Incentives for Effort in Crowdsourcing using the Peer Truth Serum

GORAN RADANOVIC, Artificial Intelligence Laboratory, EPFL
BOI FALTINGS, Artificial Intelligence Laboratory, EPFL RADU JURCA, Google

Abstract

Crowdsourcing is widely proposed as a method to solve large variety of judgement tasks, such as classifying website content, peer grading in online courses, or collecting real-world data. As the data reported by workers cannot be verified, there is a tendency to report random data without actually solving the task. This can be countered by making the reward for an answer depend on its consistency with answers given by other workers, an approach called peer consistency. However, it is obvious that the best strategy in such schemes is for all workers to report the same answer without solving the task.

Dasgupta and Ghosh (WWW 2013) show that in some cases exerting high effort can be encouraged in the highest-paying equilibrium. In this paper we present a general mechanism that implements this idea and is applicable to most crowdsourcing settings. Furthermore, we experimentally test the novel mechanism, and validate its theoretical properties.

Categories and Subject Descriptors: J. 4 [Social and Behavioral Sciences]: Economics
General Terms: Human Factors; Economics; Measurement
Additional Key Words and Phrases: Crowdsourcing; Mechanism Design; Peer Prediction
ACM Reference Format:
Goran Radanovic, Boi Faltings, and Radu Jurca, 2016. Incentives for Effort in Crowdsourcing using the Peer Truth Serum. ACM Trans. Intell. Syst. Technol. V, N, Article A (January 2016), 28 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Crowdsourcing is an effective method for eliciting information for a variety of tasks, such as classifying website content, peer grading in online courses, or gathering data about the real world. As workers are recruited anonymously through the internet, a major issue is how to ensure that their answers are accurate. There are two aspects to this problem: selecting workers with the best abilities for the task, and getting them to invest their best effort to obtain the most accurate answers. A large body of work has been devoted to the issue of how to select workers for tasks, either through learning their quality and assigning them to the most appropriate tasks, or through incentive schemes (mechanisms) that encourage self-selection of the most competent workers ([Singla and Krause 2013; Witkowski et al. 2013]).

The other issue is to get workers to invest sufficient effort. An obvious strategy that maximizes workers' profit is to just provide arbitrary answers without even solving the tasks. This is clearly observable in practice, where crowdsourcing tasks attract a significant portion of workers that provide random answers.

We propose to overcome this problem by making payments depend on the accuracy of answers, so that only workers that provide actual work are rewarded. This will

[^0]complement existing methods for filtering answers and workers such as gold tasks, but also help because workers that do not provide useful answers are discouraged from participating in the tasks in the first place. At first glance, this appears to be impossible, as the system itself cannot verify the accuracy of answers given by workers.

Remarkably, this problem can be solved elegantly by setting up a game among workers, called a mechanism in game theory. Instead of paying fixed payments per answer or hour of time, the rewards are calculated as a function of a worker's answer and the answers given by other workers. The game is designed so that the strategies that carry the highest expected reward require workers to solve the tasks, whereas random answers will on average produce no reward.
This approach has been tried with success on platforms such as Amazon Mechanical Turk. [Harris 2011] considered the task of screening resumes for a job description. A scheme where payments depend on the agreement of answers with those of a human resources expert provided significant improvements in accuracy. [Shaw et al. 2011] tested a large variety of reward schemes using a task of classifying the type of content present on a web site, and found that schemes based on consistency of answers had the best performance. Giving rewards for agreeing with another worker has also been used in the very successful ESP game [Ahn and Dabbish 2004], where players are rewarded for assigning the same label as a peer to an image. [Kamar and Horvitz 2012] proposed to reward workers based on comparison of the answers with the aggregate obtained from the crowd. [Huang and Fu 2013b] investigated the peer consistency incentive scheme using a task of counting nouns in a list of 30 English words. Workers were rewarded with a bonus whenever their answer agreed with that of a single, randomly chosen peer. They found that this increases accuracy more than comparing against a gold standard. The same authors also showed that social pressure can further increase accuracy [Huang and Fu 2013a]. [Faltings et al. 2014b] showed a modified version of peer consistency, called the peer truth serum, that allows the answer distribution to be biased, and showed that it can correct anchoring bias in a counting task on Amazon Mechanical Turk.

Mechanisms based on agreement of answers, also known as peer consistency, peer prediction, or output agreement, have been game-theoretically analyzed for the problem of incentivizing workers to give truthful information ([Miller et al. 2005; Prelec 2004; Prelec and Seung 2006; Witkowski and Parkes 2012b; 2012a; Goel et al. 2009; Lambert and Shoham 2008; Zhang and Chen 2014; Radanovic and Faltings 2014]). The main difference is that in crowdsourcing, obtaining an accurate answer requires making costly effort, so that the difference in rewards between an accurate and inaccurate answer has to exceed the cost of this effort. With this additional condition, reward schemes that have been developed to incentivize truthful information reporting can be adapted for use in crowdsourcing.

However, game theoretic analysis shows that truthful reward schemes comparing individual answers necessarily require unrealistic assumptions of highly homogeneous user populations ([Jurca and Faltings 2009; Radanovic and Faltings 2013; Waggoner and Chen 2013; 2014]). Even for homogeneous populations, minimal mechanisms that elicit individual answers cannot be constructed in an arbitrary context ([Radanovic and Faltings 2013; 2015b]). Non-minimal mechanisms, such as the Bayesian truth serums ([Prelec 2004; Witkowski and Parkes 2012b; Radanovic and Faltings 2013; 2014]), are applicable in this case, but the burden of eliciting additional information make their practicality restricted. Furthermore, strategies where all workers report identical answers are always more profitable, and indeed such behavior has been observed in user experiments ([Gao et al. 2013]). We do note that some schemes are designed for heterogeneous populations (e.g. [Witkowski and Parkes 2012a]), but they
require that the elicitation process has a clear temporal structure, which for crowdsourcing is often not convenient.

However, these negative results can be overcome by reward schemes that depend on workers solving many tasks. Recently, [Dasgupta and Ghosh 2013] have proposed a reward scheme that uses multiple tasks to achieve incentive-compatibility for heterogeneous populations. The most profitable strategy for workers is to solve the tasks with their best effort, and random answers carry on average no reward. However, their scheme is only applicable to tasks with two possible answers, so that there cannot be any correlation between possible answer values.

Contributions

In this paper, we present a novel mechanism that extends the mechanism of [Dasgupta and Ghosh 2013] to allow any number of possible answers while also ensuring that strategies where all workers exert high effort and report their results truthfully is the most profitable equilibrium. Just like the mechanism in [Dasgupta and Ghosh 2013], it is easy to understand but can be more broadly applied.

The mechanism combines the ideas from [Dasgupta and Ghosh 2013] with the Peer Truth Serum (PTS) introduced in [Jurca and Faltings 2011; Faltings et al. 2014a; Faltings et al. 2014b] and we call it the Peer Truth Serum for Crowdsourcing (PTSC). The idea behind the mechanism is to use the distribution of reported answers from similar tasks as the prior probability of possible answers, and scale the reward given for agreement between workers with this distribution. This solves the major issue with the PTS mechanism as presented in [Faltings et al. 2014b], which is that the prior distribution had to be known.

Unlike the mechanism from [Dasgupta and Ghosh 2013], PTSC uses its statistic (prior obtained from reports) in a nonlinear manner. When the statistic is calculated from only two a priori similar tasks, PTSC is equivalent to the mechanism from [Dasgupta and Ghosh 2013], which requires possible answer values to be uncorrelated. However, when the sample is large, PTSC allows more significant correlations among different values. We also note that, unlike the mechanism in [Dasgupta and Ghosh 2013], PTSC does not assume that any particular worker solves more than one task. Moreover, we show how to elicit a value of the mechanism's scaling parameter for which high effort and honest reporting is the most profitable equilibrium. Finally, we apply the PTSC mechanism in community (participatory) sensing and peer grading settings, and report on empirical results that validate its theoretical properties. The proofs to our formal claims can be found in the corresponding Online Appendix.

2. THE PEER TRUTH SERUM FOR CROWDSOURCING

In our crowdsourcing model shown in Figure 1, a group of workers w, p, and q solve their tasks t_{w}, t_{p} and t_{q}, respectively. After worker w evaluates the correct answer to her task t_{w}, she updates her belief $\operatorname{Pr}\left(x_{p}, x_{q} \mid x_{w}\right)$ regarding the evaluations of other workers and reports the value that leads to maximal expected reward according to her belief $\operatorname{Pr}\left(x_{p}, x_{q} \mid x_{w}\right)$. In the final step, she is rewarded using a peer evaluation mechanism τ which uses the fact that workers who solve the same tasks have statistically more correlated answers than those who do not.

This setting depicts a typical crowdsourcing scenario: a group of workers is given a bundle of a priori similar tasks to solve, and each worker solves only some of the tasks from the bundle. For example, in text annotation, a requester (mechanism) could give 1000 sentences to annotate, and a group of, for example, 100 workers would be assigned to perform the tasks, where each worker would annotate, for example, 50 sentences. Once the tasks are completed, the mechanism rewards workers for solving the tasks. To simplify the description of our mechanism, we will suppose that a worker

Fig. 1. The setting analyzed in this paper.
w solves one task: this easily generalizes to cases where worker w solves more than one task by applying the mechanism to each task solved by worker w separately.

The basic principle of a proper peer-prediction mechanism is to reward a respondent based on how surprisingly common her report is among the reports of her peers. The Peer Truth Serum(PTS) [Jurca and Faltings 2011; Faltings et al. 2014b] rewards a worker who reports answer x only if a randomly chosen peer who worked on the same task also gave the same answer. It uses a commonly known prior probability distribution $R(x)$ over possible answers x, and rewards a matching answer x with $\frac{1}{R(x)}$. It thus implements a principle of rewarding answers that are surprisingly common: common because they match those of a peer, and surprising because less likely answers carry a higher reward.
PTS has been shown to be useful in applications such as opinion polls [Garcin and Faltings 2014] and community sensing [Faltings et al. 2014a]. While PTS has been successfully applied in human computation [Faltings et al. 2014b], it has been limited to scenarios where there is a known prior bias. For wider applications in crowdsourcing, there are two drawbacks:

- The distribution R needs to be known.
- Consequently, workers can collude and report the least likely value $x_{\min }=$ $\arg \min _{x} R(x)$, to obtain significantly greater payoff than for honest reporting.

2.1. The novel mechanism

In this paper, we show how to eliminate these drawbacks by obtaining R from the answer distribution of the workers themselves. The mechanism, called Peer Truth Serum for Crowdsourcing (PTSC), is shown in Algorithm 1. The mechanism represents a game in game theoretic context: the utility of each worker depends on reports (actions) of other workers. Therefore, we use an equilibrium analysis to determine the resulting behaviour of workers.

The PTSC score requires only one peer p. If, however, we can assign multiple peers p to worker w (more than one peer worker p solves task t_{w}), the final score to worker w can be the average of the PTSC scores over all selected peers:

$$
\begin{equation*}
\tau\left(x_{w}, x_{p}\right)=\alpha \cdot\left(\frac{1}{n_{\text {peers }}} \sum_{p} \tau_{0}\left(x_{w}, x_{p}\right)-1\right) \tag{3}
\end{equation*}
$$

ALGORITHM 1: The Peer Truth Serum for Crowdsourcing

Reward a worker w for solving task t_{w} as follows:
(1) Calculate the frequency of reported values within all tasks (excluding the report of worker w). Let us denote this frequency by R_{w}, and it is equal to $R_{w}(x)=\frac{n u m(x)}{\sum_{y} n u m(y)}$, where num is the function that counts occurrences of reported values, and the summation in the denominator goes over all possible answers y.
(2) Select a peer worker p who was given task t_{w} to solve.
(3) Worker w is rewarded for reporting x_{w} with the score:

$$
\begin{equation*}
\tau\left(x_{w}, x_{p}\right)=\alpha \cdot\left(\tau_{0}\left(x_{w}, x_{p}\right)-1\right) \tag{1}
\end{equation*}
$$

where x_{p} is worker p 's report, α is a constant strictly greater than 0 , and τ_{0} is defined as:

$$
\tau_{0}\left(x_{w}, x_{p}\right)= \begin{cases}\frac{1}{R_{w}\left(x_{w}\right)} & \text { if } x_{w}=x_{p} \tag{2}\\ 0 & \text { if } x_{w} \neq x_{p}\end{cases}
$$

where $n_{\text {peers }}$ is the number of peers of worker w and τ_{0} is defined by (2). Scores (1) and (3) are equivalent in expectation, so the incentive properties of the mechanism are the same. However, using multiple reports reduces the variance in payments which may often be desirable. Notice that the PTSC score (3) is proportional to the ratio of frequency of reports equal to x_{w} within task t_{w} and frequency of report equal to x_{w} within all the tasks (report x_{w} excluded). In other words, PTSC rewards worker w based on how surprisingly common her report is: reports x_{w} that are more common within task t_{w} than expected by empirical frequency R receive higher rewards than those reports that are not as common as expected. ${ }^{1}$

We now give an intuitive understanding of the PTSC mechanism, assuming a scenario where there are many tasks and the histogram of answers is thus a good approximation of the answer probability distribution. A more formal analysis, including cases with a small number of tasks, is given later in the paper.

To decide on her best strategy, a worker w should estimate the reward she can expect for reporting answer x. This depends crucially on the worker's beliefs about the answer reported by her peer. Notice that worker w does not need to know R. However, her belief about $R(x)$ is equal to her prior belief $P_{p}(x)$ about the evaluations of the other workers, provided that they are honest.

Consider first the case where the worker does not solve the task at all. In this case, she should believe the peer answer to be distributed according to R used in Algorithm 1, so her expected reward is equal to zero for all possible reports. She thus has no interest in participating in the mechanism, and we can expect that such workers will not elect to participate.

Otherwise, the worker will have spent some effort to solve the task, and will endorse an answer x, i.e. x is the worker's evaluation of the correct answer. Finally, she will form a posterior belief $P_{p \mid w}(x \mid x)$ about the answer given by the peer worker. We now come to a crucial assumption: the worker should believe that the answer of her peer will be positively correlated with her own. More precisely, the worker should believe that her posterior $P_{p \mid w}$ differs from her prior P_{p} by giving the highest increase to her own answer x :

$$
\begin{equation*}
\frac{P_{p \mid w}(x \mid x)}{P_{p}(x)}>\frac{P_{p \mid w}(\bar{x} \mid x)}{P_{p}(\bar{x})}, \forall \bar{x} \neq x \tag{4}
\end{equation*}
$$

[^1]To understand this condition, let us apply the Bayes' rule, which converts it to:

$$
\frac{P_{w \mid p}(x \mid x)}{P_{w}(x)}>\frac{P_{w \mid p}(x \mid \bar{x})}{P_{w}(x)} \Leftrightarrow P_{w \mid p}(x \mid x)>P_{w \mid p}(x \mid \bar{x}), \forall \bar{x} \neq x
$$

or more elegantly $x=\arg \max _{\bar{x}} P_{w \mid p}(x \mid \bar{x})$. In other words, worker w believes she is most likely to endorse answer x when her peer endorses the same answer x.

We discuss this condition in more detail later on; it is satisfied, for example, in Dirichlet-categorical models with Bayesian updating, while the simplest example where the condition does not hold is when the answers of worker w and p are independent, i.e. $P_{w \mid p}(x \mid \bar{x})=P_{w}(x)$.

To see the importance of this condition, which we call the self-predicting condition, suppose that workers other than worker w are honest. In that case, the expected score of worker w for reporting y is $\alpha \cdot \frac{P_{p \mid w}(y \mid x)}{R(y)}-\alpha$, with $\frac{P_{p \mid w}(y \mid x)}{R(y)}$ being a good approximation of $\frac{P_{p \mid w}(y \mid x)}{P_{w}(y)}$. Thus, provided that worker w 's beliefs satisfy the self-predicting condition, inequality (4) exactly shows that reporting x leads to the highest possible expected reward. Notice that the self-prediction differs from condition $x=\arg \max _{\bar{x}} P_{p \mid w}(\bar{x} \mid x)$, which states that worker w believes her answer is adopted by the majority, and is arguably stronger condition to satisfy. For example, this condition implies the self prediction in binary answer spaces for a reasonable updating assumption $P_{p \mid w}(x \mid x)>P_{p}(x)$, while the other way around is not true.

