D̃. We define a similarity metric sim(x, y)
between two data points x and y that reflects
important characteristics of data (see Section 5
for details). For every randomly selected real ex-
ample i, we remove k nearest artificial neighbours
and obtain D̃−i. Our intuition behind this opera-
tion is the following. Removing a real example
would result in a lower probability density in
the corresponding region of space. If this change
is picked up by a GAN, which we assume is
properly trained (e.g. there is no mode collapse),
the density of this region in the generated exam-
ples space should also decrease. The number of
neighbours k is defined by the ratio of artificial
and real examples, to keep density normalised.

Second, we relax the worst-case privacy loss
bound in step (4) by the expected-case bound, in
the same manner as on-average KL privacy. This
relaxation allows us to use a high-dimensional KL
divergence estimator [9] to obtain the expected
privacy loss for every pair of adjacent datasets D̃
and D̃−i (we denote it by D−iKL, where i = 1..m).
There are two major advantages of this estimator:
it converges almost surely to the true value of
KL divergence (see Definition 3); and it does not
require intermediate density estimates to converge
to the true probability measures. Also since this
estimator uses nearest neighbours to approximate
KL divergence, our heuristic described above is
naturally linked to the estimation method.

Finally, having obtained sufficiently many
sample pairs (D̃, D̃−i), we use Proposition 1
to determine DAP parameters µ and γ. More
specifically, we fix γ at the desired level (gener-
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Table 1: Accuracy of student models trained on artificial samples of FedGP compared to non-private centralised baseline and
CentGP. In parenthesis we specify the average number of data points per client.

Setting Dataset Baseline MD-GAN CentGP FedGP

i.i.d.
MNIST (500) 98.10% 64.30% 97.35% 79.45%
MNIST (1000) 98.55% 93.46% 97.39% 93.38%
MNIST (2000) 98.92% 97.47% 97.41% 96.23%

non-
i.i.d.

MNIST (500) 97.31% 79.23% 83.26%
MNIST (1000) 98.78% 91.90% — 95.89%
MNIST (2000) 98.76% 95.18% 96.88%

ally, inversely proportional to the number of data
points), and then compute

µ = L+
F−1m−1(1− γ)√

m− 1
S, (7)

where L and S are the sample mean and the sam-
ple standard deviation of the sequence {D−iKL}.
This improvement over the original DAP gets a
much tighter estimate of expected privacy loss.

4.3. Limitations
Our approach has a number of limitations that

should be taken into consideration.
First of all, existing limitations of GANs (or

generative models in general), such as training
instability or mode collapse, will apply to this
method. Hence, at the current state of the field,
our approach may be difficult to adapt to in-
puts other than image data. Yet, there is still
a number of privacy-sensitive applications, e.g.
medical imaging or facial analysis, that could
benefit from our technique. And as generative
methods progress, new uses will be possible.

Second, since critics remain private and do not
leave user devices their performance can be ham-
pered by a small number of training examples.
Nevertheless, we observe that even in the setting
where some users have smaller datasets overall
discriminative ability of all critics is sufficient to
train good generators.

Lastly, our empirical privacy guarantee is not
as strong as the traditional DP (e.g. it only esti-
mates the average-case loss, and not the worst-
case). However, due to the lack of DP-achieving
training methods for GANs it is still beneficial to
have an estimate of expected privacy loss rather
than not having any guarantee.

5. Evaluation
We evaluate two major aspects of our method.

First, we show that training ML models on data

created by the common generator achieves high
accuracy on MNIST (Section 5.1). Second, we
estimate expected privacy loss of the federated
GAN and evaluate the effectiveness of artificial
data against model inversion attacks on CelebA
face attributes (Section 5.2).

We choose two commonly used image
datasets, MNIST (http://yann.lecun.com/exdb/
mnist/) and CelebA (http://mmlab.ie.cuhk.edu.hk/
projects/CelebA.html). MNIST is a handwritten
digit recognition dataset consisting of 60000
training examples and 10000 test examples, each
example is a 28x28 size greyscale image. CelebA
is a facial attributes dataset with 202599 images,
each of which we crop to 128x128 and then
downscale to 48x48.

In our experiments, we use Python and Py-
torch framework. For implementation details of
GANs and privacy evaluation, please refer to [5].
To train the federated generator we use FedAvg
algorithm [2]. As a sim function introduced in
Section 4.2 we use the distance between Incep-
tionV3 feature vectors.

5.1. Learning Performance
First, we evaluate the generalisation ability of

the student model trained on artificial data. The
experiments are set up as follows:

1) Train the federated generative model
(teacher) on the original distributed data.

2) Generate an artificial dataset and use it to
train ML models (students).

3) Evaluate students on a held-out test set.

We compare learning performance with the
baseline centralised model trained on original
data, as well as the same model trained on arti-
ficial samples obtained from the centrally trained
GAN (CentGP) and from MD-GAN [10]. The
latter is another distributed GAN approach, dif-
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Table 2: Average-case privacy parameters: expected privacy
loss bounds µC and µF (for centralised and federated solu-
tions), and probability γ of exceeding it. A typical ε of DP
in this setting is > 2.

Setting Dataset µC µF γ

i.i.d. MNIST (500) 0.0101 0.0117

10−15MNIST (1000) 0.0046 0.0069
MNIST (2000) 0.0015 0.0021
CelebA 0.0009 0.0009

non-i.i.d. MNIST (500) − 0.0090
10−15MNIST (1000) − 0.0044

MNIST (2000) − 0.0020

fering from our federated GAN by the fact that
critics are randomly exchanged between clients
in a peer-to-peer fashion.

