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ABSTRACT

In Quality-Driven Service Composition, tasks from an ab-
stract workflow are assigned to concrete services such that
workflow QoS are optimized. The following three proper-
ties are desirable for a corresponding algorithm. First, the
run time is ideally bounded by a polynomial in the number
of workflow tasks and service candidates. Second, the algo-
rithm provides formal guarantees on how close the returned
solution is to the optimal one. Third, the algorithm is able
to return a representative set of Pareto-optimal solutions
instead of only one. The user can choose among them or
apply arbitrary filter or sort operations in successive steps.
We present the first algorithm that has all three features.
We analyze its formal properties and evaluate the algorithm
experimentally. We find that our algorithm is competitive
from the theoretical as well as from the practical perspec-
tive.

1. INTRODUCTION

Large scale, public registries for Web services have emerged
in recent years. Examples include the Biocatalogueﬂ SSEE],
and Seekdaﬂ which currently advertises over 28.000 Web
services. With the growing number of available services, the
chances to find several functionally equivalent services for a
given task increase. Non-functional quality of service (QoS)
parameters can be considered to choose between them. This
leads to Quality-Driven Service Composition (QDSC) [11].
QDSC starts from an abstract workflow. Every abstract
task is associated with a set of services that differ only in
their non-functional properties such as response time and
reliability. Selecting one service for every task makes the
abstract workflow executable. The properties of the selected
services will determine the non-functional properties of the
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executable workflow. The goal of QDSC is to select services
such that the QoS of the executable workflow are optimized.

We present a novel algorithm for QDSC named RADO
(we resolve this acronym at the end of Section . Our al-
gorithm distinguishes itself from existing approaches since
it combines the three desirable formal properties which we
outline now. First, QDSC takes place at run time, so ef-
ficiency is crucial. Therefore, the run time of a QDSC al-
gorithm should be bounded by a polynomial in the number
of workflow tasks and service candidates. Many heuristic
approaches to QDSC have this feature (e.g. [5]). However,
they fail to provide formal guarantees on how close the re-
turned result is to the optimum. Formal guarantees on ap-
proximation quality are the second desirable property. Ide-
ally, users should in addition be able to tune approximation
quality, trading run time for optimality. Approaches like the
one by Zeng et al. [11] find the optimal solution. However,
they fail to guarantee polynomial run time (since QDSC
is NP-hard [10]). Finally, QDSC corresponds to a multi-
dimensional optimization problem (different QoS properties
of the resulting executable workflow). Most existing ap-
proaches combine those quality dimensions into one utility
value using user-defined weights. They return only the so-
lution with (approximately) best utility value. However, it
may be difficult for users to choose those weights in advance,
requiring several runs before the user is satisfied. Therefore,
another desirable feature for a QDSC algorithm is to return
a representative set of Pareto-optimal solutions instead of
only one (e.g. [6]).

The original scientific contributions of this paper are i) a
novel algorithm for QDSC that combines the three desirable
formal properties outlined before, ii) a thorough theoretical
analysis of the algorithm, proving the bounds for run time
and approximation quality, and #4) a detailed experimental
evaluation of our approach. We introduce our formal model
in Section[2] Then we introduce the basic algorithm in Sec-
tion [3]and formulate several requirements on sub-procedures
of this algorithm. In Section [4] we discuss how to satisfy
these requirements and present a corresponding algorithm.
We analyze the formal properties of our algorithm in Sec-
tion We evaluate our algorithm experimentally in Sec-
tion [6] and finally compare with related work in Section

2. SYSTEM MODEL AND ASSUMPTIONS

We make several fundamental assumptions that are com-
mon in QDSC (e.g. [11]). First, we assume that the service
registry supports semantic matchmaking between tasks and
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Figure 1: Example workflow

services. Second, we assume that reliable information about
non-functional properties of services is available. Third, we
assume that estimates concerning the probability of differ-
ent workflow execution paths is available. Such information
is essential for QDSC as outlined for instance by Ardagna et
al. [3]. It can be either estimated in domain-specific ways or
from the traces of past executions. We will present a formal
model for QDSC which is based on these assumptions.

2.1 Workflows and services

We denote by S the set of Web services in the registry.
Workflows aggregate services and define the control flow be-
tween service invocations. QDSC starts with an abstract
workflow, meaning that service invocations are not yet bound
to concrete services. We describe an abstract workflow as
binary tree (V, E) (V are the nodes and E the edges with
E CV x V). We explain in Section how to transform
non-binary workflow trees into binary ones and Figure [2]il-
lustrates the process. Every node in the tree represents an
activity. We call the root node the root activity, if (p,c) € E
then we call p the parent activity of ¢ and c the child-activity
of p. The leaf nodes represent simple activities (also called
tasks), they symbolize one service invocation. We define a
boolean function isSimple(v) for v € V which yields true if
and only if v is a leaf node. As the workflow is abstract, every
simple activity v € V is associated with a set of functionally
equivalent services that we denote by candidates(v) C S.
We call the inner nodes of the tree complex activities, they
define the control flow between their child activities. Ev-
ery complex activity v € V is associated with a control flow
construct construct(v) € {SEQ, PAR,CHC?}. The seman-
tic of construct(v) = SEQ is that the child activities should
be executed sequentially, P AR symbolizes parallel execution
and CHC conditional execution of exactly one of the child
activities. We do not consider loop constructs as loops can
be either unrolled [11] or peeled [3]. For the remainder of
the paper we assume a fixed abstract workflow. A binding b
is a function b : {v € V : isSimple(v)} — S that maps sim-
ple activities to concrete services such that for every simple
activity v: b(v) € candidates(v). An abstract workflow to-
gether with a binding can be executed. Note finally, that
our model would not be detailed enough for executing the
workflow since we do for instance not represent choice con-
ditions.