Notice that worker w_{1} 's and worker w_{2} 's beliefs about the answers of other workers, and thus R, need not to be common. More precisely, each worker can have her own private prior belief regarding what others report for a task she has not solved, and her own posterior belief regarding what others report for a task that she has solved. Furthermore, these beliefs incorporate the fact that workers can obtain their answers differently, e.g. a worker might believe that she is more accurate than others. This is contrary to many existing mechanisms, where either these beliefs are common among workers (agents) or are known to the center.

2.2. Example

To demonstrate the principles of the PTSC mechanism with parameter $\alpha=1$, consider the following scenario. Let there be four possible answers $\{a, b, c, d\}$ and $n=10$ tasks with the following correct answers and reports given by workers:

Task	Correct	Answers for the task
t_{1}	a	b, a, a, c
t_{2}	b	b, b, b, a
t_{3}	a	a, a, b, a
t_{4}	a	a, d, a, a
t_{5}	c	c, c, a, b
t_{6}	d	d, a, d, d
t_{7}	a	a, a, c, a
t_{8}	b	b, b, a, b
t_{9}	a	a, a, a, a
t_{10}	b	b, b, a, b

Each of the 10 tasks is solved by four different workers, giving us altogether 40 answers. For simplicity, we assume that each of the 40 answers is given by a different worker, i.e. a worker solves only one task within the batch of 10 tasks. The collection of answers gives the following frequency of answers R :

Answer	a	b	c	d
Count	20	12	4	4
R	0.50	0.30	0.1	0.1

Consider now an additional worker w who is given one of the tasks to solve, but whose answer is not in the tables above. The worker has a choice between three actions:

- heuristic: invest no effort and choose an answer that is independent of the task.
- honest: invest high effort to find the answer and report it truthfully.
- strategic: invest high effort to find the answer, but report an answer that may not be truthful.
As a rational agent, worker w will choose the action that maximizes her expected reward, based on what she believes about the answers of other workers. In particular, the expected reward depends on the probability of matching the peer answer.

For the heuristic action, the answer x is independent of the task so the probability of having a matching peer answer is equal to the frequency of this answer among all tasks, $R(x)$. Therefore, the expected reward is:

$$
R(x) \cdot\left(\frac{1}{R(x)}-1\right)+(1-R(x)) \cdot(-1)=0
$$

no matter what the answer x is, or what the worker believes about $R(x)$. This also means that any strategy that chooses the answer independently of the specific task will carry an expected reward of 0 .

For the other two actions, the worker solves the task and we assume that she has found an answer x. If she believes that peers are likely to find the same answer and report it truthfully, she should believe that answer x is not less likely for this task than in the distribution over all tasks. In particular, she should believe that answer x is the one with the highest increase, as given in the self-predicting condition (4). In the example, the answer distributions for the tasks, grouped by their correct answers, are as follows:

		Observed answer			
Correct		a	b	c	d
a	$\operatorname{Count}(a)$	15	2	2	1
	$\operatorname{freq}(\cdot \mid a)$	0.75	0.1	0.1	0.05
b	$\operatorname{Count}(b)$	3	9	0	0
	freq $(\cdot \mid b)$	0.25	0.75	0	0
c	$\operatorname{Count}(c)$	1	1	2	0
	freq $(\cdot \mid c)$	0.25	0.25	0.5	0
d	Count (d)	1	0	0	3
	freq $(\cdot \mid d)$	0.25	0	0	0.75

and we can see that for each group of tasks it satisfies the self-predicting condition (4).
Let us assume thus that worker w has found answer a and let her beliefs about the peers' answers, for simplicity, be as shown in the table, i.e. $P_{p \mid w}(\cdot \mid a)=f r e q(\cdot \mid a)$. It is important to notice that worker w does not know the answers of other workers, she has to reason about them by taking the expectation over all possibilities. The values in table are based on the realization of one possibility; however, they satisfy the self predicting condition so they represent one candidate for a worker's belief.

The reasoning of worker w for her task would be as follows. For reporting her true answer a, the probability of matching the peer is 0.75 , so worker w expects to get a payoff equal to $\frac{0.75}{0.5}-1=0.5$ for the honest action. This is greater than what she expects
to get with the heuristic action (0), or the strategic action with answer $b\left(\frac{0.1}{0.3}-1=-2 / 3\right)$, $c\left(\frac{0.1}{0.1}-1=0\right)$ or $d\left(\frac{0.05}{0.1}-1=-0.5\right)$.

We will show in Section 4.2 and Section 4.3 that this holds not only for accurate beliefs, but for any belief about peer answers that satisfies the self-predicting condition (4). Just like constant rewards, the payment should be scaled so that the expected reward exceeds the cost of effort invested in solving the task. We will address this question in Section 4.6.

Now consider what happens when workers collude, so that, for example, those with evaluations a and d report a, while those with evaluations b and c report b. In this case, a worker w with evaluation a believes that the probability of her peer reporting a is $P_{p \mid w}(a \mid a)+P_{p \mid w}(d \mid a)$. However, R also has different values than for the honest strategy profile; $R(a)$ for the colluding strategy profile is equal to $R(a)+R(d)$ for the honest strategy profile, and exactly compensates for the gain in matching probability. In this example, worker w's expected payoff is $\frac{0.75+0.05}{0.5+0.1}-1=0.33$, and is less than what she gets when everybody (including her) reports honestly. Thus, the collusion is not profitable, and we show that this holds in general in Section 4.4.

Finally, the mechanism is robust against peers that provide low-quality results, as is common in crowdsourcing. Assume that 10% of workers report honestly, while others report randomly with probability of reporting a equal to 30%. Then, worker w whose evaluation is a believes that the probability of her peer reporting a is $0.1 \cdot P_{p \mid w}(a \mid a)+$ $0.9 \cdot 0.3$, while $R(a)$ is in this case equal to $0.1 \cdot R(a)+0.9 \cdot 0.3$, where the latter $R(a)$ is the one calculated for the honest strategy profile. Hence, the expected payoff of worker w for reporting a is $\frac{0.1 \cdot 0.75+0.9 \cdot 0.3}{0.1 \cdot 0.5+0.9 \cdot 0.3}-1=\frac{0.345}{0.32}-1$, which is more than she expects to obtain for random reporting. With the appropriately scaled payoff, the same holds for worker w's profit. Thus, even a small fraction of cooperative workers suffices to create the right incentives. We will show this more formally in Section 4.3.

The important condition for the discussed collusion resistant properties to hold is that workers distinguish tasks only by their endorsed answers (evaluations). If tasks were distinguished by other features, workers could use those features to form a colluding strategy that is more profitable than honest reporting. Thus, we need to be careful to apply the mechanism to a batch of tasks that are on the surface very similar. Fortunately, most crowdsourcing tasks satisfy this condition.

2.3. Application Examples

The scenario depicted by Figure 1 captures many interesting crowdsourcing tasks. These include objective tasks which have correct answers and subjective tasks where workers are asked to provide their opinions. We present two examples of such crowdsourcing tasks, community (participatory) sensing and peer grading, which we use to evaluate the quality of the PTSC mechanism.

Community Sensing. In a typical community (participatory) sensing scenario, a group of sensors measure a physical phenomenon. That is, private mobile devices equipped with sensors acquire information about a spatially distributed phenomenon, such as air pollution or weather. Since sensing induces a cost due to the fact that sensing modules need to be installed and maintained, the party interested in monitoring the physical phenomenon needs to incentivize the crowd to incur this cost and provide quality data.

A peculiar property of a community sensing setting is that a mechanism has no control over sensing devices, nor does it have a way of directly verifying the correctness of the obtained data. This leads us to peer consistency mechanisms. One of the peer consistency methods proposed for information elicitation in community sensing setting is the mechanism from [Faltings et al. 2014a]. The major drawback of this mechanism
is that non-informed reporting strategies (strategies where sensors do not make measurements) can result in significantly higher expected payoffs than honest reporting. We show both theoretically and experimentally that PTSC solves this problem. In this context, PTSC extends the mechanism from [Radanovic and Faltings 2015a] by allowing a less dense sensor network.

Peer Grading. One of the main challenges in massive open online courses (MOOCs) represents evaluation of student assignments. This is especially true if assignments are essay questions that cannot be graded automatically. In such cases, peer grading techniques can be applied: a participant (student) grades assignments of their colleagues, and the grade of each student is obtained by aggregating the peer-grades.

Peer grading in MOOCs represents a typical crowdsourcing scenario, where workers are students who are assigned to grade their own assignments. A proper monitoring of such a grading system is not feasible due to the number of participants, so the quality control has to be designed in the form of incentives. Moreover, the incentives have to take into account that participants have different grading abilities and are inclined to manipulate the reward system.

Often, the quality control in subjective tasks is achieved by using a peer consistency mechanism that rewards workers when their reports agree [Huang and Fu 2013b]. This type of mechanism, however, does not take into account that workers may have a potential bias towards more likely evaluations. That is, workers who believe that their opinion is not the most common one, are incentivized to misreport. Moreover, colluding strategies where workers report the same value result in higher payoffs, and such behaviour is likely to occur [Gao et al. 2013].

We propose the PTSC as a suitable mechanism for the two crowdsourcing scenarios due to its strong incentive properties: its ability to cope with collusive behaviour, while making honest reporting the most profitable equilibrium.

3. FORMAL SETTING

Our crowdsourcing model is similar to the one presented in [Dasgupta and Ghosh 2013], with the basic structure depicted by Figure 1. We formalize it in the following way.

3.1. Tasks

We consider a crowdsourcing scenario where a group of workers solves n statistically independent tasks from a set of a priori similar tasks $T=\left\{t_{1}, t_{2}, \ldots\right\}$, and are rewarded based on their performance. Tasks are a prior similar if they are only distinguished by their correct answers; examples are collecting sensor measurements at different locations, grading student answers to the same question, or interpreting similar images. We thus identify a task t with its correct answer $X_{\text {correct }}^{t}$ that is generated randomly according to a distribution function defined over a discrete and finite answer space $\mathcal{X}=\{x, y, z, \ldots\}$. Notice that the existence of a correct answer does not necessarily restrict applicability of the proposed approach to eliciting objective information. Models of obtaining (subjective) preferences over alternatives often assume that preferences are noisy evaluations of the true state of the world (e.g. random utility model [Soufiani et al. 2012]). The only important consideration that needs to be taken into account is that a correct answer $X_{\text {correct }}^{t}$ is not accessible to a mechanism, while the answers of different workers to the same task should have some minimal correlation (in our case expressed by the self-predicting condition).

Each task in set T is answered by at least 2 different workers, randomly chosen from a large pool $W=\{w, p, q, \ldots\}$ of available workers. Without loss of generality, we can assume that a worker w solves only one task t_{w} in a family of tasks T. If this assumption does not hold within set T, we simply partition T into subsets that satisfy
the assumption, and apply a reward mechanism to each subset separately. The overall reward of a worker w can then be defined as an average or a sum of the obtained rewards.

3.2. Workers

A worker in W is assumed to be a risk neutral rational agent who aims to maximize her expected profit. With that in mind, our crowdsourcing setting can be viewed as a two stage game, where in the first stage workers choose the amount of effort they want to invest in solving their task, and in the second stage they decide on what to report.

When a worker w solves her task, she invest a certain amount of effort e_{w}. We assume two levels of effort, high and low; low effort, denoted as e_{0}, should intuitively be seen as a random answer, provided automatically, without understanding the task; high effort (e_{1}) on the other hand, is the work exerted by an honest worker who does her reasonable best to answer the task correctly. When the rewards offered by the requester are insufficient to cover the cost of high effort, workers may choose an approximate strategy whose effort falls in between these extremes. To simplify the analysis, we would consider this intended effort the high effort case and thus consider only strategies with either low or high effort. Unlike accuracy, workers' utility decreases as their effort increases, meaning that a worker w experiences cost $c_{w}\left(e_{w}\right)$ for investing effort $e_{w}-\operatorname{cost} c_{w}$ is an increasing function of effort e_{w}, i. e. $c_{w}\left(e_{0}\right)<c_{w}\left(e_{1}\right)$, and can be different for different workers.

In many real scenarios tasks can be solved with multiple levels of effort according to a possibly very complex cost-benefit relation. We do not consider the question of designing mechanisms to encourage intermediate levels of effort to optimize costeffectiveness. We note that by scaling the reward function - in PTSC, increasing parameter α - it is possible to incentivize higher levels of effort.

When a worker solves a task, she obtains an evaluation of the correct answer to the task, which we model as a random variable X_{w} that takes values from the set of possible answers \mathcal{X}. Notice that worker w 's evaluation X_{w} does not have to be equal to the correct answer $X_{\text {correct }}^{t_{w}}$. In order to formally define workers' action space, we extend answer space \mathcal{X} by adding symbol \emptyset, with meaning that a worker w whose evaluation X_{w} is equal to \emptyset has not solved her task (i.e. $e_{w}=e_{0}$).

Once worker w solves her task, she reports her answers to the mechanism. Reported value Y_{w} can differ from evaluation X_{w}, either because worker w lies or because she does not solve her task $\left(X_{w}=\emptyset\right)$. We see that a worker w faces a choice between three basic strategies:
—honest: invest high effort e_{1} to obtain evaluation $X_{w}=x$, and report honestly $Y_{w}=x$.

- strategic: invest high effort e_{1} to obtain evaluation $X_{w}=x$, but report $Y_{w}=y$ that is randomly generated according to a distribution $Q_{w \mid w}(y \mid x)$. Naturally, honest strategy is equal to strategic strategy for $Q_{w \mid w}(y \mid x)=\mathbb{1}_{y=x}$, where $\mathbb{1}_{\text {cond }}$ is an indicator variable equal to 1 when condition cond is satisfied, and otherwise is 0 .
-heuristic: invest low effort e_{0} (i.e. $X_{w}=\emptyset$) and report according to a distribution $Q_{w \mid w}(y \mid \emptyset)$. Notice that this strategy includes both random reporting and heuristic reporting where workers agree which values to report in advance (e.g. they all report the same value).

All the three strategies can be described using probability distribution function $Q_{w \mid w}$. Intuitively, workers' strategies are either based on their evaluations, or are heuristic (random) if workers choose not to invest high effort in solving tasks. In principle, each worker can have her own strategy. However, because there is a large pool of workers and workers are randomly assigned to tasks, we can restrict our attention to
symmetric strategies and abuse our notation by denoting symmetric strategy profiles with honest, strategic and heuristic. Namely, from a worker w's perspective asymmetric strategies of other workers q can be seen as symmetric strategies with $Q_{q \mid q}$ obtained by averaging workers q 's strategies. Hence, honest strategy profile has effectively the same properties even when workers are allowed to have asymmetric strategies.

3.3. Workers' beliefs

Workers' beliefs are characterized by two distributions that need not to be the same for different workers. A prior belief of a worker w is a probability distribution function $P_{q}(x)=\operatorname{Pr}\left(X_{q}=x\right)$ regarding the evaluation X_{q} of a randomly chosen worker q who has solved an arbitrary task in T. A posterior belief of a worker w is a probability distribution $P_{p \mid w}(x \mid y)=\operatorname{Pr}\left(X_{p}=x \mid X_{w}=y\right)$ regarding the evaluation X_{p} of a worker p who has solved the same task. In particular, when worker w solves her task, she also gains an insight regarding the evaluation of a worker p, so she updates her prior belief $P_{p}(x)$ to obtain her posterior belief $P_{p \mid w}(x \mid y)=\operatorname{Pr}\left(X_{p}=x \mid X_{w}=y\right)$.

The consequence of tasks in T being statistically independent implies that $P_{q \mid w}(x \mid y)=P_{q}(x)$ for a worker q who has solved a different task than worker w. We call workers p peers, and workers q reference workers of worker w. Because tasks are randomly distributed to workers from a large pool W, ${ }^{2}$ prior belief regarding peers' evaluations is equal to prior belief regarding the evaluations of reference workers, i.e. $P_{p}(x)=P_{q}(x)$. Moreover, when $X_{w}=\emptyset$ (i.e. $e_{w}=0$), worker w gains no insight in her peers' evaluations, so $P_{p \mid w}(x \mid \emptyset)=P_{p}(x)$.

We assume workers' beliefs to be fully mixed, meaning that for any two workers w and p we have that $\forall x, y \in \mathcal{X}: P_{p}(x)>0, P_{p \mid w}(x \mid y)>0$. This is a common assumption in many similar settings (e.g. [Miller et al. 2005; Prelec 2004]), and it states that workers believe that all answers can be endorsed by their potential peers.