Since critics stay private in FedGP and only
access data of a single user, the size of each in-
dividual dataset has significant effect. Therefore,
in our experiment we vary sizes of user datasets
and observe its influence on training. In each
experiment, we specify an average number of
points per user, while the actual number is drawn
from the uniform distribution with this mean, with
some clients getting as few as 100 data points.

We also study two settings: i.i.d. and non-i.i.d
data. In the first setting, distribution of classes for
each client is identical to the overall distribution.
In the second, every client gets samples of 2
random classes, imitating the situation when a
single user observes only a part of overall data
distribution.

Details of the experiment can be found in
Table 1. We observe that training on artificial
data from the federated GAN allows to achieve
96.9% accuracy on MNIST with the baseline of
98.8%. We can also see how accuracy grows with
the average user dataset size. A less expected
observation is that non-i.i.d. setting is actually
beneficial for FedGP. A possible reason is that
training critics with little data becomes easier
when this data is less diverse (i.e. the number
of different classes is smaller).

We find that the performance of MD-GAN
is similar to FedGP in the i.i.d. case and is
slightly behind in the non-i.i.d. case. Therefore,
we believe that the additional privacy leakage and
the extra communication complexity of MD-GAN
associated with the critics exchange are not justi-
fied in the examined setting. Comparing to the
centralised generative privacy model CentGP,

Figure 2: Results of the model inversion attack. Top to
bottom: real target images, reconstructions from the non-
private model, reconstructions from the model trained by
FedGP.

Table 3: Face detection and recognition rates (pairs with dis-
tances below 0.99) for images recovered by model inversion
from the non-private baseline and the FedGP-trained model.

Baseline FedGP

Detection 25.5% 1.2%
Recognition 2.8% 0.1%

we can see that FedGP is more affected by shard-
ing of data on user devices than by overall data
size, suggesting that further research in training
federated generative models is necessary.

5.2. Privacy Analysis
Using the privacy estimation framework (see

Sections 4.1 and 4.2), we fix the probability γ
of exceeding the expected privacy loss bound
µ in all experiments to 10−15 and compute the
corresponding µ. Table 2 summarises the bounds
we obtain. As anticipated, the privacy guarantee
improves with the growing number of data points,
because the influence of each individual example
diminishes. Moreover, the average privacy loss
µ, expectedly, is significantly smaller than the
typical worst-case DP loss ε in similar settings
(between 2 to 10, or even larger). To put it
in perspective, the average change in outcome
probabilities estimated by DAP is ∼1% even in
more difficult settings, while the state-of-the-art
DP method would place the worst-case change
at > 100% or even > 1000% without giving
much information about a typical case. Compared
to the centralised solution (µC), the federated
version may have slightly weaker privacy guar-
antees, probably because of the higher degree of
overfitting for critics. But this difference dimin-
ishes with growing data size, and for CelebA µF

actually gets smaller than µC .
On top of estimating expected privacy loss

bounds, we test FedGP’s resistance to the model

6

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 14,2020 at 10:49:38 UTC from IEEE Xplore.  Restrictions apply. 



1541-1672 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIS.2020.2993966, IEEE Intelligent
Systems

inversion attack [1]. More specifically, we run the
attack on two student models: trained on original
data samples and on artificial samples corre-
spondingly. Note that we also experimented with
another well-known attack on machine learning
models, the membership inference. However, we
did not include it in the final evaluation, because
of the poor attacker’s performance in our setting
(nearly random guess accuracy for given datasets
and models even on the non-private baseline).
Moreover, we only consider passive adversaries
and we leave evaluation with active adversaries,
for future work.

In order to run the attack, we train a student
model (a simple MLP with two hidden layers of
1000 and 300 neurons) to similar accuracy levels
in two settings: the real data and the artificial data
generated by FedGP. As facial recognition is a
more privacy-sensitive application, and provides
a better visualisation of the attack, we pick the
CelebA dataset for this experiment.

We analyse real and reconstructed image pairs
using OpenFace [11] (see Table 3). It confirms
our theory that artificial samples would shield
real data in case of the downstream model attack.
In the images reconstructed from a non-private
model, faces were detected 25.5% of the time
and recognised in 2.8% of cases. For our method,
detection succeeded only in 1.2% of faces and the
recognition rate was 0.1%, well within the state-
of-the-art error margin for face recognition.

Figure 2 shows results of the model inver-
sion attack. The top row presents the real target
images. The following rows depict reconstructed
images from the non-private model and the model
trained on the federated GAN samples. One can
observe a clear information loss in reconstructed
images going from the non-private to the FedGP-
trained model. Despite failing to conceal general
shapes in training images (i.e. faces), our method
seems to achieve a trade-off, hiding most of the
specific features, while the non-private model
reveals important facial features, such as skin
and hair colour, expression, etc. The obtained
reconstructions are either very noisy or converge
to some average feature-less faces.

6. Conclusions
We study the intersection of federated learning

and private data release using GANs. Combined

these methods enable important advantages and
applications for both fields, such as higher flexi-
bility, reduced trust and expertise requirements on
users, hierarchical data pooling, and data trading.

The choice of GANs as a generative model en-
sures scalability and makes the technique suitable
for real-world data with complex structure. In our
experiments, we show that student models trained
on artificial data can achieve high accuracy on
classification tasks. Moreover, models can also
be validated on artificial data. Importantly, unlike
many prior approaches, our method does not
assume access to similar publicly available data.

We estimate and bound the expected privacy
loss of an average client by using differential
average-case privacy thus enhancing privacy of
traditional federated learning. We find that, in
most scenarios, the presence or absence of a
single data point would not change the outcome
probabilities by more than 1% on average. Addi-
tionally, we evaluate the provided protection by
running the model inversion attack and showing
that training with the federated GAN reduces
information leakage (e.g. face detection in recov-
ered images drops from 25.5% to 1.2%).
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