Ezample 1. Figure [1| shows an example workflow tree.
Our workflow is based on the Personalized TV Guide ex-
ample by Yu et al. |[9]. The workflow consists of 5 simple
and 4 complex activities. It first retrieves cinema and TV
program in parallel by two service invocations. The retrieved
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Figure 2: Transformation to binary tree

program items form the input to a recommender service (we
assume that information about movies the user liked in the
past is available). Depending on whether the recommended
item is a T'V series or a movie, one of two services is invoked
to obtain additional information.

2.2 Quality of service

We assume a fixed set of QoS attributes A. We repre-
sent QoS values as positive real numbers. QoS values for all
attributes can be represented as vectors within the quality
space Q = R‘ | For q € Q, we denote by ¢, the component
of the vector that refers to attribute a € A. The QoS prop-
erties of services are given (e.g. advertised in the registry).
For an abstract workflow together with a binding, we can
estimate the QoS of the whole workflow. The QoS prop-
erties of complex activities are aggregated from the QoS of
the child activities. The aggregation function depends on
the attribute and the construct of the complex activity. By
AgQ[ | we denote the aggregation function for every com-
plex activity v € V. We denote the aggregation function
for one specific attribute a for v by A§Qa(v). We consider
maximum, minimum, weighted sum and product as aggre-
gation functions. The weights for the weighted sum must
be chosen out of the interval [0, 1]. The weights may for ex-
ample depend on the transition probabilities (which we do
not represent explicitly in our model) if the complex activity
is of type choice. Now we can define the recursive function
Cj which estimates the QoS of every activity v € V for a
binding b:

QoS for b(v) € S if isSimple(v),
AgQI(Q(v1), G(v2)) if (v,v1), (v,02) € E.
1)
Different QoS attributes have different value domains. In
addition, some of them are positive attributes (meaning: a
higher value corresponds to better QoS, e.g. reliability)
while others are negative attributes (meaning: a higher value
corresponds to worse QoS, e.g. cost). We will scale QoS val-
ues to the interval [0, 1] such that 1 always represents the
best QoS. The scaling function & maps from the QoS space
Q to the scaled quality space SQ = [0,1]*!. We scale with re-
gards to a multi-dimensional scaling range which is defined
by two QoS vectors, the lower bound le Q and the upper
bound @. We define & component-wise for every attribute a:

Q:(v,b)»—>{

la; Ha, f ﬂa . ..
I uﬂ] [l_, 24| if a positive,
Ga: (Gasla, Ta) — Ya = 0a
[lta, @a] O [?,a’ o] if a negative.
Ug — o

(2)

FEzxample 2. Figure [3| shows how we scale response time
to lower (1) and upper (u) bound. Note that a higher value
in Q is scaled to a lower value in SQ since response time is
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Figure 4: Calculating the Pareto error

a negative attribute. Also note that ¢ and g2 are scaled
to the same value since they only differ outside the interval
7, ul.

2.3 Pareto-Optimality

We compare bindings with regards to their scaled QoS val-
ues for some activity v € V. Therefore, the following defini-
tions of optimality are relative to the chosen lower and upper
bound. We assume a fixed lower bound ! and upper bound @
and activity v in the following. We use short notations (only
for this subsection): Q(v,b) = Q(v) and #(q) = &(q,1, ).
Let b1 and b2 two bindings for v. We say that bl domi-
nates b2 and write bl 1 b2 if bl is at least as good in every
QoS dimension (Va € A : ¢(bl), > &(b2),) and better in
at least one dimension (Ja € A : &(bl)s > &(02)s). We
denote by B, the set of all possible bindings for activity v.
The Pareto-frontier PF, C B, for v is the (maximal) sub-
set of all possible bindings that are not dominated by any
other binding (Vb1 € PF,#b2 € B, : b2 3 bl1). Our goal is
to approximate this Pareto-frontier and we therefore need a
measure on how closely a set of bindings approximates the
Pareto-frontier. For a set of bindings B C B, we define the
Pareto error PET(B,U,Z_:'&') as the smallest ¢ € Ry such
that holds.

Vbl € PF,3b2 € BYa € A : 5(bl)g — 3(b2)a < ¢ (3)

In other words, for every binding b1 on the Pareto-frontier,
there is a binding b2 € B whose scaled QoS values are for
no QoS dimension worse by more than € comparing to bl.

Ezample 3. Figure |4|shows how the Pareto error is calcu-
lated. Bindings are represented as points within the scaled
quality space (response time and reliability). The Pareto-
frontier is closely approximated for bindings with good re-
liability. The approximation is not as good for bindings on
the Pareto-frontier with low reliability (but good response
time). This is where we have the biggest distance between
approximation and Pareto-frontier, the Pareto error e.