The expected payoff of a worker w depends on the reports of her peers and reference workers rather than on their evaluations. Therefore, worker w's beliefs regarding evaluations ($P_{p}, P_{p \mid w}$ and P_{q}), need to be transformed into the beliefs regarding other workers' reports, here denoted by $Q_{p}, Q_{p \mid w}$ and Q_{q}. Using the fact that $Q_{p \mid p}$ defines worker p 's strategy, we obtain that the proper transformations for a strategic strategy profile are $Q_{q}(y)=Q_{p}(y)=\sum_{z \in \mathcal{X}} Q_{p \mid p}(y \mid z) P_{p}(z)$ and $Q_{p \mid w}(y \mid x)=$ $\sum_{z \in \mathcal{X}} Q_{p \mid p}(y \mid z) P_{p \mid w}(z \mid x)$. When workers use the honest strategy profile, Q_{q}, Q_{p} and $Q_{p \mid w}(y \mid x)$ reduce to $Q_{q}=Q_{p}=P_{p}$ and $Q_{p \mid w}=P_{p \mid w}$. For a heuristic strategy profile, we obtain $Q_{q}=Q_{p}=Q_{p \mid w}=Q_{p \mid p}$.

Since rewards are based on the comparison of reports, some minimal correlation between workers' evaluations must exist. We incorporate this correlation in the workers' belief systems by assuming the self-predicting condition ([Jurca and Faltings 2011; Radanovic and Faltings 2013]):

Definition 3.1. Consider workers w and p who solve the same task. A worker w has a belief system that satisfies the self-predicting condition if: ${ }^{3}$

$$
\frac{P_{p \mid w}(y \mid x)}{P_{p}(y)}-1<\frac{P_{p \mid w}(x \mid x)}{P_{p}(x)}-1, \forall y \neq x
$$

[^2]Moreover, for worker w, whose beliefs satisfy the self-predicting condition, we define self-predictor Δ_{w} as the smallest number in $[0,1]$ so that

$$
\begin{equation*}
\frac{P_{p \mid w}(y \mid x)}{P_{p}(y)}-1<\left(\frac{P_{p \mid w}(x \mid x)}{P_{p}(x)}-1\right) \cdot \Delta_{w}, \forall y \neq x \tag{5}
\end{equation*}
$$

holds.
The self-prediction holds in the common case where a worker believes that only the evaluation she endorses is more likely than in the prior distribution, as all other evaluations would become less likely. This also includes binary answer spaces (as in [Dasgupta and Ghosh 2013]), as well as a more general case when workers observe different samples drawn from the same categorical distribution, but with unknown parameters sampled from a Dirichlet distribution. If a worker w uses Bayesian updating, her posterior $P_{p \mid w}$ is greater than her prior P_{p} only for her own evaluation, implying the self-predicting condition. Notice that in this case $P_{p \mid w}(x \mid x)$ can be less than $P_{p \mid w}(y \mid x)$ for $y \neq x$. In the following 2 scenarios, the self-prediction possibly holds, although a worker might believe that others may answer differently:

- when a worker's evaluation is a priori unlikely, such as receiving bad service from a hotel that is otherwise very highly rated, and
- when there are strongly correlated values, for example, when measuring a temperature of 26 degrees, answers of 25 and 27 degrees will also be very likely.
We characterize the degree of correlation that a worker w believes to be possible by the self-predictor Δ_{w} : the smaller it is, the more proficient workers are, i.e. different answer values are less correlated. For example, $\Delta_{w}=0$ indicates that different answer values are not correlated, while for $\Delta_{w} \approx 1$ workers are more likely to confuse two similar answers.

To model possible differences in workers' beliefs, we assign to each worker w a belief type $\theta_{P, w}$. Belief type $\theta_{P, w}$ is an element of an abstract set Θ_{P}, and it determines how beliefs P_{p} and $P_{p \mid w}$ are formed. We call belief type $\theta_{P, w}$ of a worker $w a d m i s s i b l e$ if the associated beliefs P_{p} and $P_{p \mid w}$ comply with the conditions described in this section (the self-predicting condition included).

3.4. Subjective equilibrium

As a rational agent, a worker aims to maximize her profit, and in case of uncertainties, she is assumed to maximize her expected profit. Since a worker's payoff depends on what other workers report, we use an equilibrium analysis to determine the resulting behaviour of workers. In particular, a strategy profile $\sigma=\left(\sigma_{w}, \sigma_{p}, \sigma_{q}, \ldots\right)$, which represents a collection of strategies of workers $\{w, p, q, \ldots\}$, is an equilibrium if for any worker $\bar{w} \in\{w, p, q, \ldots\}$, the worker's expected profit is maximized when she adopts strategy $\sigma_{\bar{w}}$, i.e. $\sigma_{\bar{w}}$ is her best response. An equilibrium is strict if any other strategy $\sigma_{\bar{w}}^{\prime} \neq \sigma_{\bar{w}}$ leads to a strictly lower expected profit. If a mechanism admits honest reporting as an equilibrium, we say that it is incentive compatible.

Since beliefs need not to be common among workers, i.e. they are subjective, we are particularly interested in an equilibrium concept called ex-post subjective equilibrium [Witkowski and Parkes 2012a], which is defined over admissible belief types. In this equilibrium concept, a worker's best response is independent of the belief types of other workers. The crowdsourcing model has the form of a two stage game, so in our analysis we use a refinement of an ex-post subjective equilibrium that we call perfect ex-post subjective equilibrium. Here, perfect means that a worker chooses at each stage a strategy that is in expectation the best response to the strategies of other workers according to her current beliefs. In our case, a worker would first calculate whether,
according to her prior belief, she can expect to profit from investing high effort. If she can, she would solve her task, update her belief with respect to her evaluation and choose the best answer to report. If not, she would simply report the best answer according to her prior belief. For simplicity, we omit the full name of the equilibrium concept in the remaining part of the paper.

4. ANALYZING THE PEER TRUTH SERUM FOR CROWDSOURCING

In section 2, we introduced the PTSC mechanism with the reward function:

$$
\begin{aligned}
\tau\left(x_{w}, x_{p}\right) & =\alpha \cdot\left(\tau_{0}\left(x_{w}, x_{p}\right)-1\right) \\
\tau_{0}\left(x_{w}, x_{p}\right) & = \begin{cases}\frac{1}{R_{w}\left(x_{w}\right)} & \text { if } x_{w}=x_{p} \\
0 & \text { if } x_{w} \neq x_{p}\end{cases}
\end{aligned}
$$

which is applicable when a large quantity of statistically independent tasks can be used for constructing R. Notice that the PTSC score $\tau\left(x_{w}, x_{p}\right)$ might take negative values. To avoid negative rewards, one can additionally reward workers with α. However, we keep the form (1) to relate PTSC to the mechanism that elicits proper values of parameter α, presented later in the paper.

The key concept for analyzing PTSC in game theoretic terms is workers' expected reward. Suppose that worker w believes that the other workers are honest. In that case, worker w expects that the frequency of reports equal to y within the task t_{w} is $P_{p \mid w}(y \mid x)$, where the evaluation of worker w is x (see Section 3.3). On the other hand, the expected frequency of reports equal to y within a task $t \neq t_{w}$ not solved by worker w is $P_{q}(y)=P_{p}(y)$. Therefore, for a large set of tasks, the expected score of worker w for reporting y is approximately equal to:

$$
\alpha \cdot\left(\frac{P_{p \mid w}(y \mid x)}{P_{p}(y)}-1\right)
$$

The claim follows from the law of large numbers and the statistical independence of tasks. Similarly, when workers adopt a strategy described by a distribution $Q_{p \mid p}$ (strategic or heuristic strategies), we obtain that the worker w 's belief regarding the frequency of reports equal to y within the task t_{w} is $Q_{p \mid w}(y \mid x)=\sum_{z \in \mathcal{X}} Q_{p \mid p}(y \mid z) P_{p \mid w}(z \mid x)$. Her belief regarding the frequency of reports equal to y within a task $t \neq t_{w}$ not solved by worker w is $Q_{q}(y)=Q_{p}(y)=\sum_{z \in \mathcal{X}} Q_{p \mid p}(y \mid z) P_{p}(z)$. Thus, the expected score of worker w for reporting y is approximately equal to:

$$
\alpha \cdot\left(\frac{Q_{p \mid w}(y \mid x)}{Q_{p}(y)}-1\right)
$$

when $Q_{p}(y)>0$, and $-\alpha$ when $Q_{p}(y)=0$, as in that case a peer does not report y.
By analyzing the structure of workers' expected scores for different strategies, we can deduce several properties of the PTSC mechanism:
—The expected payoff of a worker w who invests high effort, obtains evaluation x, and who believes that the other workers are honest, for reporting x is $\alpha \cdot\left(\frac{P_{p \mid w}(x \mid x)}{P_{p}(x)}-1\right)$. Due to the self predicting condition (even with the self-predictor $\Delta_{w} \approx 1$), this is greater than what she expects to obtain for reporting $y \neq x$:

$$
\alpha \cdot\left(\frac{P_{p \mid w}(x \mid x)}{P_{p}(x)}-1\right)>\alpha \cdot\left(\frac{P_{p \mid w}(y \mid x)}{P_{p}(y)}-1\right)
$$

Moreover, the honest reporting strategy leads to a strictly positive expected payoff because $\frac{P_{p \mid l w}(x \mid x)}{P_{p}(x)}>1$. By choosing an appropriate scaling parameter α, one can cover the cost of effort $c\left(e_{1}\right)$, making the payment scheme ex-ante individually rational.

- When workers adopt a heuristic strategy profile (they invest low effort), their expected payoff for reporting y is equal to 0 , because $Q_{p \mid w}=Q_{p}$ (see section 3.3). This is in contrast to the honest reporting strategy profile where the expected payoff is greater than 0 . Therefore, by appropriately scaling parameter α, one can overcome the problem of having the higher cost for investing effort ($c\left(e_{1}\right)>c\left(e_{0}\right)$) and incentivize workers to invest effort. This further implies that honest reporting is an equilibrium strategy.
- Finally, we can analyze if workers can manipulate the mechanism in order to obtain higher payoffs. Suppose workers adopt a strategic strategy profile, i.e. each worker p obtains a private evaluation x_{p}, but reports according to a distribution $Q_{p \mid p}\left(\cdot \mid x_{p}\right)$. In that case, the expected payoff of worker w whose evaluation is x for reporting y is equal to:

$$
\alpha \cdot\left(\frac{Q_{p \mid w}(y \mid x)}{Q_{p}(y)}-1\right)=\alpha \cdot\left(\frac{\sum_{z} Q_{p \mid p}(y \mid z) \cdot P_{p \mid w}(z \mid x)}{\sum_{z} Q_{p \mid p}(y \mid z) \cdot P_{p}(z)}-1\right)
$$

when $Q_{p \mid p}(y \mid z)>0$ for some $z \in \mathcal{X}$. This follows from the definitions of $Q_{p \mid w}$ and Q_{p}. Assuming the self-predicting condition (even with the self-predictor $\Delta_{w} \approx 1$), the expression is maximized when $Q_{p \mid p}(\bar{z} \mid z)=\mathbb{1}_{\hat{\sigma}(z)=\bar{z}}$ with $\hat{\sigma}(x)=y$, where $\hat{\sigma}$ is a bijective function from the set of possible evaluations to the set of possible reports. Namely, the expression above can be written as:

$$
\begin{aligned}
& \alpha \cdot\left(\frac{Q_{p \mid p}(y \mid x) \cdot P_{p \mid w}(x \mid x)+\sum_{z \neq x} Q_{p \mid p}(y \mid z) \cdot P_{p \mid w}(z \mid x)}{Q_{p \mid p}(y \mid x) \cdot P_{p}(x)+\sum_{z \neq x} Q_{p \mid p}(y \mid z) \cdot P_{p}(z)}-1\right) \\
& =\alpha \cdot\left(\frac{Q_{p \mid p}(y \mid x) \cdot P_{p}(x) \cdot \frac{P_{p \mid w}(x \mid x)}{P_{p}(x)}+\sum_{z \neq x} Q_{p \mid p}(y \mid z) \cdot \frac{P_{p \mid w}(z \mid x)}{P_{p}(z)} \cdot P_{p}(z)}{Q_{p \mid p}(y \mid x) \cdot P_{p}(x)+\sum_{z \neq x} Q_{p \mid p}(y \mid z) \cdot P_{p}(z)}-1\right) \\
& \leq \alpha \cdot\left(\frac{Q_{p \mid p}(y \mid x) \cdot P_{p}(x) \cdot \frac{P_{p \mid w}(x \mid x)}{P_{p}(x)}+\sum_{z \neq x} Q_{p \mid p}(y \mid z) \cdot \frac{P_{p \mid w}(x \mid x)}{P_{p}(x)} \cdot P_{p}(z)}{Q_{p \mid p}(y \mid x) \cdot P_{p}(x)+\sum_{z \neq x} Q_{p \mid p}(y \mid z) \cdot P_{p}(z)}-1\right) \\
& =\alpha \cdot\left(\frac{P_{p \mid w}(x \mid x)}{P_{p}(x)}-1\right)
\end{aligned}
$$

where the inequality comes from the self-predicting condition and is strict if there exists $z \neq x$ such that $Q_{p \mid p}(y \mid z)>0$. Since the honest reporting strategy profile can be described by $\hat{\sigma}(x)=x$ and it results in a payoff equal to $\alpha \cdot\left(\frac{P_{p \mid w}(x \mid x)}{P_{p}(x)}-1\right)$, we conclude that the maximal payoff is obtained for honest reporting. The same holds for profit if α is properly chosen.

The PTSC mechanism with reward function (1) assumes a large number of statistically similar tasks, which in practice is often satisfied. In the following sections, we adopt this approach to construct a more robust version of the PTSC mechanism which also operates with a smaller number of statistically independent tasks. Therefore, we provide a formal analysis only for the more general version of the PTSC mechanism.

ALGORITHM 2: The Robust Peer Truth Serum for Crowdsourcing

Reward each worker w using the following mechanism:
(1) Consider $n-1$ tasks in addition to task t_{w}, where n is big enough to allow desirable properties (see Theorem 4.3, Theorem 4.7 and Section 4.5).
(2) Randomly sample n reports from n different tasks, including the task t_{w}, but not worker w 's report.
(3) Calculate the frequency of reported values within this sample $R_{w}(x)=\frac{n u m(x)}{\sum_{y \in \mathcal{X}} \operatorname{num(y)}}$, where num is the function that counts occurrences of reported values in the sample.
(4) Worker w is rewarded for reporting $Y_{w}=x_{w}$ with the score:

$$
\tau\left(x_{w}, x_{p}\right)= \begin{cases}\alpha \cdot\left(\frac{\mathbb{x}_{x_{w}}=x_{p}}{R_{w}\left(x_{w}\right)}-1\right) & \text { if } R_{w}\left(x_{w}\right) \neq 0 \tag{6}\\ 0 & \text { if } R_{w}\left(x_{w}\right)=0\end{cases}
$$

where $\mathbb{1}_{x_{w}=x_{p}}$ is an indicator variable (equal to 1 if $x_{w}=x_{p}$, and 0 otherwise) and α is a constant strictly greater than $0 . x_{p}$ is the report of worker w 's peer, who solves task t_{w} and whose report is in the sample from which R_{w} was obtained.

4.1. Robust Peer Truth Serum for Crowdsourcing

In the PTSC mechanism from the previous section, reports from all workers were used to calculate statistic R. In general, this might not lead to a proper result if one task is solved by significantly more workers than other tasks. To avoid this issue, we sample an answer from each task and construct R from the obtained sample.

Since R is calculated from a finite number of samples, it is possible that $R(x)$ is equal to 0 for a certain report x, which would lead to an ill-defined score due to the division by 0 . To overcome this problem, we distinguish values x when the statistic $R(x)$ is equal to 0 . When $R(x) \neq 0$, a worker who reports x obtains a score proportional to $\frac{1}{R(x)}-1$ if her peer has also reported x, and a score proportional to -1 otherwise. On the other hand, if $R(x)=0$, a worker who reports x obtains 0 , since there is no peer that matches the worker's report. As we will see later on, this definition ensures us that workers who invest low effort are indifferent between reporting any two different answers, which is important when it comes to suppressing heuristic reporting strategies.