2.4 Problem statement

We define the problem of Pareto Quality-Driven Service
Composition (PQDSC). The goal of QDSC is to find bind-

ings which maximize a utility function on their QoS values.
The goal in PQDSC is to find sets of bindings (instead of
single bindings) that approximate the Pareto-frontier. The
input to PQDSC is the target precision £t and a tuple de-
scribing an abstract workflow, QoS aggregation for the ac-
tivities and the available services:

I =(V,E,isSimple, candidates,construct,A§Q7S> (4)

A solution to the PQDSC problem is a set of bindings B such
that ¢) no binding b1 in B is dominated by another binding
b2 in B ($b1,b2 € B : bl 3 b2), ii) the Pareto error of B for
the root node vr € V' is bounded by et. The Pareto error is
always defined with regards to a specific scaling range. We
define the total quality range (q_z,q'ﬂ) for a workflow such
that the QoS at vr of any possible binding b is included in
this range: Va € A : q_za < Q(vr, b)e < gt,. We distin-
guish QoS attributes with bounded and unbounded domain.
For attributes with bounded domain, there are lower and
upper bounds on the (non-scaled) possible QoS which are
independent from the workflow and the available services.
An example is reliability whose values are always between 0
and 1. An example for an unbounded attribute is response
time, since it can grow to any value given the right service
candidates and workflow. For bounded attributes we set (ﬁa
to the lower and ¢u, to the upper bound of their a-priori
value domain (e.g. for reliability q?a =0, giu, = 1). Denote
by B the set of all possible bindings for the workflow. For
unbounded attributes, we set the lower bound of the total
quality range to the minimum QoS value over all bindings:
q_za = minpep Q(vr, b)a. We set the upper bound correspond-
ingly: g, = maxpen @(vr, b)e. Note that those values can
be calculated efficiently as shown by Zeng et al. [11]. We
use q7 and ¢ as defined here for the remainder of the paper.
Now we can formulate requirement ) on the result set B

formally: PE?"(B,UT,(I_Z’Q_{L) < et

2.5 Parameters describing problem size

We characterize the size of the problem input by the fol-
lowing parameters (that we use during asymptotic run time
analysis etc.). N = |V/| is the number of activities in the
abstract workflow, S = 37 ., |candidates(v)| (assuming
candidates(v) = 0 if isSimple(v) = false) the number of
service candidates. For clarification: IV denotes the number
of activities in a binary workflow tree. However, transform-
ing a non-binary workflow tree into a binary one doubles at
most the number of activities. Therefore, it does not matter
for the asymptotic analysis whether we consider the number
of activities in the original or in the binary tree. By A = |A|
we denote the number of attributes and by et again the tar-
get precision. For our complexity analysis, we consider N, S
and ¢! as variables and A as constant. New Web services
may be added to the registry at any time, the number of
workflow activities and the target precision are chosen by
the user. Introducing new QoS attributes (that are not cal-
culated from existing ones) is more difficult. The monitoring
infrastructure must be adapted to measure the new QoS at-
tribute and data about services must be collected (even if
service providers advertise the QoS themselves, some veri-
fication mechanism should be implemented). Benchmarks
in QDSC typically use low numbers of QoS attributes in
comparison to the number of services and tasks (e.g. 5 at-
tributes, up to 80 tasks and up to 40 services per task [11]).
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3. BASIC ALGORITHM

In this section, we present the main procedure of our algo-
rithm for solving the PQDSC problem. We will informally
introduce a recursive algorithm that finds all possible bind-
ings (with their QoS) for a given workflow. We refine this al-
gorithm step-by-step to guarantee polynomial run time and
bounded Pareto error. At the end of this section, we present
the pseudocode of the final algorithm. Note that our al-
gorithm relies on a sub-procedure for filtering bindings on
which we formulate several formal requirement. We will in-
troduce this sub-procedure in the next section.

3.1 Finding all possible bindings

We construct bindings recursively: bindings for complex
activities are constructed by combining bindings of their
child activities. Figure shows how we treat simple and
complex activities. For simple activities, every service can-
didate corresponds to one binding. Bindings for complex
activities are constructed using the join operator.

Definition 1. (Join Operator) Let cl,¢2,p € V and p
is the parent activity of cl and ¢2. Let B1 a set of bindings
for ¢l and B2 a set of bindings for ¢2. The join between
Bl and B2 is a set of bindings for p which is defined by
B1 X B2 ={b1Ub2|bl € B1,b2 € B2}.

We could use this algorithm to construct all possible bind-
ings for the workflow and then filter bindings which are not
Pareto-optimal. This would even guarantee a Pareto error
of 0. Unfortunately, the number of possible bindings and the

number of Pareto-optimal bindings can grow exponentially
in N. We now show how to cope with this problem.

3.2 Guaranteeing polynomial run time

We need to filter out bindings in order to achieve polyno-
mial time. In this section, we formulate several requirements
for a filtering function which filters out bindings for every
activity (for every tree node). We will show that the over-
all algorithm has polynomial run time and can guarantee
bounds on the Pareto error (in Section if the filtering
function complies with these requirements. We will present
ideas how to implement this function in Section [

Requirement 1. The time complexity for the filtering must
be polynomial in N, S, and et~! (under the assumption that
the same holds for the size of the input set for the filtering).

Requirement 2. The size of the filtered set is restricted
(independently from the size of the input set!) by a polyno-
mial P = P(N, S,et™!).

Figure illustrates how the size of the result set devel-
ops if the latter requirement is satisfied. For every activity,
the algorithm returns at most P(N,S,et™") bindings. The
joined set can be constructed in O(P?), the time complexity
of the filtering is polynomial, too, and N activities need to
be treated. Therefore, the total time complexity is polyno-
mial in N, S, and et !, too. We analyze time and space
complexity of our algorithm in Section [f] in more detail.

3.3 Guaranteeing approximation quality

Filtering guarantees polynomial run time. However, re-
moving a binding from a set may increase the Pareto er-
ror of this set. Additionally—since we construct bindings
recursively—removing one binding may increase the Pareto
error of the set which is constructed for the parent activity.
We are ultimately interested in the Pareto error at the root
activity, scaled to the total quality range at the root. How-
ever, we must filter sets of bindings for other activities as
well. The question is, which range we should scale to in order
to compare bindings for other activities than the root while
filtering them. We therefore introduce the critical range.