More formally, we define the Robust Peer Truth Serum for Crowdsourcing (RPTSC) as a mechanism that follows the steps of Algorithm 2.

Although RPTSC is a nonlinear scheme, the expected score can be expressed in a closed form.

LEMMA 4.1. The expected payoff of worker w with evaluation $X_{w}=x$ and report $Y_{w}=y$ in the RPTSC mechanism is equal to:

$$
\begin{cases}\alpha \cdot\left(\frac{Q_{p \mid w}(y \mid x)}{Q_{p}(y)}-1\right) \cdot\left(1-\left(1-Q_{p}(y)\right)^{n-1}\right) & \text { if } Q_{p}(y)>0 \tag{7}\\ 0 & \text { if } Q_{p}(y)=0\end{cases}
$$

where n is the number of tasks.
An important property to satisfy is a resilience towards heuristic (random) reporting, meaning that in expectation a mechanism should not reward workers who invest low effort, regardless of their reporting strategy. The following proposition shows that RPTSC satisfies this property.

PROPOSITION 4.2. In the RPTSC mechanism, the expected payoff of a worker w with a heuristic strategy is equal to 0 and her profit is equal to $-c_{w}\left(e_{0}\right)$.

In order to incentivize workers to invest high effort, their expected payoff for investing high effort should be strictly greater than when they report randomly. Suppose all workers adopt the honest strategy. We denote by $\bar{\tau}_{w}(\alpha)$ the expected payoff of a worker w before she evaluates her task, i.e.:

$$
\begin{equation*}
\bar{\tau}_{w}(\alpha)=\mathbb{E}_{X_{w}=x}\left(\alpha \cdot\left(\frac{P_{p \mid w}(x \mid x)}{P_{p}(x)}-1\right) \cdot\left(1-\left(1-P_{p}(x)\right)^{n-1}\right)\right) \tag{8}
\end{equation*}
$$

where the expectation $E_{X_{w}=x}$ is taken over worker's w possible evaluations $x \in \mathcal{X}$. It is important to note that here all workers, including worker w, adopt a strategy of investing high effort e_{1} and truthful reporting. This differs from random reporting strategies, where workers invest low effort e_{0} and are expected to obtain payoffs equal to 0 . Also, notice that $\bar{\tau}_{w}(\alpha)$, which represents worker w 's expected payoff prior to her evaluation, depends on parameter α.

4.2. Incentive Compatibility

When workers agree to invest high effort e_{1} and report honestly, a worker w might find it more profitable to deviate, as investing high effort increases the cost. In order to prevent such deviations, a mechanism should cover the cost of investing high effort, and in RPTSC this can be done by properly scaling parameter α.

Theorem 4.3. Suppose that for all workers w and answers $x \in \mathcal{X}$, parameter α and the number of tasks n satisfy:

$$
\begin{gather*}
\bar{\tau}_{w}(\alpha)>c_{w}\left(e_{1}\right)-c_{w}\left(e_{0}\right) \tag{9}\\
\frac{1-\left(1-P_{q}(x)\right)^{n-1}}{1-P_{q}(x)^{n-1}} \geq \Delta_{w}
\end{gather*}
$$

where Δ_{w} is the self-predictor of worker w. Then the RPTSC mechanism admits the honest reporting strategy profile as a strict equilibrium.

It is interesting to note that reporting according to a strategy profile strategic defined by $Q_{w \mid w}(y \mid x)=\mathbb{1}_{y=\hat{\sigma}(x)}$, where $\hat{\sigma}$ is a bijective function $\hat{\sigma}: \mathcal{X} \rightarrow \mathcal{X}$ from the answer space to the set of reports, is also an equilibrium, provided that the conditions of Theorem 4.3 hold. For example, bijection $\hat{\sigma}$ could define that workers with evaluation x report y, while those with evaluation y, report x. This symmetry comes from Lemma 4.1 and the fact that $Q_{p}(\hat{\sigma}(y))=P_{p}(y)$ and $Q_{p \mid w}(\hat{\sigma}(y) \mid x)=P_{p \mid w}(y \mid x)$. We call this property permutation indifference, and it implies that the equilibrium strategies defined by $Q_{w \mid w}(y \mid x)=\mathbb{1}_{y=\hat{\sigma}(x)}$ achieve the same expected profits as the honest strategy profile. However, these strategies require costly coordination without any benefit.

4.3. Low-effort aversion

Although RPTSC admits non-informed equilibria, Proposition 4.2 shows that workers are not expected to profit in these equilibria. In fact, the direct consequence of Proposition 4.2 and Theorem 4.3 is that a low-effort strategy profile results in worse expected profits than the honest strategy profile for an appropriately scaled parameter α, even if the low-effort strategy is a mixture of investing high and low effort.

Lemma 4.4. Suppose that condition (9) of Theorem 4.3 holds. Any equilibrium of RPTSC where a heuristic strategy is adopted (played) with non-zero probability, i.e. where a worker w's effort e_{w} can be equal to $e_{w}=e_{0}$, leads to lower expected profits than the honest reporting strategy profile.

With RPTSC, one can achieve even more. Suppose that a population of workers contains a certain number of workers who invest high effort and report their true evaluations, and other workers whose strategies are based on low effort. Then RPTSC can be properly scaled so that the best response to such scenario is to invest high effort. This means that a fraction of at least β honest workers can be used to eliminate low effort equilibria. We call this property low-effort aversion:

Definition 4.5. Consider a parameter $\beta \in(0,1]$ and a strategy profile that is a mixture of the honest and heuristic strategies, where the honest strategy is adopted (played) with probability γ. A mechanism is β-low-effort averse if it does not admit the mixed strategy profile as an equilibrium for any γ such that $\beta \leq \gamma \leq 1$.

Proposition 4.6. Suppose that scaling parameter α is such that:

$$
\begin{equation*}
\alpha>\frac{c_{w}\left(e_{1}\right)-c_{w}\left(e_{0}\right)}{\beta \cdot \mathbb{E}_{X_{w}=x}\left[P_{p \mid w}(x \mid x)-P_{p}(x)\right]} \tag{10}
\end{equation*}
$$

for all workers w, where $\mathbb{E}_{X_{w}=x}$ is the expectation over possible evaluations of a worker w. Then RPTSC is β-low-effort averse.

4.4. Optimality

Many payment schemes are not resistant to collusive strategies where all workers report identical values, and often these strategies lead to considerably greater payoffs than the honest reporting strategy profile. One can easily show by using Lemma 4.1 that the expected payoff of a strategy profile in which workers report a single value is in the RPTSC mechanism equal to 0 . Since it is more profitable for workers to invest high effort and report honestly, we can say that appropriately scaled RPTSC is resistant to collusion based on reporting a single value. However, it is reasonable to ask how good the honest reporting equilibrium is compared to the optimal strategy profile. The following theorem gives a condition for the optimality of honest reporting.

THEOREM 4.7. Suppose that for all workers w and answers $x \in \mathcal{X}$, parameter α and the number of tasks n satisfy:

$$
\begin{gather*}
\bar{\tau}_{w}(\alpha)>c_{w}\left(e_{1}\right)-c_{w}\left(e_{0}\right) \tag{11}\\
\left(1-(n-1) \cdot P_{p}(x) \cdot \frac{\left(1-P_{p}(x)\right)^{n-2}}{1-\left(1-P_{p}(x)\right)^{n-1}}\right) \geq \Delta_{w}
\end{gather*}
$$

where Δ_{w} is the self-predictor of worker w. Then the honest reporting strategy profile is a strict equilibrium of the RPTSC mechanism that results in maximal profit.

Condition (11) is stricter than condition (9) in a sense that any self-predictor Δ_{w} that satisfies (11) necessarily satisfies (9).

LEMMA 4.8. If for all workers w and answers $x \in \mathcal{X}$, self-predictor Δ_{w} satisfies condition (11), then it also satisfies condition (9).

Both conditions (9) and (11), as well as the expected payoff (7), depend on the number of tasks n and self-predictor Δ_{w}. It is easy to show that the bounds on Δ_{w} in (9) and (11) are greater than or equal to 0 . Since answer values are anti-correlated for a binary answer space, increase in belief for one answer value corresponds to the decrease in belief for another answer value. This means that in a binary setting, conditions (9) and (11) are satisfied regardless of n and Δ_{w}. In the next section, we show how the number of tasks influences the amount of positive correlation allowed between different answer values of a non-binary answer space.

4.5. Limiting cases with the number of tasks $n=2$ and $n \rightarrow \infty$

We first examine the case when there is only one task in addition to a task t_{w} solved by a worker w. The expected payoff of a worker w with evaluation x for reporting y is in that case equal to:

$$
\alpha \cdot\left(\frac{Q_{p \mid w}(y \mid x)}{Q_{p}(y)}-1\right) \cdot\left(1-\left(1-Q_{p}(y)\right)\right)=\alpha \cdot\left(Q_{p \mid w}(y \mid x)-Q_{p}(y)\right)
$$

This means that for $n=2$, the RPTSC score is in expectation equivalent to the linear score:

$$
\begin{equation*}
\tau\left(x_{w}, x_{p}\right)=\alpha \cdot\left(\mathbb{1}_{x_{w}=x_{p}}-R_{w}^{\prime}\left(x_{w}\right)\right) \tag{12}
\end{equation*}
$$

where $R_{w}^{\prime}\left(x_{w}\right)=2 \cdot\left(R_{w}\left(x_{w}\right)-\frac{\mathbb{1}_{x_{w}=x_{p}}}{2}\right)=\mathbb{1}_{x_{w}=x_{q}}$, i.e. $R_{w}^{\prime}\left(x_{w}\right)$ is constructed by sampling one report from the task not solved by worker w. The requirement for incentive compatibility of this score is:

$$
P_{p \mid w}(y \mid x)-P_{p}(y)<P_{p \mid w}(x \mid x)-P_{p}(x), \forall y \neq x
$$

That is, a worker's belief change from prior to posterior should be largest for the answer equal to the worker's evaluation. However, the condition for optimality (11) imposes restriction that different answer values are anti-correlated, i.e.:

$$
P_{p \mid w}(y \mid x)-P_{p}(y)<0, \forall y \neq x
$$

Although condition (11) is only a sufficient condition of Theorem 4.7, it is actually tight for $n=2$. Namely, if the condition did not hold, workers with evaluations x and y, and beliefs $P_{p \mid w}(y \mid x)-P_{p}(y)>0$ and $P_{p \mid w}(x \mid y)-P_{p}(x)>0$, would be better off reporting the same value (e.g. all of them report x or y) than reporting honestly. This comes from the fact that their expected payoff with such a collusive behavior would be $P_{p \mid w}(x \mid x)+P_{p \mid w}(y \mid x)-P_{p}(x)-P_{p}(y) \geq P_{p \mid w}(x \mid x)-P_{p}(x)$ and $P_{p \mid w}(x \mid y)+P_{p \mid w}(y \mid y)-$ $P_{p}(x)-P_{p}(y) \geq P_{p \mid w}(y \mid y)-P_{p}(y)$, respectively for workers with evaluations x and y.

With a larger number of tasks, we obtain that RPTSC mechanism has the same incentive compatibility requirements as the PTSC mechanism with reward function (1) - in that sense they are equivalent. In particular, the RPTSC requirements for incentive compatibility and optimality now coincide and are equal to the self-predicting condition with an unconstrained self-predictor $\Delta_{w} \in[0,1]$. This means that for a larger number of tasks our mechanism allows a (bounded) positive correlation between two different answer values.

We see that a mechanism has to decide on an appropriate number of tasks to allow correlated answer values. To do this, it does not need a knowledge about workers' beliefs, only estimates regarding the minimal value of priors $\min _{w, z} P_{p}(z)$ and the maximal value of self-predictors $\max _{w} \Delta_{w}$ among all workers w. The only restriction is that $\min _{w, z} P_{p}(z)$ is not overestimated and $\max _{w} \Delta_{w}$ is not underestimated. For example, one could incrementally take tasks into account - one by one - until workers' responses clearly indicate minimal value of $\min _{w, z} P_{p}(z)$, determined by the frequency of the least frequent report, and maximal value of $\max _{w} \Delta_{w}$, determined by the correlation among different reports.

Conditions (9) and (11) specify the upper bound on correlations among different answer values, described by self-predictor Δ_{w}, that implies incentive compatibility and optimality, given the number of tasks n. In the table below we show how quickly the upper bound of (11) approaches 1 as the number of tasks grows. Since by Lemma 4.8 condition (11) is stricter than condition (9), the upper bound applies for both conditions. Clearly, for a reasonable number of tasks n, the bound allows significant correlation among different answers, even for the prior with values as small as 0.05.

n	$\min _{z} P_{p}(z)=0.05$	$\min _{z} P_{p}(z)=0.1$	$\min _{z} P_{p}(z)=0.2$
10	$\Delta_{w} \leq 0.19$	$\Delta_{w} \leq 0.36$	$\Delta_{w} \leq 0.65$
30	$\Delta_{w} \leq 0.55$	$\Delta_{w} \leq 0.84$	$\Delta_{w} \leq 0.98$
60	$\Delta_{w} \leq 0.84$	$\Delta_{w} \leq 0.98$	$\Delta_{w} \leq 1$
100	$\Delta_{w} \leq 0.96$	$\Delta_{w} \leq 1$	$\Delta_{w} \leq 1$

We have seen that RPTSC reduces to a simple linear score when statistic R is calculated based on only one task in addition to the task being solved by a worker w. The form of the score (12) is similar to Dasgupta\&Ghosh mechanism introduced in [Dasgupta and Ghosh 2013]. In fact, they are equivalent (see Section C in the Online Appendix), which means that the Dasgupta\&Ghosh mechanism is a special case of RPTSC score obtained in the limit case when R is calculated from only two tasks. Moreover, the equivalence implies that the Dasgupta\&Ghosh mechanism requires non-correlated answer values for the honest reporting strategy profile to result in maximal profit.

4.6. Eliciting the scaling parameter of RPTSC

In the RPTSC, the expected reward for an honest answer, obtained by exerting effort, exceeds that for a heuristic answer by a positive margin. Using the scaling parameter α, this margin can be scaled so that it exceeds the cost of high effort. In this case, the expected reward for a heuristic strategy can be kept at 0 , thus discouraging low effort workers from participating in the mechanism. We now show that it is possible to elicit a proper value of this parameter, for which workers who participate in solving tasks are incentivized to invest high effort.

Let us assume that strategies based on low effort induce some cost $c\left(e_{0}\right)>0$. This can be interpreted, for example, as a cost of reporting. In order to achieve desirable properties, the RPTSC parameter α needs to be properly adjusted, so that the a prior expected payoff for investing high effort and honest reporting $\bar{\tau}_{w}(\alpha)$ satisfies $\bar{\tau}_{w}(\alpha)>$ $c\left(e_{1}\right)-c\left(e_{0}\right)$. Although prescreening methods could be used to obtain proper scaling parameters, as discussed in [Dasgupta and Ghosh 2013], we show how one can make use of potentially negative rewards in order to elicit the values of scaling parameters that would cover the cost of high effort. ${ }^{4}$

One way to elicit a proper value of α is by using auctioning, similar to [Papakonstantinou et al. 2011]. We define the following two-step protocol:
(1) The mechanism asks workers to report the parameter α_{w} of the RPTSC mechanism that would recover their costs. After collecting their reports, it calculates $\hat{\alpha}$ such that π proportion of declared α_{w} 's is greater than $\hat{\alpha}$. Then every worker with α_{w} lower than $\hat{\alpha}$ proceeds to the next stage.
(2) Workers solve their tasks, report their answers and are rewarded according to the RPTSC mechanism with $\alpha=\hat{\alpha}$.

To apply the protocol, we should have at least $\left\lceil\frac{2}{1-\pi}\right\rceil$ or more workers per task, where $\pi \in(0,1)$. This guarantees that we have at least two workers per task when we execute RPTSC in the second stage of the mechanism, after removing a π proportion of the workers in the first phase.

Because a worker would never announce a parameter α_{i} that leads to a negative profit, the two-step protocol is ex-ante individual rational and preserves the properties of the RPTSC.

[^3]Proposition 4.9. Consider workers with nontransferable utilities (payments). Suppose $c\left(e_{0}\right)>0$ and let $\bar{\tau}_{w}(\alpha)$ be a priori expected payoff of worker w in the honest reporting equilibrium. Then, reporting in the first stage α_{w} such that $\bar{\tau}_{w}\left(\alpha_{w}\right)=c_{w}\left(e_{1}\right)$, and using the honest strategy profile in the second stage is an equilibrium of the twostep protocol.

Notice that if workers are allowed to transfer their payments, then the auctioning model is not resilient to collusion. However, we can put a lower bound on the percentage of workers necessary to make a successful coalition by setting parameter π, that defines $\hat{\alpha}$, large enough. Indeed, in a realistic scenario, only a certain percentage of workers would form such coalitions, so by having large π, we can avoid this type of collusion.

5. EXPERIMENTAL EVALUATION

In this section, we analyze the properties of the PTSC mechanisms in two crowdsourcing domains, community sensing and peer grading, focusing on two aspects: its manipulation resistance to collusive behaviour and its effectiveness to elicit quality information. The analysis is done on a less robust version of the PTSC mechanism that requires a larger number of tasks, which usually holds in the proposed applications.

5.1. PTSC in Community Sensing

As an example of a community sensing scenario, consider an air-quality monitoring over an urban area. In order to use the PTSC mechanism we need to identify the set of statistically independent tasks. Since air-pollution is a localized phenomenon, we can define a set of tasks as measuring levels of air-pollution at locations that are significantly away from each other. Assuming that measurements at these locations are conditionally independent given a global state, here denoted by Γ, we can apply the PTSC mechanisms in a similar fashion as described in Section 2. Global state Γ is modeled as a random variable that takes values in a finite discrete set $\left\{\gamma_{1}, \gamma_{2}, \ldots\right\}$. Notice that the global state Γ does not describe how local variations influence a sensor's measurement at a certain location. For example, it might capture the fact that high humidity over an urban area increases the measured levels of air-pollution, but it does not capture the fact that some places might have events like traffic jams or fires.

We further assume that the self predicting condition holds regardless of the global state Γ, i.e.:

$$
\frac{P_{p \mid w}(y \mid x, \Gamma=\gamma)}{P_{p}(y \mid \Gamma=\gamma)}-1<\frac{P_{p \mid w}(x \mid x, \Gamma=\gamma)}{P_{p}(x \mid \Gamma=\gamma)}-1, \forall \gamma \in\left\{\gamma_{1}, \gamma_{2}, \ldots\right\}, y \neq x
$$

In other words, the highest relative increase in a sensor's belief is obtained for the observed value. This condition is natural due to the fact that it describes the significance of sensors' measurements. With this in mind, we can reward a sensor using the PTSC mechanism with the following structure:
(1) For a sensor w that reports x_{w}, from a neighboring set of sensors (sensors located in the vicinity of sensor w) select a peer sensor p.
(2) Calculate the frequency of reports equal to x_{w} among reference sensors $\rho(|\rho| \gg 1)$, that include peer sensor p, but are not each other's neighbors:

$$
R\left(x_{w}\right)=\frac{1}{|\rho|} \sum_{s \in \rho} \mathbb{1}_{x_{w}=x_{s}}
$$

(3) Reward sensor w with the PTSC mechanism of the form (1).

Since the reference sensors ρ are not each other's peers, their measurements are conditionally independent given Γ. Therefore, using the same reasoning as in the previous sections, we conclude that the expected payoff of sensor w, who observes x, for reporting y is approximately:

$$
\alpha \cdot\left(\sum_{\gamma \in\left\{\gamma_{1}, \gamma_{2}, \ldots\right\}} \operatorname{Pr}(\Gamma=\gamma \mid x) \cdot \frac{P_{p \mid w}(y \mid x, \Gamma=\gamma)}{P_{p}(y \mid \Gamma=\gamma)}-1\right)
$$

provided that the other sensors are honest. Similarly, when sensors adopt a strategy that is described by a distribution $Q_{p \mid p}$, the expected payoff of sensor w for reporting y is approximately:

$$
\alpha \cdot\left(\sum_{\gamma \in\left\{\gamma_{1}, \gamma_{2}, \ldots\right\}} \operatorname{Pr}(\Gamma=\gamma \mid x) \cdot \frac{Q_{p \mid w}(y \mid x, \Gamma=\gamma)}{Q_{p}(y \mid \Gamma=\gamma)}-1\right)
$$

Since $\frac{P_{p \mid w}(y \mid x, \Gamma=\gamma)}{P_{p}(y \mid \Gamma=\gamma)}$ satisfies the self-prediction for any global state γ, it is clear that the mechanism has the same properties as the PTSC mechanism presented in Section 2.

In order to apply the PTSC mechanism, one needs to find a peer measurement. In pollution sensing, we will rarely have two sensors in the same place, so we may use an artificial value constructed from the values reported by neighboring sensors. The simplest criteria for selecting neighbors would be to choose the m closest sensors. However, pollution can vary strongly due to differences in land use: a busy street will have much higher pollution than a forest next to it, even though the locations may be very close. This can be captured most accurately by models of pollution propagation as we have done in earlier work [Faltings et al. 2014a]. In this experiment, we chose a simpler solution where we just select one peer sensor in a location with similar characteristics. Finally, the center determines reference sensors ρ for each sensor. While this process can be a random selection with constraint that reference sensors are not neighbors, in practice, one can consider ρ to be the set of all sensors, without affecting any incentive properties. Namely, it suffices that $R(x)$ converges to $P_{p}(x \mid \Gamma)$, which is for $|\rho| \gg 1$ naturally satisfied in the considered setting.

We examine the characteristics of the presented PTSC using realistic data of Nitrogen Dioxide (NO_{2}) concentrations over the city of Strasbourg. The data consists of both real measurements collected by ASPA ${ }^{5}$ and estimations of pollution from the physical model ADMS Urban V2.3 [Colvile et al. 2002]. In total, the data set contains concentrations of NO_{2} for each hour, expressed in parts per million (ppm), at 116 different locations over a period of four weeks.

Although the initial measurements take values in continuous domain, we discretize it using four levels of pollution defined as:

- low: concentrations $0-20 \mathrm{ppb}$;
-medium: concentrations $20-40 \mathrm{ppb}$;
- high: concentrations $40-60 \mathrm{ppb}$;
—extra-high: concentrations $60-\infty \mathrm{ppb}$.
Each hour, sensors report the measured level of pollution to the center and are rewarded with the PTSC mechanism (with constant $\alpha=10$). As a criterion for neighbor selection, we consider distance and define neighbors of a certain sensor as 10 closest sensors. In peer selection, we effectively simulate the prior knowledge of the center by

[^4]Table I. Average payoffs (stat. sensors)

Strategy	mean	\min	\max	median	1st quartile	3rd quartile
honest	6.779	-0.03	59.969	3.658	2.703	7.806
collude	2.323	-0.146	21.769	1.045	0.7	2.805
colludeLow	0	0	0	0	0	0
random	0.022	-1.974	26.779	-1.076	-1.434	0.166
randomAll	0.071	-2.161	2.137	0.175	-0.438	0.609

identifying for each location a neighboring location at which the true measurements are the most correlated to the true measurements at the considered location. ${ }^{6}$ The sensor located in this neighboring location is considered as a peer. Empirical frequency $R(x)$ is calculated based the reports of all sensors, except for the report of the sensor that is being scored.

To demonstrate the correctness of our results, we examine four different reporting strategies and evaluate their performance by analyzing the average scores of sensors. The four strategies are defined as follows:
-honest: All sensors are honest.

- collude: Sensors collude so that those who observe low or medium report low, while those who observe high or extra - high report high.
- colludeLow: All sensors collude and report low.
-random: A sensor whose score is being calculated reports randomly with probabilities $Q_{w \mid w}(l o w)=\cdots=Q_{w \mid w}($ extra - high $)=0.25$; while others sensors are honest.
—randomAll: All sensors report randomly with probabilities $Q_{p \mid p}(l o w)=\cdots=$ $Q_{p \mid p}($ extra - high $)=0.25$.

For each sensor, we run a separate process in which the sensors report according to one of these strategy profiles and we calculate the average payoff of the considered sensor.
5.1.1. Stationary sensors. We first consider a scenario where each sensor is stationary, i.e. it occupies one location for the whole sensing period. The statistic of the average PTSC payoffs is shown in Table I. These payoffs can be further scaled in different ways, so that, for example, the incentives take positive values and cover the cost of sensing.

As expected, random reporting strategies lead to scores that are concentrated around 0 , which is clearly seen from median of random and randomAll strategies. Colluding on a single value results in payoff equal to 0 , and this trivially follows from the structure of the score. Collusion strategy collude has lower mean of the average payoffs than honest reporting. Moreover, a careful inspection of medians and quartiles shows that the collusive strategies are worse than honest reporting for the majority of sensors: the median, the 1st quartile, the 3rd quartile and the maximum of average payoffs are greater for honest reporting than for the collusive strategies.

We tested the statistical significance of these results by applying the student's ttest on the average scores of sensors for each pair of the strategy profiles. The nullhypothesis was that the average payoff of a sensor rewarded with different schemes follow the same distribution. As shown in Table II, the tests indicate that distribution of average payoffs for truthful reporting is significantly different than the other four strategy profiles, with p-values less than 0.01 . We obtain a similar result for strategy collude. For the other three strategy profiles, one cannot reject the null hypothesis with

[^5]Table II. T-tests: p-values for different pairs strategies (stat. sensors)

Strategy	honest	collude	colludeLow	random	randomAll
honest	-	$5 \cdot 10^{-7}$	$6 \cdot 10^{-14}$	$4 \cdot 10^{-13}$	$1 \cdot 10^{-13}$
collude	$5 \cdot 10^{-7}$	-	$3 \cdot 10^{-12}$	$1 \cdot 10^{-7}$	$2 \cdot 10^{-11}$
colludeLow	$6 \cdot 10^{-14}$	$3 \cdot 10^{-12}$	-	0.94	0.301
random	$4 \cdot 10^{-13}$	$1 \cdot 10^{-7}$	0.94	-	0.873
randomAll	$1 \cdot 10^{-13}$	$2 \cdot 10^{-11}$	0.301	0.873	-

the significance level $\alpha=0.05$. This is not surprising considering that for these three strategies the average payoffs are concentrated around 0 .

The described scenario involve stationary sensors, so the sensors were solving approximately the same task over a longer period. This deviates from our assumption that tasks are randomly distributed to workers, so a sensor that reports randomly might obtain a relatively high average payoff over a longer sensing period when the histogram of its reports is more correlated to the reports of its peer than R is. Although a sensor reports randomly, its reports carry some information about its peer w.r.t. R, so it is not surprising that such a sensor might obtain positive rewards. Notice, however, that honest reporting leads to significantly higher payoffs, as shown in Figure 2.

Fig. 2. Average payoffs of honest and random strategies for each sensor (stat. sensors), arranged in no particular order along the x -axis.
5.1.2. Mobile sensors. In community sensing, sensors are often mobile, in which case the assumption about random task assignment is approximately fulfilled. Therefore, we further investigate what happens when sensors' locations are randomly selected at each iteration. As shown by the statistic of the average PTSC payoffs in Table III and p-values in Table IV, the qualitative results are similar to the stationary case, with the main difference being the variance of the average payoffs. ${ }^{7}$ Furthermore, the honest reporting strategy results in significantly higher payoffs than random reporting (Figure 3), as it is the case for stationary sensors.

5.2. PTSC in Peer Grading

In order to test the impact that PTSC has on the quality of grades, we designed a peer grading experiments within "Artificial Intelligence" course at EPFL. In particular, as a part of the evaluation process, the course contained three quizzes, each consisting of

[^6]Table III. Average payoffs (mobile sensors)

Strategy	mean	\min	\max	median	1st quartile	3rd quartile
honest	6.779	4.064	12.941	6.456	5.665	7.664
collude	2.323	1.052	5.141	2.027	1.755	2.707
colludeLow	0	0	0	0	0	0
random	-0.008	-1.781	3.714	-0.294	-0.702	0.389
randomAll	0.03	-1.446	1.792	-0.109	-0.38	0.49

Table IV. T-tests: p -values for different pairs of strategies (mobile sensors)

Strategy	honest	collude	colludeLow	random	randomAll
honest	-	$1 \cdot 10^{-60}$	$7 \cdot 10^{-74}$	$2 \cdot 10^{-90}$	$6 \cdot 10^{-84}$
collude	$1 \cdot 10^{-60}$	-	$5 \cdot 10^{-57}$	$3 \cdot 10^{-48}$	$6 \cdot 10^{-61}$
colludeLow	$7 \cdot 10^{-74}$	$5 \cdot 10^{-57}$	-	0.933	0.637
random	$2 \cdot 10^{-90}$	$3 \cdot 10^{-48}$	0.933	-	0.739
randomAll	$6 \cdot 10^{-84}$	$6 \cdot 10^{-61}$	0.637	0.739	-

Fig. 3. Average payoffs of honest and random strategies for each sensor (mobile sensors), arranged in no particular order along the x -axis.
two parts: in one part, students were asked to add a missing code; in the other, they were asked to find mistakes in a given code. The three quizzes took place at different time periods during the semester, assessing the knowledge about different topics of the course. Each problem in the quizzes had a correct solution and these solutions were used to assign points to the students, which were a part of the final grade. The official corrections of the quizzes were done by the teaching assistants of the course. Before the official points were announced, the students were asked to correct the solutions of their colleagues based on the correct solutions.

A criterion to determine the quality of a solution for a part of a quiz in which students were supposed to add a missing code was described by three to four different cases that defined potential mistakes or shortcoming of a student's solution. These cases were designed so that each of them covers combination of possibilities that can occur in students' solutions, keeping in mind that the combinations are mutually exclusive between the cases. Naturally, a peer grader was selecting only one of these cases, and reporting only one value in total for the whole part. For the other part of the quiz, where students were supposed to find mistakes in a given code and correct them, a grading criterion was much easier to define. For each mistake in a given code, a student could either: not find the mistake; find a mistake, but not correct it; find a mistake and correct it. Therefore, a peer grader was presented with these three possibilities. Notice, however, that a peer grader made such reports for all mistakes that were in a given code (four to five), effectively reporting several values. Each reported value was separately treated in a peer rewarding mechanism.

To incentivize participation we rewarded peer graders with bonus points (additional points that could improve their grades), that were obtained using one of the three different reward schemes: a constant reward, a peer consistency [Huang and Fu 2013b] and PTSC. For the constant reward regime, a peer grader who participated in the peer grading obtained the maximum number of bonus points MaxTotal Reward. For the peer consistency, reward for reporting an answer was equal to $\frac{\text { MaxTotalReward }}{N u m T a s k s}$ if a chosen peer reports the same answer, and is 0 otherwise. NumTasks denotes the number of sub-parts to grade, which was equal to the number of reports that a peer grader made. The PTSC mechanism was also applied for each report separately. Furthermore, the scaling parameter of PTSC was equal to $\alpha=\frac{1}{2} \cdot \frac{\text { MaxTotal Reward }}{N u m T a s k s t}$, and the scores were shifted (increased) by α to ensure that bonus points are positive. If a total number of the PTSC points exceeded MaxTotalReward, it was set to MaxTotalReward. Finally, statistic $R(x)$ in PTSC was designed for each sub-part of a quiz separately, and it was defined as an empirical frequency of grades equal to x among all reports that are rewarded with PTSC for that sub-part of the quiz.

To test the quality of the reward schemes, we split the students into three groups of approximately the same number of students. Since participation in the peer grading experiment was not obligatory, the sizes of these groups varied. Each group was rewarded using all three reward schemes, but different mechanisms were applied for different quizzes in a round robin fashion. That is: if PTSC was used to assign rewards to a group for peer grading the first quiz, the same group was rewarded with the constant reward for peer grading the second quiz; if the peer consistency was used to assign rewards to a group for peer grading the first quiz, the same group was rewarded by PTSC for peer grading the second quiz, etc.