Definition 2. (Critical Range) The critical range is de-
fined for every activity v € V by two QoS vectors, the
critical lower bound c_z(v) € Q and the critical upper bound
ci(v) € Q such that for the root activity vr € V cl(vr) = ¢l
and cl(vr) = gt and the following requirement holds.

Requirement 3. Let B1 a set of bindings for ¢l € V and
B2 a set of bindings for ¢2 € V and p the common parent
of ¢l and ¢2. Set ep = PEr(B1 X B2,p,c_z(p),cﬁ(p)), the
error for the joined set, el = PEr(B1,cl,d(cl),cu(cl)),
and £2 = PEr(B2,¢2, cl(c2), éi(c2)). Then holds.

ep <el+e2 (5)

The latter is a requirement on the definition of critical ranges.
We show how to compute them accordingly in Section [4]
Our last requirement concerns the filtering function again.

Requirement 4. The filtering function can be tuned by a
parameter € which is an upper bound on the added Pareto
error during filtering. Let B a set of bindings for activity



Algorithm 1 RADO for Pareto QDSC

Algorithm 2 Join two result sets

1: // I =(V,E, isSimple, candidate&construct,A§Q7S)
2: function RADO(I, t, v)

3: res < 0 // Represents result set
4: // Test: simple or complex activity?
5: if isSimple(v) then

6: // For all candidate services

7 for all s € candidates(v) do
8: resItem « ({(v,s)}, Q(s))
9: res < res U {resltem}

10: end for

11: else

12: // activity is complex

13: {c1,c2} + {c € V|(v,c) € E}
14: resl « RADO(I, et, c1)

15: res2 <~ RADO(I, et, c2)

16: res « join(resl,res2, AgQ(v))
17: end if

18: return filter(res, v,et/|V])
19: end function

v € V. Let B the result of filtering B with parameter e.
Then @ must hold.

PEr(B,v,d(v),cu(v)) < PEr(B,v,d(v),cu(v)) + (6)

Figure illustrates how the precision evolves when treat-
ing simple and complex activities. We perform N filtering
operations and the accumulated Pareto error at the root ac-
tivity will be N -e. We choose ¢ = et- N~! to guarantee the
upper bound on the Pareto error.

3.4 Pseudocode

We present the pseudocode for the procedure described
before. Algorithm [I] is the main procedure. Input parame-
ter I describes the abstract workflow with available services
(according to (4))) and et the upper bound on the Pareto er-
ror. v € V designates the activity (the node in the workflow
tree) to be treated by this instance. For the initial call to
RADO, we set v to the root node of (V,E). The output
of the algorithm is a set of pairs {(b1, q_i), (b2, q2), .. .} such
that b; is a binding for v and qi the QoS of this binding
for v: qi = Q(v,b;). The final output (for the root node)
respects the upper bound on the Pareto error and does not
contain any two bindings such that one of them dominates
the other. Algorithm [] constructs bindings for simple activ-
ities from the service candidates and bindings for complex
activities from the results of recursive calls. Note that we
use in line [13| the fact that (V| E) is binary. The Join func-
tion (Algorithm [2)) takes as input two sets of bindings with
their QoS and joins them. It corresponds to the join op-
erator (Def. , except that it additionally aggregates QoS
(using the aggregation function represented by input param-
eter F').We define the filtering function (call in line in
Section Ml

FEzxample 4. Figure |§| shows the calls to the join and fil-
ter functions that are issued for our example workflow. We
do not show the calls to the filter function for simple ac-
tivities to improve readability. The stylized Pareto-frontiers
represent sets of bindings with their QoS.

1: function JOIN(resl, res2, F)

2 res <

3 for all (b1,¢1) € resl do

4 for all (b2,¢2) € res2 do

5: b+ b1 Ub2 // Union of bindings
6: g+ ﬁ(q_i, q_Q) // Aggregate QoS
7 res < resU{(b,9)}

8 end for

9 end for
10: return res
11: end function

€ JOIN function E“' ~.
Y FILTER function @__ _ox
o e
ftsk .
X 16X
~

~N

7 N
sk 503
Figure 6: Function calls for example workflow

4. FILTERING BINDINGS

In this section, we show how to define critical ranges and
how to filter bindings so that the 4 requirements from the
last section are satisfied. If we mention scaled QoS values in
the following, we always mean scaled to the critical range (we
show how to construct the critical range in Section. Our
filtering is based on a discretization of scaled QoS vectors.

Definition 3. (Discretization) Discretization designates
a transformation from the scaled QoS space SQ to a finite,
discrete space DQ, the discretized quality space. Discretiza-
tion depends on a parameter €. A higher £ means lower
precision during discretization and DQ = {0, ..., [1/|}*.
We define the scaling function 8| [e] : SQ — DQ for s € SQ:

-

Slel(5%)a = [5Gq/e] (7)

We can translate our definition of dominance between bind-
ings to the discretized space. Denote by dql, dq2 € DQ the
discretized (with precision €), scaled QoS of bindings b1 and
b2 for activity v € V (both scaled to cl(v), ct(v)). We write
bl Je b2 if Va € A : dql, > dq2, and 3a € A : dql, > dq2,.
While filtering a set of bindings B, we remove a binding
bl € B if there exists a binding b2 € B such that b2 J¢ b1. If
we have two bindings with the same discretized QoS, then we
non-deterministically choose one of them to remove. During
filtering, we might increase the Pareto error of the set. How-
ever, for every binding bl that we remove from B, we know
that another binding b2 will ultimately remain in the filtered
set and b2 is worse at most by € than b1 in every QoS dimen-
sion. Therefore, the Pareto error may at most increase by ¢
and Requirement [4] is satisfied. Our filtering could naively
be implemented by comparing all bindings pair-wise. This
satisfies the requirements on the time complexity as speci-
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Table 1: Classification of QoS attributes

Type  Value Aggregation Examples
Domain Functions
1 [0,1] min, max, Y ,,[[ Reliability,
availability
[0,qu] min, max, y Reputation
[0, <] min, Y Throughput
4 [0, o0 max, Time, cost

fied in Requirement I we show a more efficient method in
Section [4.2) B We keep at most one binding for every vector
in the discretized space. The number of different vectors in
DQ is restricted by ((¢ 4+ 1)~*) and therefore polynomial in
e7! (as A is constant). This satisfies Requirement

4.1 Constructing the critical range

We must define critical ranges such that Requirement [3]is
satisfied. The critical range for the root activity is equiva-
lent to the total quality range. For all other activities, we
define the critical range from the critical range of the parent
activity and the total quality range. Figure |Z| illustrates the
process: for every attribute we calculate total quality ranges
for all activities in a bottom-up traversal (as described by
Zeng et al. [11]). Then we calculate critical ranges for every
activity in a top-down traversal.

We must calculate the critical range differently for dif-
ferent types of attributes. Table [I] shows how we classify
attributes into 4 categories (type 1 to type 4). We distin-
guish attributes with regards to value domain and the set of
aggregation functions they use (over all possible constructs).
Let ¢ € V one child activity of complex activity p € V. Fix
an attribute a € A. For the remainder of this Subsection we
omit attribute index and vector arrows and implicitly refer
to this attribute (e.g. cl(c) = cla(c)). If a is aggregated as
weighted sum in p, we denote by W the weight for c. Table[2]
shows the formulas for calculating critical ranges. Those de-
pend on the attribute type of a (“Attr. Type” in Table
and the aggregation function for a in p (“Agg. Fct.”). Note
that for attributes with a bounded domain, the critical range
is the same for all activities. Also note that for attributes
of type 3, the lower bound of the critical range always cor-
responds to the lower bound of the total quality range. For
attributes of type 4, the upper bound of the critical range al-
ways corresponds to the upper bound of the total range. We
will prove in Section [f] that this definition of critical ranges
guarantees that Requirement [3]is satisfied.

Table 2: Definition of critical ranges

Attr. Agg. Type D

Type Fct.

1,2 (Al cl(c)=ql(c)
cu(c)=qu(c)

3 min cl(e) = ql(c)

CU(C) = cu(p)
> cl(c) = ql(c)

cue) = gi(c)+ 2B —cllp)
cl(c) = cl(p)
cu(c) = qu(c)

Z Cl(C) = qu(c)_w

W
cu(c) = qu(c)

4 max
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o

Figure 8: Illustration of filtering

4.2 Pseudocode

The filtering function (Algorithm implements the filter-
ing as described before in an efficient manner. We assume
that critical ranges have been calculated before and are ac-
cessible as cl(v) and ¢iu(v) (for v € V). The input consists of
the set of items to filter (one item is a binding with its QoS),
the activity to which the bindings refer, and the precision
parameter €. Note that we call the filtering function with
e = et/N as explained in Section The function uses the
two array variables dominated and itemsTable where in-
dices corresponds to QoS vectors in the discretized quality
space DQ. Array dominated saves a boolean value for every
QoS vector indicating whether a binding was already in-
serted that dominates this QoS field. The array itemsT able
saves at most one binding for every QoS index. The bind-
ings in toF'ilter are treated one after the other. A bind-
ing is inserted into itemsT able if its discretized QoS values
are not dominated by a binding inserted before (for § see
Def. . If a new binding is inserted, the dominated bind-
ings must be deleted in itemsTable and the corresponding
QoS vectors in dominated must be marked as dominated.
This accomplishes Algorithm @] The propagation function
takes the two arrays dominated and itemsTable as input
(call-by-reference), as well as the discretized QoS vector of
the new binding. It is recursive and treats fields which are
dominated by the new entry. The propagation stops once
the functions reaches either the boundaries of the array (one
of the indices is smaller than zero) or fields which have al-
ready been marked.

Ezample 5. Figure[§illustrates the filtering. It shows the



Algorithm 3 Filter out dominated and equivalent bindings

1: function FILTER(toFilter,v,¢)

2: // Scaled, discretized QoS - index space for arrays
3 DQ+« {0,...,|1/et]}*
4: // Initialise arrays
5: for all 7 € DQ do
6: dominated]i] + false
7 itemsTable[i] < 0
8: end for
9: // Filter bindings
10: for all (b,q) € toFilter do
11: 54« &(q,cl(v), cu(v)) // scale to critical range
12: i« 6[e](sq) // discretize
13: if dominated[i] = false then
14: propagate(dominated, itemsT able, ;)
15: itemsTable[i] « (b, q)
16: end if
17: end for
18: res <
19: // Retrieve non-dominated items from table
20: for all 7 € DQ do
21: res < res U {itemsTable[)}
22: end for
23: return res

24: end function

Algorithm 4 Mark fields in QoS space as dominated

1: function PROPAGATE(dominated, itemsTable, i)
2 itemsTable[i] < 0

3 if dominated[i] = false then

4: dominated|i) + true

5: for all a € A do

6: R

7 Ja £ Ja—1

8: if j, > 0 then

9: propagate(dominated, itemsTable, ;)
10: end if
11: end for
12: end if

13: end function

treatment of two consecutive bindings. The first binding is
not dominated by the previously inserted bindings and is
therefore inserted. The corresponding fields are marked as
dominated and the dominated bindings are deleted. The
next binding would be dominated and is not inserted.

We have now introduced the complete algorithm and can
resolve the acronym. RADO abbreviates Recursive As-
sembly of Discretized (Pareto) Optima and therefore
captures the core ideas of our approach.