In order to do a peer grading for a quiz, students needed to go through a tutorial that explained the peer grading task and a reward scheme that was used to assign bonus points - these two were separately explained in two different sections. The tutorial also contained two examples, one for the task explanation and one for the mechanism explanation. Each example contained a simple test questions for improving students' understanding. Different schemes had a different example question, showing the most basic features of the mechanisms. For the constant reward, students were asked to answer how many points they would obtain upon fulfilling the peer grading task, with three possible answers: MaxTotalReward per task, MaxTotalReward in total, or it depends on how other raters grade. For the peer consistency, the question asked to pick the correct claim, provided that the peer reported correct. The claims were: for reporting correct the reward is 0 , for reporting incorrect the reward is $\frac{\text { MaxTotal Reward }}{\text { NumTasks }}$, or for reporting correct the reward is $\frac{\text { MaxTotalReward }}{N u m T a s k s}$. Finally, for PTSC, the question asked what the reward was for reporting correct provided that everybody else reported correct, and the options were: $5 \cdot \frac{M \text { axTotalReward }}{2 \cdot N u m T a s k s}, 3 \cdot \frac{M \text { axTotalReward }}{2 \cdot N u m T a s k s}$, or $1 \cdot \frac{\text { MaxTotalReward }}{2 \cdot N u m T a s k s} .8$ The options for each question were presented in a different order for different groups.

We measured the quality of raw data (non-aggregated responses from students) with respect to the corrections made by the teaching assistants. For each student, we calculated the number of correct reports, and then for each mechanism, we determined the average error rate, i.e. the percentage of incorrect grades. To measure the statistical significance, we performed two tailed student's t -test, with the significance level of 0.05 . The null-hypothesis was that students' error rates for two groups rewarded by different mechanisms follow the same distribution.

For the first two quizzes, each peer grader graded 4 partial solutions of her colleagues; more precisely, 2 solutions to the first part of the quiz, and 2 solutions to the
${ }^{8}$ We used numerical values in all the three test questions.

Table V. Average error rate for different mechanisms

Mechanism	Num. student	Error rate (\%)
PTSC	16	6.88
peer consistency	16	10.48
constant	14	11.98

Table VI. T-tests: p-values for different mechanisms

Mechanism	PTSC	peer consistency	constant
PTSC	-	0.0255	0.0497
peer consistency	0.0255	-	0.5566
constant	0.0497	0.5566	-

second part of the quiz. Since our analysis did not reveal any statistical significance of the accuracy of the raw data across different schemes, we increased the number of solutions to grade for the third peer grading task. That is, for the third quiz, each peer grader graded 10 partial solutions of her colleagues; more precisely, 5 solutions to the first part of the quiz, and 5 solutions to the second part of the quiz.

The results of the third quiz are shown in Table V; for each group, they contain the number of students and the average error rate. As we can see, PTSC outperforms the baseline algorithms by $3-5 \%$. Furthermore, t-tests (in Figure VI) show that there is a statistically significant difference between the error rates for the PTSC mechanism and the error rates for the constant reward or the peer consistency, with p-values equal to 0.0497 and 0.0255 , respectively.

6. CONCLUSIONS

Ensuring the accuracy of answers provided by workers is a major challenge for using crowds as part of intelligent systems. Instead of paying fixed rewards, it is desirable to use a payment scheme for which only workers that actually solve the tasks can expect to receive a reward. Such a scheme is important for two reasons:

- to improve the accuracy of answers, and thus complement filtering mechanisms such as gold tasks and worker reputation, and
- to make worker self-selection help the mechanism by discouraging workers that do not contribute useful results.

We have shown a new incentive scheme, called the Peer Truth Serum for Crowdsourcing (PTSC), where strategies that result in positive expected payments require workers to solve the tasks and truthfully report the answers. PTSC is the first mechanism that applies to problems with more than 2 answers and heterogeneous worker populations. We have shown under which conditions the mechanism has strong incentive properties and how to elicit the scaling parameters to achieve those properties. Due to its simplicity and robustness, our payment scheme is applicable to a wide variety of crowdsourcing settings, such as community sensing or peer grading in massive open online courses.

When the number of tasks is equal to 2, PTSC is equivalent to the Dasgupta\&Ghosh mechanism [Dasgupta and Ghosh 2013]. However, when there is a significant number of tasks in a batch, the non-linear structure of PTSC allows correlations among different answer values, within the bounds of the self-predicting condition. From a practical point of view, an interesting direction for future work is to investigate an adaptive mechanism that would automatically determine the number of tasks needed to have sufficiently loose conditions for incentive compatibility and optimality.

Another direction is to investigate the structure of the payments for large answer spaces. Namely, the RPTSC has a strong incentive properties in terms of a worker's expected payoff. For smaller answer spaces, the concentration inequalities, such as Hoeffding's inequality, imply that the overall payoff will very likely be close to the expected value whenever a worker solves a reasonable number of tasks. For larger answer spaces, one needs to additionally lower the variance of the RPTSC score; this can potentially be achieved by investigating correlations among different possible answers, similarly to how [Radanovic and Faltings 2014] designed a peer rewarding mechanism for elicitation of continuous signals.

ACKNOWLEDGMENTS

We thank Jason Jingshi Li for providing a community sensing testbed and the anonymous reviewers for useful comments and feedback.

REFERENCES

Luis Von Ahn and Laura Dabbish. 2004. Labeling images with a computer game. In Proceedings of the SIGCHI conference on Human factors in computing systems.
R. N. Colvile, N. K. Woodfield, D. J. Carruthers, B. E. A. Fisher, A. Rickard, S. Neville, and A. Hughes. 2002. Uncertainty in dispersion modeling and urban air quality mapping. Environmental Science and Policy 5 (2002), 207-220.
Anirban Dasgupta and Arpita Ghosh. 2013. Crowdsourced Judgement Elicitation with Endogenous Proficiency. In Proceedings of the 22nd ACM International World Wide Web Conference (WWW13).
Boi Faltings, Jason J. Li, and Radu Jurca. 2014a. Incentive Mechanisms for Community Sensing. IEEE Trans. Comput. 63 (2014), 115-128
Boi Faltings, Pearl Pu, Bao Duy Tran, and Radu Jurca. 2014b. Incentives to Counter Bias in Human Computation. In Proceedings of HCOMP 2014.
Xi Alice Gao, Andrew Mao, and Yiling Chen. 2013. Trick or Treat: Putting Peer Prediction to the Test. In Workshop on Crowdsourcing and Online Behavioral Experiments, in conjunction with ACM EC13.
Florent Garcin and Boi Faltings. 2014. Swissnoise: Online Polls with Game-Theoretic Incentives. Proceedings of the 26th Conference on Innovative Applications of AI (2014), 2972-2977.
Sharad Goel, Daniel M. Reeves, and David M. Pennock. 2009. Collective revelation: A mechanism for selfverified, weighted, and truthful predictions. In Proceedings of the 10 th ACM conference on Electronic commerce (EC 2009).
Christopher Harris. 2011. Youre hired! an examination of crowdsourcing incentive models in human resource tasks. In Proceedings of the Workshop on Crowdsourcing for Search and Data Mining (CSDM) at the Fourth ACM International Conference on Web Search and Data Mining (WSDM).
Shih-Wen Huang and Wai-Tat Fu. 2013a. Don't Hide in the Crowd!: Increasing Social Transparency Between Peer Workers Improves Crowdsourcing Outcomes. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
Shih-Wen Huang and Wai-Tat Fu. 2013b. Enhancing Reliability Using Peer Consistency Evaluation in Human Computation. In Proceedings of the 2013 conference on Computer supported cooperative work.
Radu Jurca and Boi Faltings. 2009. Mechanisms for Making Crowds Truthful. Journal of Artificial Intelligence Research (JAIR) 34 (2009), 209-253.
Radu Jurca and Boi Faltings. 2011. Incentives for Answering Hypothetical Questions. In Workshop on Social Computing and User Generated Content (EC-11).
Ece Kamar and Eric Horvitz. 2012. Incentives for Truthful Reporting in Crowdsourcing. In Proceedings of AAMAS 2012.
Nicolas Lambert and Yoav Shoham. 2008. Truthful surveys. In Proceedings of the 3rd International Workshop on Internet and Network Economics (WINE 2008).
Nolan Miller, Paul Resnick, and Richard Zeckhauser. 2005. Eliciting Informative Feedback: The PeerPrediction Method. Management Science 51 (2005), 1359-1373.
Athanasios Papakonstantinou, Alex Rogers, Enrico Gerding, and Nicholas Jennings. 2011. Mechanism Design for the truthful elicitation of costly probabilistic estimates in Distributed Information Systems. Artificial Intelligence 175 (2011), 648-672.
Drazen Prelec. 2004. A Bayesian Truth Serum for Subjective Data. Science 34, 5695 (2004), 462-466.

Drazen Prelec and Sebastian Seung. 2006. An algorithm that finds truth even if most people are wrong. (2006). Working paper.

Goran Radanovic and Boi Faltings. 2013. A Robust Bayesian Truth Serum for Non-binary Signals. In Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI'13).
Goran Radanovic and Boi Faltings. 2014. Incentives for Truthful Information Elicitation of Continuous Signals. In Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI'14).
Goran Radanovic and Boi Faltings. 2015a. Incentive Schemes for Participatory Sensing. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems (AAMAS'15).
Goran Radanovic and Boi Faltings. 2015b. Incentives for Subjective Evaluations with Private Beliefs. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI'15).
Aaron Shaw, Daniel L. Chen, and John Horton. 2011. Designing Incentives for Inexpert Human Raters. In Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work (CSCW 11).
Adish Singla and Andreas Krause. 2013. Truthful Incentives in Crowdsourcing Tasks using Regret Minimization Mechanisms. In Proceedings of the 22nd international conference on World Wide Web.
Hossein Azari Soufiani, David C. Parkes, and Lirong Xia. 2012. Random Utility Theory for Social Choice. In Proceedings of Neural Information Processing Systems.
Bo Waggoner and Yiling Chen. 2013. Information Elicitation Sans Verification. In Information Elicitation Sans Verification. In Proceedings of the 3rd Workshop on Social Computing and User Generated Content (SC13).
Bo Waggoner and Yiling Chen. 2014. Output Agreement Mechanisms and Common Knowledge. In Proceedings of the 2nd AAAI Conference on Human Computation and Crowdsourcing (HCOMP).
Jens Witkowski, Yoram Bachrach, Peter Key, and David C. Parkes. 2013. Dwelling on the Negative: Incentivizing Effort in Peer Prediction. In Proceedings of the 1st AAAI Conference on Human Computation and Crowdsourcing.
Jens Witkowski and David C. Parkes. 2012a. Peer Prediction Without a Common Prior. In Proceedings of the 13th ACM Conference on Electronic Commerce (EC' 12). 964-981.
Jens Witkowski and David C. Parkes. 2012b. A Robust Bayesian Truth Serum for Small Populations. In Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI'12).
Peter Zhang and Yiling Chen. 2014. Elicitability and knowledge-free elicitation with peer prediction. In Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems (AAMAS '14).

Online Appendix to:
 Incentives for Effort in Crowdsourcing using the Peer Truth Serum

GORAN RADANOVIC, Artificial Intelligence Laboratory, EPFL
BOI FALTINGS, Artificial Intelligence Laboratory, EPFL
RADU JURCA, Google

A. NOTATION

Symbol	Definition
$T=\left\{t_{w}, t_{p}, t_{q}, \ldots\right\}$	Set of tasks
n	Number of tasks
$W=\{w, p, q, \ldots\}$	Set of workers
τ	Mechanism - Payment rule
α	Scaling parameter in PTSC and RPTSC
$\mathcal{X}=\{x, y, z, w \ldots\}$	Answer space; in the PTSC example $\{a, b, c, d\}$
$X_{\text {correct }}^{t}$	Correct answer to task t
X_{w}, X_{p}, X_{q}	Evaluations
e_{w}	Effort of worker w with two possible values e_{0} and e_{1}
c	Cost function - function of effort e_{w}
\emptyset	Evaluation of a worker who has not solved her task
Y_{w}, Y_{p}, Y_{q}	Reports
$P_{p}(y)$	Prior probability that a random peer p has evaluation equal to $X_{p}=y$ (same for reference workers q)
$P_{p \mid w}(y \mid x)$	Posterior probability that a random peer p has evaluation equal to $X_{p}=y$, when worker w 's evaluation is x
honest	Investing high effort and honest reporting strategy and strategy profile
strategic	Investing high effort and strategic reporting strategy and strategy profile
heuristic	Heuristic (random) reporting (investing low effort) strategy and strategy profile
σ	A generic strategic profile with strategies ($\sigma_{w}, \sigma_{p}, \sigma_{q}, \ldots$)
$Q_{w \mid w}(y \mid x)$	Probability that worker w reports y, when her evaluation is x (see strategic strategy)
$Q_{p}(y)$	Prior probability that a random peer p has report equal to $Y_{p}=$ y (same for reference workers q)
$Q_{p \mid w}(y \mid x)$	Posterior probability that a random peer p has report equal to $Y_{p}=y$, when worker w 's evaluation is x
Δ_{w}	Self-predictor - parameter of the self-prediction indicating the confidence of a worker w
num (x)	Counts the occurrences of reported values equal to x within a certain sample of reports; for PTSC the sample contains all the reports; for RPTSC the sample is obtained by randomly sampling n reports from n different tasks
$R_{w}(x)$ or $R(x)$	Frequency of reports equal to x within a certain sample of reports; as for num, the sample is defined by a mechanism

[^7]DOI:http://dx.doi.org/10.1145/0000000.0000000

$\bar{\tau}_{w}(a)$	Expected payoff of a worker in honest strategy profile, prior to her observation
π	Proportion of discarded workers in the parameter elicitation process
Γ	Global air-pollution state with possible values $\left\{\gamma_{1}, \gamma_{2}, \ldots\right\}$ (Sec- tion 5.1)
ρ	A sample of reference sensors (Section 5.1)
MaxTotalReward	The maximum number of bonus points in the peer grading experiment (Section 5.2)
NumTasks	The number of sub-parts to grade, i.e. the number of reports that a peer grader made (Section 5.2)

B. PROOFS

This section provides proofs of the statements from the main text. Before proceeding, let us state useful properties of geometric sequence $1+x+x^{2}+\ldots+x^{n-2}, x \in(0,1)$. Its closed form is:

$$
\begin{equation*}
\frac{1-x^{n-1}}{1-x}=1+x+x^{2}+\ldots+x^{n-2} \tag{13}
\end{equation*}
$$

Another property that we will use is the derivative of the geometric sequence:

$$
\begin{equation*}
\frac{d}{d x}\left(1+x+x^{2}+\ldots+x^{n-2}\right)=\frac{d}{d x}\left(\frac{1-x^{n-1}}{1-x}\right)=\frac{\left(1-x^{n-1}\right)-(n-1) \cdot x^{n-2} \cdot(1-x)}{(1-x)^{2}} \tag{14}
\end{equation*}
$$

Next, we show that expression $(1+r \cdot x) \cdot\left(\sum_{k=0}^{n-2}(1-p-x)^{k}\right)$, where $1>p>0, r \in\left(0, \frac{1}{p}\right)$ and $x \in(0,1-p)$, has a maximal non-negative derivative at $x=0$.

Lemma B.1. Consider function $f(x)=(1+r \cdot x) \cdot\left(\sum_{k=0}^{n-2}(1-p-x)^{k}\right)$, where $p \in(0,1)$, $x \in(0,1-p)$ and $r \in\left(0, \frac{1}{p}\right)$. If there exists $x^{\prime} \in(0,1-p)$ such that $\frac{d f}{d x}\left(x^{\prime}\right) \geq 0$, then $\arg \max _{x} \frac{d f}{d x}(x)=0$.