5. FORMAL ANALYSIS OF ALGORITHM

We analyze the precision of the algorithm (Section [5.2),
the time (Section and space complexity (Section [5.4))
We start with a summary of the RADO algorithm and the
necessary preparatory steps.

5.1 Summary of algorithm

We summarize the preparatory steps to perform. i) First,
we must transform the workflow tree into an equivalent
binary tree. This can be accomplished by two top-down
traversals in the tree. In the first traversal, we delete com-
plex activities with only one child activity. In the second
traversal, we expand activities with more than two children
into a chain of newly added complex activities with two chil-
dren each. Figure[2]shows a simple example. While changing
the tree, we must eventually adapt weights for QoS aggre-
gation such that every binding will have equivalent QoS at
the root for original and binary tree. ii) We must calculate
the total quality ranges for every activity. Zeng et al. [11]
describe how to do that efficiently. i) We must calculate
the critical ranges for every activity. This can be done by
one top-down traversal of the tree using the formulas from
Section After the preparation, Algorithm [1]is executed
(input parameter v is the root activity for the first call).
Algorithm [1| uses Algorithm [2| and Algorithm [3| as auxiliary
functions. Algorithm [3] uses Algorithm [ as sub-procedure.

5.2 Approximation precision

We fix tree arbitrary activities ci,c2,p € V for the re-
mainder of this section such that p is the parent activity of
c1 and c2. We examine how to construct the critical range
for ¢; from the critical range of p. We simplify the no-
tation. Note first of all that critical ranges are constructed
independently for different attributes. The equations in the
remainder of this section refer either to one attribute or must
hold for all attributes. We omit attribute indices and vector
signs and will clarify in the accompanying text for which
attributes a formula holds. By F' we denote the aggregation
functions for the parent F = AgQ[pla, by o, the scaling
function for the parent o,(q) = (¢, cﬂl(p)7 ci(p))a, by o1 the
scaling function for ¢1, o1(q) = &(q, cl(c), ct(c))a, and by o2
the scaling function for ¢y in the analogical manner. The
Pareto error is always calculated with respect to the criti-
cal range of the corresponding activity, we therefore omit the
boundary parameters: PEr(B,v) = PEr(B,v, cl(v), cu(v)).
The following theorem provides a reformulation of Require-
ment [3| that we use for constructing critical ranges.

THEOREM 1. If (@) 1s satisfied for all attributes Va € A,
all possible QoS values q1,q2 € Ry and for all e € R with
0 < e < qu(ci)—qi, then the propagation of the Pareto error
is bounded and (@ holds.

lop(F (a1 +¢,42)) — 0p(F(q1, ¢2))]
<loilqr +¢) —o1(q)] (8)
PEr(B1X B2,p) < PEr(Bl,c1) + PEr(B2,¢2)  (9)

PROOF. Set ep = PEr(B1 X B2,p), €1 = PEr(Bl,c1)
and €2 = PEr(B2,cz2). Let b a Pareto-optimal binding for p.

Assume that b is not Pareto-optimal for the child activities
c1 and c2 (or both). Then we can always find a binding

bo with equivalent QoS in p (Q(p,g) = Q(p, l;))) and bo
is Pareto-optimal for ¢; and ¢ (improving the QoS of a
child activity can only improve the QoS at the parent). Let
bo = El U b2 such that bl is a Pareto-optimal binding for c;
and b2 Pareto-optimal for c¢3. Let bl € B1 a binding for ¢;
whose scaled QoS value is not worse by more than ¢1 in every
QoS dimension comparing with b1 (such a binding must exist
since PEr(B1,c1) = €1). Let b2 € B2 a binding for ¢, whose
scaled QoS value is not worse by more than £2 in every QoS



dimension comparing with b2. Now i imagine that we change
the binding for - p in two steps from b1Ub2 to b1Ub2: first, we
replace bl by bl then we replace b2 by b2. Fix an arb1trary
attribute a € A and denote @ = Q(cl, bl)a, 1 = Q(017 bl)a,

g2 = Q(C2,b2)a, and g2 = Q(Cg,b2) Further, let
Al = 0p(F(q1,42)) — op(F(q1,62)) (10)
A2 =0y (F(q1,42)) — op(F(q1,62)) (11)

We have
op(F(q1,42)) — 0p(F(q1,92)) = Al + A2 (12)

Now if ¢1 < g1 then A1 <0 <el. If ¢1 > ¢1 then Al = |A1]
and applying (8) yields |Al| < |o1(q1) — o1(q1)| and again
Al < el. By a similar reasoning, we find that A2 < 2.
Therefore, @D holds. [

We show that defining critical ranges as in Table [2| guaran-
tees that is satisfied.

THEOREM 2. Assume that for an attribute with bounded
domain (type 1 or 2) the critical ranges are defined accord-
ing to Table [Yqu(v) = cu(v) = cu and ql(v) = cl(v) = cl
for all activities v € V). Then this implies

PROOF. In the following we treat the case of positive at-
tributes. The proof for negative attributes is analogue. We
can simplify the definition of the scaling function o for our
specific choice of critical ranges. First, note that QoS values
are always contained within the critical range. Therefore,
I[cl, q] N el cu]| = g — el. Also, cu(v) — cl(v) = cu — cl is
constant over all activities v € V. Hence

qg—cl

oi1(q) = op(a) = 0(a) = _— (13)
So o is a linear transformation and ) and ) hold.
o(F(qi +€,q2)) — U(F((h, q2))
=o(F(q1 +¢,q2) — Fq1,92)) (14)
olg+e)—olq) =o(e) (15)

o is monotone (for positive attributes), so we just have to

show which implies .

Fgr+¢e,q2) — Flqi,q2) <¢ (16)

Equation is obviously satisfied for minimum, maximum,
and the weighted sum (with weights between 0 and 1). It is
satisfied for the product, because in this case the attribute
is of type 1, s0 ¢l =0, cu = 1 and g2 < 1 which implies .

F(g1+e,g2) — F(q1,q2) =e-q2 < ¢ (17)

O

THEOREM 3. Assume an attribute with unbounded do-
main (type 3 or 4) and the critical ranges are defined ac-
cording to Table @ Then this implies (@

PRrROOF. We assume that the attribute is positive and of
type 4. Equation compares o01(q1) and op(F(q1,q2)).
Figure [0] shows the development of both functions in g for
a fixed (but unknown) ¢2. Assume now that F is the max-
imum between g1 and g2. This case is represented in Fig-
ure The curve for o1 (lower half of Figure[9(a)]) follows
directly from the definition of o1 and because we assume

a,(F(q1,92)) 0,(F(q1,92))
1+ 1 1
cu(p) — cl(p) wy
\ 1 cu(p) — cl(p)
= N
0 | | —{4q1 o } —| 41
il(:;(i)) q2 cu(cy) cl(cy) M cu(cl)
01(q1) 0,(q1)
1+ 1 1 1
cu(cqy) —cl(cq) cu(cy) — cl(eq) 1
1
0 } {141 o } {491
cl(cy) cu(cy) cl(cy) cu(cy)
= qu(cy) b = qu(cy)

(a) F is the maximum (b) F is the weighted sum

Figure 9: Propagation of QoS changes

that a is positive. We explain the curve for o, (F"). Imagine
we grow ¢ from 0 to cu(ci). Aslong as ¢1 < cl(c1), F is
either constant (F' = g2) or F(q1,q2) = q1 < cl(p). In both
cases, op(F) remains constant. If cl(c1) < g1 < g2 (this case
may not exist if g2 < cl(c1)) then F' (and therefore o, (F))
remain constant, too. If g1 > g2 then F' grows with slope 1
and o, (F') grows with slope 1/(cu(p) —cl(p)). o1 grows with
slope 1/(cu(c1) —cl(c1)) for this domain for ¢1. According to
the definition of critical ranges: cl(p) = cl(c1). We also have
qu(p) = max(qu(c1), qu(c2)) > qu(c1). Therefore the slope
of o1 is greater or equal to the slope of o,(F) for all values
of ¢1 and go. Therefore, the difference o1(q1 +¢) — o1(q1) is
always greater or equal to o, (F(q1 + €, q2)) — 0p(F(q1,42))
and (8] is always satisfied.

Now assume F = w1 - g1 + w2 - g2 (the weighted sum).
Figure shows the development of o1 and o,(F). We
grow ¢ from 0 to cu(c1) again. Aslong as F(q1,q2) < cl(p),
it is op(F) = 0. We have F(q1,q2) > cl(p) if and only if
q1 > (cl(p) — w2 - g2)/w1. We now show that the point (the
value for gi1) where o1 starts to grow is the same or left
from the point where o,(F') starts to grow. By solving the
equation for c¢l(c) from Table [2] for cl(p), we obtain

cl(p) = cu(p) + w1 - (cl(c1) — qu(cr)) (18)
This implies

) w2 D)y (e1(ey)  quien)) - L2gy (19)

Using cu(p) = qu(p) = wiqu(c1) +waqu(cz) and g2 < qu(cz)

in shows

cl(p) — w2 - q2

p» > cl(er) (20)

We compare the slopes from o, and o, (F') once they are not
zero anymore. For o1 the slope is 1/(cu(c1) — cl(e1)). For
op(F) the slope is w1 /(cu(p) — cl(p)). We have

cu(p) — cl(p) = wi(cu(cr) — cl(c1)) (21)

and therefore the slope of o1 is always greater or equal to
the slope of o,(F). Applying the same reasoning as before,
this proves (8). So far we assumed a positive attribute of



type 4. The cases of negative attributes and of attributes of
type 3 can be proven analogously. [

5.3 Time complexity

For the following analysis we assume that elementary arith-
metic, list and tree operations can be performed in constant
time. We already made sure that the time complexity is
polynomial in N, S and et~ by the design of our algorithm.
Now we want to find out the exact polynomial. All prepa-
rations (transformation to binary tree, calculating total and
critical quality ranges) can be done in linear time in N and S
(and do not depend on gt~ ). Algorithm [1]is executed once
for every activity, N times. A simple activity can be treated
in O(S) (since S is the maximum number of service candi-
dates and one binding per service is added). For complex
activities, the result sets from two recursive calls are joined
and then filtered. The size of one result set is restricted by
(N/et)*~* (A — 1 as exponent since for every fixed assign-
ment for A — 1 QoS attributes, there can be at most one
non-dominated item in the result). Two result items can be
combined in O(1) (since A is a constant), Algorithm [2| is
therefore in O((N/et)?*4~2). For complex activities, Algo-
rithm [3]is called on the result of the join operation. Check-
ing one binding (whether it should be inserted) and inserting
it in itemsTable is in O(1). However, in the worst case all
cases in array dominated have to be marked by Algorithm[4]
There are (N/et)? cases. In total, the filtering for one com-
plex activity is performed in O((N/et)?4~2 4+ (N/et)?). The
filtering for a simple activity is performed in O(S+(N/et)?).
The total time complexity of RADO is

O(N - (S + (N/et)* + (N/et)*472)) (22)