Proof. We can rewrite function $f(x)$ as:

$$
\begin{aligned}
& f(x)=(1+r \cdot x) \cdot\left(\sum_{k=0}^{n-2}(1-p-x)^{k}\right)=(1+r-r \cdot p-r \cdot(1-p-x)) \cdot\left(\sum_{k=0}^{n-2}(1-p-x)^{k}\right) \\
& =(1+r-r \cdot p) \cdot \sum_{k=0}^{n-2}(1-p-x)^{k}-r \cdot \sum_{k=1}^{n-1}(1-p-x)^{k} \\
& =r \cdot\left(1-(1-p-x)^{n-1}\right)+(1-r \cdot p) \cdot \sum_{k=0}^{n-2}(1-p-x)^{k}
\end{aligned}
$$

The derivative of $f(x)$ is equal to:

$$
\begin{aligned}
& \frac{d f}{d x}(x)=(n-1) \cdot r \cdot(1-p-x)^{n-2}-(1-r \cdot p) \cdot \sum_{k=1}^{n-2} k \cdot(1-p-x)^{k-1} \\
& =(1-p-x)^{n-2}\left((n-1) \cdot r-(1-r \cdot p) \cdot \sum_{k=1}^{n-2} \frac{k}{(1-p-x)^{n-1-k}}\right)
\end{aligned}
$$

Now, suppose there is $x^{\prime} \in(0,1-p)$ such that $\frac{d f}{d x}\left(x^{\prime}\right) \geq 0$. Since $x \in(0,1-p)$, the necessary condition for that is:

$$
(n-1) \cdot r-(1-r \cdot p) \cdot \sum_{k=1}^{n-2} \frac{k}{\left(1-p-x^{\prime}\right)^{n-1-k}} \geq 0
$$

Therefore, we obtain:

$$
\begin{aligned}
& \frac{d f}{d x}\left(x^{\prime}\right)=\left(1-p-x^{\prime}\right)^{n-2}\left((n-1) \cdot r-(1-r \cdot p) \cdot \sum_{k=1}^{n-2} \frac{k}{\left(1-p-x^{\prime}\right)^{n-1-k}}\right) \\
& \leq\left(1-p-x^{\prime}\right)^{n-2}\left((n-1) \cdot r-(1-r \cdot p) \sum_{k=1}^{n-2} \frac{k}{(1-p)^{n-1-k}}\right) \\
& \leq(1-p)^{n-2}\left((n-1) \cdot r-(1-r \cdot p) \cdot \sum_{k=1}^{n-2} \frac{k}{(1-p)^{n-1-k}}\right)=\frac{d f}{d x}(0)
\end{aligned}
$$

Proof of Lemma 4.1

Statement: The expected payoff of worker w with evaluation $X_{w}=x$ and report $Y_{w}=$ y in the RPTSC mechanism is equal to:

$$
\begin{cases}\alpha \cdot\left(\frac{Q_{p \mid w}(y \mid x)}{Q_{p}(y)}-1\right) \cdot\left(1-\left(1-Q_{p}(y)\right)^{n-1}\right) & \text { if } Q_{p}(y)>0 \\ 0 & \text { if } Q_{p}(y)=0\end{cases}
$$

where n is the number of tasks.
Proof. It is clear that for $Q_{p}(y)=0$, the expected payoff of worker w is 0 . When $Q_{p}(y)>0$, the expected value of a worker w who reports y as a solution to task t_{w} is:

$$
\begin{aligned}
& \alpha \cdot \underbrace{\prod_{q_{k} \mid X_{q_{k}}=y} Q_{q_{k}}(y) \prod_{q_{k} \mid X_{q_{k}} \neq y}\left(1-Q_{q_{k}}(y)\right) \cdot Q_{p \mid w}(y \mid x) \cdot \frac{1}{\left(n u m\left(X_{q_{k}}=y\right)+1\right) / n}}_{\text {due to } \frac{\mathbb{1}_{x_{p}=y}^{R(y)}}{R} \text { part when } R(y) \neq 0} \\
& -\alpha \cdot \underbrace{\left(1-\left(1-Q_{p \mid w}(y \mid x)\right) \prod_{q_{k}}\left(1-Q_{q_{k}}(y)\right)^{n-1}\right)}_{\text {due to }-1 \text { part when } R(y) \neq 0}
\end{aligned}
$$

where p is worker whose report is in R and who has solved task $t_{p}=t_{w}$ (w 's peer), while workers q_{k} 's are workers whose reports are in R, but have solved tasks $t_{q_{k}} \neq t_{w}$ (w 's reference workers). Since p and q_{k} 's are randomly assigned to their tasks and are randomly chosen from a large pool of workers W, in expectation $Q_{p}(y)=Q_{q_{k}}(y)$ (the same holds if we take into account proficiencies ${ }^{9}$ that are for each worker generated independently according to a certain probability distribution function). Let i be the number of reports equal to y that come from workers who solve tasks $t_{q_{k}} \neq t_{w}$. We

[^8]have:
\[

$$
\begin{aligned}
& \alpha \cdot[\underbrace{\left[\begin{array}{c}
n-1 \\
i=0 \\
i
\end{array}\right) \cdot Q_{p}(y)^{i} \cdot\left(1-Q_{p}(y)\right)^{n-1-i} \cdot Q_{p \mid w}(y \mid x) \cdot \frac{1}{(i+1) / n}} \\
& \text { due to } \frac{1^{1} x_{p}=y}{R(y)} \text { part when } R(y) \neq 0 \\
& -\underbrace{\left(1-\left(1-Q_{p \mid w}(y \mid x)\right) \cdot\left(1-Q_{p}(y)\right)^{n-1}\right)}_{\text {due to }-1 \text { part when } R(y) \neq 0}] \\
& =\alpha \cdot\left[Q_{p \mid w}(y \mid x) \cdot n \cdot \sum_{i=0}^{n-1} \frac{(n-1)!}{i!(n-1-i)!} \cdot Q_{p}(y)^{i} \cdot\left(1-Q_{p}(y)\right)^{n-1-i} \cdot \frac{1}{i+1}\right. \\
& \left.-1+\left(1-Q_{p \mid w}(y \mid x)\right) \cdot\left(1-Q_{p}(y)\right)^{n-1}\right] \\
& =\alpha \cdot\left[\frac{Q_{p \mid w}(y \mid x)}{Q_{p}(y)} \cdot \sum_{i=0}^{n-1} \frac{(n-1+1)!}{(i+1)!(n-1-i)!} \cdot Q_{p}(y)^{i+1} \cdot\left(1-Q_{p}(y)\right)^{(n-1+1)-(i+1)}\right. \\
& \left.-1+\left(1-Q_{p \mid w}(y \mid x)\right) \cdot\left(1-Q_{p}(y)\right)^{n-1}\right] \\
& =\alpha \cdot\left[\frac{Q_{p \mid w}(y \mid x)}{Q_{p}(y)} \cdot \sum_{i=1}^{n}\binom{n-1+1}{i} \cdot Q_{p}(y)^{i} \cdot\left(1-Q_{p}(y)\right)^{(n-1+1)-i}\right. \\
& \left.-1+\left(1-Q_{p \mid w}(y \mid x)\right) \cdot\left(1-Q_{p}(y)\right)^{n-1}\right] \\
& =\alpha \cdot\left[\frac{Q_{p \mid w}(y \mid x)}{Q_{p}(y)} \cdot \sum_{i=1}^{n}\binom{n}{i} \cdot Q_{p}(y)^{i} \cdot\left(1-Q_{p}(y)\right)^{n-i}\right. \\
& \left.-1+\left(1-Q_{p \mid w}(y \mid x)\right) \cdot\left(1-Q_{p}(y)\right)^{n-1}\right] \\
& =\alpha \cdot\left[\frac{Q_{p \mid w}(y \mid x)}{Q_{p}(y)} \cdot\left(1-\left(1-Q_{p}(y)\right)^{n}\right)-1+\left(1-Q_{p \mid w}(y \mid x)\right) \cdot\left(1-Q_{p}(y)\right)^{n-1}\right] \\
& =\alpha \cdot\left[\frac{Q_{p \mid w}(y \mid x)}{Q_{p}(y)} \cdot\left(1-\left(1-Q_{p}(y)\right)^{n-1}+Q_{p}(y) \cdot\left(1-Q_{p}(y)\right)^{n-1}\right)\right. \\
& \left.-\left(1-\left(1-Q_{p}(y)\right)^{n-1}\right)-Q_{p \mid w}(y \mid x) \cdot\left(1-Q_{p}(y)\right)^{n-1}\right] \\
& =\alpha \cdot\left(\frac{Q_{p \mid w}(y \mid x)}{Q_{p}(y)}-1\right) \cdot\left(1-\left(1-Q_{p}(y)\right)^{n-1}\right)
\end{aligned}
$$
\]

Hence, we proved the statement.

Proof of Proposition 4.2

Statement: In the RPTSC mechanism, the expected payoff of a worker w with a heuristic strategy is equal to 0 and her profit is equal to $-c_{w}\left(e_{0}\right)$.

Proof. Since worker w does not invest effort, $X_{w}=\emptyset$, which implies $P_{p \mid w}(y \mid \emptyset)=$ $P_{p}(y)$. Using Lemma 4.1 we obtain that worker w 's payoff is equal to 0 , and consequently her profit is $-c_{w}\left(e_{0}\right)$.

Proof of Theorem 4.3

Statement: Suppose that for all workers w and answers $x \in \mathcal{X}$, parameter α and the number of tasks n satisfy:

$$
\begin{gathered}
\bar{\tau}_{w}(\alpha)>c_{w}\left(e_{1}\right)-c_{w}\left(e_{0}\right) \\
\frac{1-\left(1-P_{q}(x)\right)^{n-1}}{1-P_{q}(x)^{n-1}} \geq \Delta_{w}
\end{gathered}
$$

where Δ_{w} is the self-predictor of worker w. Then the RPTSC mechanism accepts the honest reporting strategy profile a strict equilibrium.

Proof. Suppose that workers other than w invest high effort and report honestly, i.e. they use the honest strategy profile.

We first prove that worker w is incentivized to invest high effort e_{1} in the first stage. Before evaluating her task, worker w's expected profit for investing high effort is:

$$
\begin{equation*}
\bar{\tau}_{w}(\alpha)-c_{w}\left(e_{1}\right)>c_{w}\left(e_{1}\right)-c_{w}\left(e_{0}\right)-c_{w}\left(e_{1}\right)=-c_{w}\left(e_{0}\right) \tag{15}
\end{equation*}
$$

Since strategies with effort $e_{w}=e_{0}$ lead to $-c\left(e_{0}\right)$ profit (Proposition 4.2), worker w expects to profit more when she invests effort than when she does not.

Now, once worker w invests effort, her best response is to report her true evaluation. Namely, from Lemma 4.1 it follows that the expected payoff of worker w, with evaluation $X_{w}=x$ and report $Y_{w}=y$, is:

$$
\begin{aligned}
\alpha \cdot\left(\frac{P_{p \mid w}(y \mid x)}{P_{p}(y)}-1\right) \cdot\left(1-\left(1-P_{p}(y)\right)^{n-1}\right) & \leq \alpha \cdot\left(\frac{P_{p \mid w}(y \mid x)}{P_{p}(y)}-1\right) \cdot\left(1-P_{p}(x)^{n-1}\right) \\
& <\alpha \cdot\left(\frac{P_{p \mid w}(x \mid x)}{P_{p}(x)}-1\right) \cdot\left(1-\left(1-P_{p}(x)\right)^{n-1}\right)
\end{aligned}
$$

where the first inequality follows from $P_{p}(x)+P_{p}(y) \leq 1$ and the second inequality follows from (5) and (9). We see that the maximal expected payoff when the task is solved is achieved when worker w reports her true answers. Hence, the honest strategy profile is an equilibrium.

Proof of Lemma 4.4

Statement: Suppose that condition (9) of Theorem 4.3 holds. Any equilibrium of RPTSC where a heuristic strategy is adopted (played) with non-zero probability, i.e. where a worker w 's effort e_{w} can be equal to $e_{w}=e_{0}$, leads to lower expected profits than the honest reporting strategy profile.

Proof. From Theorem 4.3 and Proposition 4.2 it follows that a low effort (heuristic) strategy is less profitable than honest reporting. If in an equilibrium a strategy of a worker is a mixture of high and low effort, her payoff has to remain the same when
the worker uses only low effort strategies, otherwise this would not be an equilibrium. Hence, we proved the statement.

Proof of Proposition 4.6

Statement: Suppose that scaling parameter α is such that:

$$
\alpha>\frac{c_{w}\left(e_{1}\right)-c_{w}\left(e_{0}\right)}{\beta \cdot \mathbb{E}_{X_{w}=x}\left[P_{p \mid w}(x \mid x)-P_{p}(x)\right]}
$$

for all workers w, where $\mathbb{E}_{X_{w}=x}$ is the expectation over possible evaluations of a worker w. Then RPTSC is β-low-effort averse.

Proof. It is sufficient to show that a worker w can profit by investing high effort in the first stage. Suppose that other workers adopt a strategy that is a mixture of honest and heuristic strategies, where the honest strategy is adopted (played) with probability $\gamma=\beta$ (this is the worst case). We can calculate a belief of a worker w 's posterior and prior belied regarding what her peer has reported:

$$
\begin{gathered}
Q_{p}(y)=\beta \cdot P_{p}(y)+(1-\beta) \cdot Q_{p \mid p}(y \mid \emptyset) \\
Q_{p \mid w}(y \mid x)=\beta \cdot P_{p \mid x}(y \mid x)+(1-\beta) \cdot Q_{p \mid p}(y \mid \emptyset)
\end{gathered}
$$

where $Q_{p}(y)>0$ due to the fully mixed condition on prior P_{p}, i.e. $P_{p}(y)>0$, and $\beta>0$. In the first stage, when worker w decides to invest high effort e_{1}, her (a priori) expected profit for honest strategy is:

$$
\begin{align*}
& \mathbb{E}_{X_{w}=x}\left[\alpha \cdot\left(\frac{\beta \cdot P_{p \mid w}(x \mid x)+(1-\beta) \cdot Q_{p \mid p}(x \mid \emptyset)}{\beta \cdot P_{p}(x)+(1-\beta) \cdot Q_{p \mid p}(x \mid \emptyset)}-1\right)\right. \\
& \left.\cdot\left(1-\left(1-\beta \cdot P_{p}(x)-(1-\beta) \cdot Q_{p \mid p}(x \mid \emptyset)\right)^{n-1}\right)\right]-c_{w}\left(e_{1}\right) \\
& =\mathbb{E}_{X_{w}=x}\left[\alpha \cdot \beta \cdot\left(P_{p \mid w}(x \mid x)-P_{p}(x)\right)\right. \\
& \left.\cdot \frac{\left(1-\left(1-\beta \cdot P_{p}(x)-(1-\beta) \cdot Q_{p \mid p}(x \mid \emptyset)\right)^{n-1}\right)}{1-\left(1-\beta \cdot P_{p}(x)-(1-\beta) \cdot Q_{p \mid p}(x \mid \emptyset)\right)}\right]-c_{w}\left(e_{1}\right) \\
& \geq \mathbb{E}_{X_{w}=x}\left[\alpha \cdot \beta \cdot\left(P_{p \mid w}(x \mid x)-P_{p}(x)\right)\right]-c_{w}\left(e_{1}\right) \tag{16}\\
& =\alpha \cdot \beta \cdot \mathbb{E}_{X_{w}=x}\left[P_{p \mid w}(x \mid x)-P_{p}(x)\right]-c_{w}\left(e_{1}\right) \\
& >c_{w}\left(e_{1}\right)-c_{w}\left(e_{0}\right)-c_{w}\left(e_{1}\right)=-c\left(e_{0}\right)
\end{align*}
$$

Inequality (16) comes from the fact that in the previous step we have a geometric sequence $\frac{1-\left(1-\beta \cdot P_{p}(x)-(1-\beta) \cdot Q_{p \mid p}(x \mid \emptyset)\right)^{n-1}}{1-\left(1-\beta \cdot P_{p}(x)-(1-\beta) \cdot Q_{p \mid p}(x \mid \varnothing)\right)}$, which is bounded from below by 1 (see (13) in the appendix). From Proposition 4.2 we know that strategies with effort $e_{w}=e_{0}$ lead to $-c\left(e_{w}\right)$ profit, so worker w is better off using honest strategy. Therefore, the mixed strategy is not an equilibrium.

Proof of Lemma 4.8

Statement: If for all workers w and answers x, self-predictor Δ_{w} satisfies condition (11), then it also satisfies condition (9).

Proof. Suppose Δ_{w} satisfies the condition (11) for all workers w and answers x. We have that:

$$
\begin{aligned}
\Delta_{w} & \leq\left(1-(n-1) \cdot P_{p}(x) \cdot \frac{\left(1-P_{p}(x)\right)^{n-2}}{1-\left(1-P_{p}(x)\right)^{n-1}}\right)=\left(1-(n-1) \cdot \frac{\left(1-P_{p}(x)\right)^{n-2}}{\frac{1-\left(1-P_{p}(x)\right)^{n-1}}{1-\left(1-P_{p}(x)\right)}}\right) \\
& =\left(1-(n-1) \cdot \frac{\left(1-P_{p}(x)\right)^{n-2}}{\sum_{i=0}^{n-2}\left(1-P_{p}(x)\right)^{i}}\right)<\left(1-(n-1) \cdot \frac{\left(1-P_{p}(x)\right)^{n-2}}{n-1}\right) \\
& <1-\left(1-P_{q}(x)\right)^{n-1}<\frac{1-\left(1-P_{q}(x)\right)^{n-1}}{1-P_{q}(x)^{n-1}}
\end{aligned}
$$

which means that Δ_{w} satisfies the condition (9). Hence, we proved the statement.