5.4 Space complexity

For this analysis, we assume that elementary data types
such as numbers and booleans are in O(1) space. The space
requirements for the preparatory phases are linear in N and
S. Algorithm [I] is executed once for every activity. It first
constructs a set of bindings. For simple activities, the con-
structed set of bindings is in O(S) space. For complex
activities, two sets of filtered bindings have to be stored
(resl and res2) which are in O((N/et)*~') space. Addi-
tionally, a joined set of bindings is constructed which is in
O((N/et)**=2) space. We now explain how to change the
algorithm in order to reduce the space requirements. We
did not integrate this optimization into the pseudocode in
Section[3:4]in order to improve the readability. We integrate
Algorithm [2| and Algorithm [3|directly into Algorithm [1} In-
stead of first constructing all possible bindings and filtering
this set afterwards, we filter every binding directly after its
construction. Therefore, we only need to save sets with at
most (N/et)*~! bindings for every instance. Note that this
optimization improves the space complexity but does not
change time complexity. In addition, we have to save the
arrays dominated and itemsTable for every activity. Note
that bindings for simple activities can be represented by a
service ID, therefore in O(1) space. Bindings for complex ac-
tivities are always assembled out of two bindings (since the
workflow tree is binary), one for each child activity. They
can be represented by pointers to those two bindings which
is also in O(1) space (so at the root node, every binding
is represented by a pointer-tree). In summary, the space-

optimized version of our algorithm is in

O(N - (S + (N/et)™)) (space) (23)

6. EXPERIMENTAL EVALUATION

We evaluate our algorithm for QDSC and PQDSC. We
are not interested in worst-case guarantees and assume the
filtering function is called with a fixed e (instead of et/N).
We name RADO instances accordingly (e.g. RADO 0.5 if
e = 0.5). All benchmarks were executed on a 2.53 GHz Intel
Core Duo processor with 2.5 GB RAM running Windows 7.

In QDSC, the goal is to find a binding that maximizes
the utility function and respects the constraints. The utility
function is a weighted sum over the scaled QoS, constraints
correspond to lower bounds on the scaled QoS values. We
compare RADO with the genetic algorithm (GA) by Can-
fora et al. [5]. We use the same Java library and the same
parameters except that we vary the number of generations
(GA z for GA with x generations). We generate test cases
randomly (workflow, constraints, utility weights, and a reg-
istry). We considered the QoS attributes time, availability,
and throughput. We used the QWS dataset [§] for gener-
ating registry instances. The QoS vectors from the dataset
are randomly assigned to functional categories. Figure[I0]re-
ports arithmetic mean average values over 50 test cases (50
for every number of workflow activities) with 10% confidence
intervals. Figure[l0(a)|shows the average processing time in
milliseconds, Figure [10(b)| the percentage of returned solu-
tions that satisfy all constraints, and Figure reports
the utility value of the returned binding (algorithms return
the binding with highest utility among the discovered bind-
ings that satisfy the maximum number of constraints). The
tendencies are the same for all algorithms. Higher numbers
of activities increase the processing time and diminish the
chances to find good solutions. In all categories the RADO
instances perform significantly better than the GAs.

For PQDSC, we compare how good the algorithms ap-
proximate the Pareto-frontier for randomly generated reg-
istries and workflows. We implemented the genetic algo-
rithm proposed by Claro et al. [6] (PGA in the following)
using the INSGA II Java libraryé We introduced the Pareto
error as criterion, how good the frontier is approximated.
Unfortunately, we would need the real Pareto-frontier to cal-
culate it. Instead, we run both algorithms on the same test
case, both will return an approximated Pareto-frontier. Now
we first assume the PGA found the real Pareto-frontier and
calculate the Pareto error of RADO under this assumption.
Then, we do the inverse. Figure compares RADOs
with PGA 100 (the strongest PGA) and Figure [I0(T)]| PGAs
with RADO 1 (the weakest RADO). The error of RADO
is small in comparison while the processing time is several
orders of magnitude smaller (see Figure [I0(d)).

7. COMPARISON WITH RELATED WORK

We discuss these approaches to QDSC: Integer Linear Pro-
gramming (ILP) |11} |3} 1], Genetic Algorithms (GA) [5|6],
and other heuristics (HEU) [7} 2, |10} |4} [7]. We use the three
desirable theoretical properties we identified in the introduc-
tion as criteria for our comparison. Table [3| summarizes our
results. An approach provides a feature if at least one of the
cited representatives provides this feature. ILP guarantees

“http://sourceforge.net/projects/jnsga2/
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Figure 10: Experimental evaluation

Table 3: Comparing features of QDSC methods

Method Polynomial Approximation Approx.

Run Time Guarantees Pareto Set
ILP X v X
GA v X 4
HEU (4 X X
RADO v 4 (4

to find the optimal solution but solves NP-hard optimization
problems and cannot guarantee polynomial run time (unless
P = NP). We are not aware of any ILP based method for
QDSC that approximates the Pareto-frontier. Heuristic ap-
proaches (GA, HEU) can guarantee polynomial run time
with the right parameter setting but do not give formal
approximation guarantees. Some of these approaches of-
fer parameters to tune the approximation quality indirectly
(e.g. number of generations for GA). However, the relation
between a specific parameter setting and the approxima-
tion quality is not transparent and only of heuristic nature.
Among the cited publications, only the approach by Claro
et al. @ approximates the Pareto-frontier.

8. CONCLUSION

We introduced the RADO (Recursive Assembly of Dis-
cretized Optima) algorithm for QDSC. It approximates the
QoS Pareto-frontier with formal guarantees on approxima-
tion quality and in polynomial time. During our experimen-
tal evaluation, RADO outperformed classic approaches in
terms of processing time and quality at the same time.
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