Proof of Theorem 4.7

Statement: Suppose that for all workers w and answers $x \in \mathcal{X}$, parameter α and the number of tasks n satisfy:

$$
\begin{gathered}
\bar{\tau}_{w}(\alpha)>c_{w}\left(e_{1}\right)-c_{w}\left(e_{0}\right) \\
\left(1-(n-1) \cdot P_{p}(x) \cdot \frac{\left(1-P_{p}(x)\right)^{n-2}}{1-\left(1-P_{p}(x)\right)^{n-1}}\right) \geq \Delta_{w}
\end{gathered}
$$

where Δ_{w} is the self-predictor of worker w. Then honest reporting strategy profile is an equilibrium of RPTSC mechanism that results in maximal profit.

Proof. From Lemma 4.8 it follows that results from Theorem 4.3 and Lemma 4.4 apply also in this case, which means that we can restrict our attention to high-effort equilibria, as strategies profiles that allow low-efforts result in lower profit than the honest reporting strategy profile.

Consider a strategy profile that is a high-effort equilibrium, where a worker w, whose evaluation is x, reports y with probability $Q_{w \mid w}(y \mid x)$. If $Q_{w \mid w}(y \mid x)>0$, the expected payoff of worker w has to be equal to her expected payoff for reporting y with certainty (otherwise this would not be an equilibrium strategy), which is equal to:

$$
\begin{align*}
\alpha \cdot & \left(\frac{Q_{p \mid p}(y \mid x) \cdot P_{p \mid w}(x \mid x)+\sum_{z \in \mathcal{X} \backslash\{x\}} Q_{p \mid p}(y \mid z) \cdot P_{p \mid w}(z \mid x)}{Q_{p \mid p}(y \mid x) \cdot P_{q}(x)+\sum_{z \in \mathcal{X} \backslash\{x\}} Q_{p \mid p}(y \mid z) \cdot P_{p}(z)}-1\right) \\
& \cdot\left(1-\left(1-Q_{p \mid p}(y \mid x) \cdot P_{p}(x)-\sum_{z \in \mathcal{X} \backslash\{x\}} Q_{p \mid p}(y \mid z) \cdot P_{p}(z)\right)^{n-1}\right) \tag{17}
\end{align*}
$$

We used the fact that worker w's beliefs regarding her peers' reports are equal to:

$$
\begin{aligned}
Q_{p \mid w}(y \mid x) & =Q_{p \mid p}(y \mid x) \cdot P_{p \mid w}(x \mid x)+\sum_{z \in \mathcal{X} \backslash\{x\}} Q_{p \mid p}(y \mid z) \cdot P_{p \mid w}(z \mid x) \\
Q_{p}(y) & =Q_{p \mid p}(y \mid x) \cdot P_{p}(x)+\sum_{z \in \mathcal{X} \backslash\{x\}} Q_{p \mid p}(y \mid z) \cdot P_{p}(z)
\end{aligned}
$$

and then we used Lemma 4.1 to calculate the expected payoff.
Let us simplify our notation with the following substitutions: $p=P_{p}(x), \Delta p=$ $P_{p \mid w}(x \mid x)-P_{p}(x), q=\sum_{z \in \backslash\{x\}} Q_{p \mid p}(y \mid z) \cdot P_{p}(z), \Delta q=\sum_{z \in \mathcal{X} \backslash\{x\}} Q_{p \mid p}(y \mid z) \cdot\left(P_{p \mid w}(z \mid x)-\right.$
$\left.P_{p}(z)\right)$. Expression (17) can be written in the new notation as:

$$
\alpha \cdot \frac{Q_{p \mid p}(y \mid x) \cdot \Delta p+\Delta q}{Q_{p \mid p}(y \mid x) \cdot p+q} \cdot\left(1-\left(1-Q_{p \mid p}(y \mid x) \cdot p-q\right)^{n-1}\right)
$$

We will prove the statement by showing that under the conditions of the theorem:
(1) The optimum of the expected payoff is achieved when $Q_{p \mid p}(y \mid x)=1$, regardless of q.
(2) When $q>0$ the payoff is lower than when $q=0$.

These two properties and the permutation indifference imply that the honest reporting strategy profile results in maximal payoff, and due to the argument at the beginning of the proof, in maximal profit.

Part 1:
Notice that the self prediction implies the existence of $\epsilon>0$ such that $\frac{\Delta p}{p} \cdot(1-\epsilon)=\frac{\Delta q}{q}$. Therefore, we have:

$$
\begin{align*}
& \frac{Q_{p \mid p}(y \mid x) \cdot \Delta p+\Delta q}{Q_{p \mid p}(y \mid x) \cdot p+q} \cdot\left(1-\left(1-Q_{p \mid p}(y \mid x) \cdot p-q\right)^{n-1}\right) \\
& =\frac{\frac{\Delta p}{p} \cdot Q_{p \mid p}(y \mid x) \cdot p+\frac{\Delta q}{q} \cdot q}{Q_{p \mid p}(y \mid x) \cdot p+q} \cdot\left(1-\left(1-Q_{p \mid p}(y \mid x) \cdot p-q\right)^{n-1}\right) \\
& =\frac{\Delta p}{p} \cdot\left(1-\frac{\epsilon \cdot q}{Q_{p \mid p}(y \mid x) \cdot p+q}\right) \cdot\left(1-\left(1-Q_{p \mid p}(y \mid x) \cdot p-q\right)^{n-1}\right) \tag{18}
\end{align*}
$$

The optimum of (18) is achieved for $Q_{p \mid p}(y \mid x)=1$, regardless of q.

Part 2:

We also need to show that workers whose evaluations are $z \neq x$, lower the value of expression (17) when $Q_{p \mid p}(y \mid z)>0$. Consider a function of $\lambda \in[0,1]$:

$$
\begin{align*}
f(\lambda) & =\frac{\Delta p+\lambda \cdot \Delta q}{p+\lambda \cdot q} \cdot\left(1-(1-p-\lambda \cdot q)^{n-1}\right)=(\Delta p+\lambda \cdot \Delta q) \cdot\left(\sum_{k=0}^{n-2}(1-p-\lambda \cdot q)^{k}\right) \\
& =\Delta p \cdot\left(1+\frac{\Delta q}{q \cdot \Delta p} \cdot \lambda \cdot q\right)\left(\sum_{k=0}^{n-2}(1-p-\lambda \cdot q)^{k}\right) \tag{19}
\end{align*}
$$

where the second equality is due to (13). For $\lambda=1$, function f corresponds to expression (17) with $Q_{p \mid p}(y \mid x)=1$. It suffices to show that function f is strictly decreasing, meaning that the optimal value is obtained when $\lambda=0$. Since this trivially follows when $\Delta q \leq 0$, in the remaining part of the proof we only consider the case when $\Delta q>0$. Due to the fully mixed priors, $p+q=1$ implies $Q_{p \mid p}(y \mid z)=1$ for all $z \in \mathcal{X}$, which further implies $\Delta q=\sum_{z \in \mathcal{X} \backslash\{x\}}\left(P_{p \mid w}(z \mid x)-P_{p}(z)\right)=\left(1-P_{p \mid w}(x \mid x)\right)-\left(1-P_{p}(x)\right)=-\Delta p<0$. This means that for $\Delta q>0$, we have $p+\lambda \cdot q \leq p+q<1$. The partial derivative of f w.r.t. λ is equal to:

$$
\frac{\partial f}{\partial \lambda}(\lambda)=\Delta q \cdot\left(\sum_{k=0}^{n-2}(1-p-\lambda \cdot q)^{k}\right)-(\Delta p+\lambda \cdot \Delta q) \cdot\left(\sum_{k=1}^{n-2} k \cdot q \cdot(1-p-\lambda \cdot q)^{k-1}\right)
$$

Due to (19), condition (11) (which implies $\frac{\Delta q}{q \cdot \Delta p}<\frac{1}{p}$), $p+\lambda \cdot q<1$ and Lemma B.1, a sufficient condition for f to be strictly decreasing is that $\frac{\partial f}{\partial \lambda}(\lambda)<0$ for $\lambda=0$. We have:

$$
\frac{\partial f}{\partial \lambda}(0)=\Delta q \cdot\left(\sum_{k=0}^{n-2}(1-p)^{k}\right)-q \cdot \Delta p \cdot\left(\sum_{k=1}^{n-2} k(1-p)^{k-1}\right)
$$

Expressions (13) and (14) imply:

$$
\frac{\partial f}{\partial \lambda}(0)=\Delta q \cdot \frac{1-(1-p)^{n-1}}{p}-q \cdot \Delta p \cdot \frac{\left(1-(1-p)^{n-1}\right)-p \cdot(n-1) \cdot(1-p)^{n-2}}{p^{2}}
$$

Therefore, $\frac{\partial f}{\partial \lambda}(0)<0$ whenever:

$$
\frac{\Delta q}{q}<\frac{\Delta p}{p} \cdot\left(1-(n-1) \cdot p \cdot \frac{(1-p)^{n-2}}{1-(1-p)^{n-1}}\right)
$$

Since $\frac{\Delta q}{q} \leq \max _{z \neq x} \frac{P_{p \mid w}(z \mid x)}{P_{p}(z)}$ and condition (11) holds, we conclude that $\frac{\partial f}{\partial \lambda}(0)<0$. This means that the optimal value of $Q_{p \mid p}(y \mid z)$ for $z \neq x$ is 0 .

Conclusion:

In other words, a strategy profile defined by $Q_{w \mid w}(y \mid x)=\mathbb{1}_{y=\hat{\sigma}(x)}$, where $\hat{\sigma}$ is a bijective function $\hat{\sigma}: \mathcal{X} \rightarrow \mathcal{X}$ from the set of answers to the set of reports, results in maximal payoff. Moreover, the permutation indifference property tells us that any strategy profile of that form achieves the same score, including the honest strategy profile. Hence, we proved the statement.

Proof of Proposition 4.9

Statement: Consider workers with nontransferable utilities (payments). Suppose $c\left(e_{0}\right)>0$ and let $\bar{\tau}_{w}(\alpha)$ be a priori expected payoff of worker w in the honest reporting equilibrium. Then, reporting in the first stage α_{w} such that $\bar{\tau}_{w}\left(\alpha_{w}\right)=c_{w}\left(e_{1}\right)$, and using the honest strategy profile in the second stage is an equilibrium of the two-step protocol.

Proof. Suppose workers who get to the second stage of the auctioning protocol use the honest strategy. By Theorem 4.3, this is an equilibrium of the second stage. Due to the reporting $\operatorname{cost} c_{w}\left(e_{0}\right)>0$, worker w is not willing to enter the second stage unless $\bar{\tau}_{w}(\hat{\alpha})>c_{w}\left(e_{1}\right)$, otherwise her profit is negative. This means that she should report α_{w} such that $\bar{\tau}_{w}\left(\alpha_{w}\right)-c_{w}\left(e_{1}\right)=0$. Therefore, reporting α_{w} such that $\bar{\tau}_{w}\left(\alpha_{w}\right)=c_{w}\left(e_{1}\right)$ in the first stage, and using the honest strategy in the second stage is an equilibrium.

C. CONNECTION TO THE DASGUPTA\&GHOSH MECHANISM

We have seen that RPTSC reduces to a simple linear score when statistic R is calculated based on only one task in addition to the task being solved by a worker w. The form of the score (12) is quite simple, and is similar to Dasgupta\&Ghosh mechanism introduced in [Dasgupta and Ghosh 2013]. In fact, they are equivalent.

To see this, we first need to describe the basic structure of the Dasgupta\&Ghosh mechanism. Let us assume for simplicity that a worker w and her peer p_{t} have only one common task t (see [Dasgupta and Ghosh 2013] for how to transform mechanism when this does not hold), and that they both solved m additional tasks. Notice that now we have a larger batch of tasks and each worker solves multiple tasks. By carefully rearranging terms in the Dasgupta\&Ghosh mechanism, we obtain that the mechanism
is equivalent to:

$$
\underbrace{\mathbb{1}_{x_{w}^{t}=x_{p_{t}}^{t}}}_{\text {agreement } A}-\underbrace{\sum_{z \in \mathcal{X}} \sum_{t_{w} \neq t} \frac{\mathbb{1}_{x_{w}^{t_{w}}=z}}{m} \sum_{t_{p_{t}} \neq t} \frac{\mathbb{1}_{x_{p_{t}}^{t_{p_{t}}=z}}}{m}}_{\text {statistic } B}=\underbrace{\mathbb{1}_{x_{w}^{t}=x_{p_{t}}^{t}}}_{\text {agreement } A}-\underbrace{\sum_{t_{w} \neq t} \sum_{t_{p_{t}} \neq t} \frac{\mathbb{1}_{x_{w}^{t_{w}}=x_{p_{t}}^{t_{p_{t}}}}^{m^{2}}}{m^{2}}}_{\text {statistic } B}
$$

where $x_{w}^{t_{w}}$ indicates worker w 's report to her task t_{w}, and summation $\Sigma_{t_{w}}$ is over task solved by worker w (equivalent notation is used for worker p). Therefore, the total score is equal to:

$$
\sum_{t}\left[\mathbb{1}_{x_{w}^{t}=x_{p_{t}}^{t}}-\sum_{t_{w} \neq t} \sum_{t_{p_{t}} \neq t} \frac{\mathbb{1}_{x_{w}^{t_{w}}=x_{p_{t}}^{t_{p}}}}{m^{2}}\right]=\sum_{t}\left[\mathbb{1}_{x_{w}^{t}=x_{p_{t}}^{t}}-\frac{1}{m} \sum_{i=1}^{m} \sum_{t_{i} \in T_{-w, t}^{i}} \frac{\mathbb{1}_{x_{w}^{t}=x_{p_{t_{i}}}^{t_{i}}}^{m}}{m}\right]
$$

where $T_{-w, t}^{i}$ is a group of m tasks not solved by worker w and they are obtained from the previous step by rearranging the terms in the equation. This can be thought of as if the Dasgupta\&Ghosh mechanism scores a report x_{w}^{t} with:

$$
\underbrace{\mathbb{1}_{x_{w}^{t}=x_{p_{p}}^{t}}}_{\text {agreement } A}-\underbrace{\frac{1}{m} \sum_{i=1}^{m} \sum_{t_{i} \in T_{-w, t}^{i}} \frac{\mathbb{1}_{x_{w}^{t}=x_{p_{t_{i}}}^{t_{i}}}}{m}}_{\text {statistic B}}
$$

Now, since x_{w}^{t} and $x_{p_{t_{i}}}^{t_{i}}$ are statistically independent (because worker w has not solved tasks $T_{-w, t}^{i}$), part B of the score is in the expectation equivalent to $R_{w}^{\prime}\left(x_{w}^{t}\right)$ (see Section 4.5). Therefore, the mechanism defined by (12) and the Dasgupta\&Ghosh mechanism are equivalent, which means that the Dasgupta\&Ghosh mechanism is a special case of RPTSC score obtained in the limit case when R is calculated from only two tasks. Moreover, the equivalence implies that the Dasgupta\&Ghosh mechanism requires non-correlated answer values for the honest reporting strategy profile to result in maximal profit.

[^0]: This work is supported by Nano-Tera.ch as part of the Opensense2 project.
 Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
 (C) 2016 ACM 2157-6904/2016/01-ARTA $\$ 15.00$

 DOI:http://dx.doi.org/10.1145/0000000.0000000

[^1]: ${ }^{1}$ To simplify our notation, we often omit subscript w from R_{w}.

[^2]: ${ }^{2}$ This translates to having workers whose proficiencies (qualities) are i.i.d. random variables, where the proficiency of a worker might be known to her, but not to the other workers. Proficiency can be thought of as a probability of obtaining the correct evaluation.
 ${ }^{3}$ We keep -1 on both sides to make the proofs and the notion of the self-predictor clear.

[^3]: ${ }^{4}$ Negative rewards can, for example, be implemented by requesting that workers pay α for participation and then reward them with $\tau\left(x_{w}, x_{p}\right)+\alpha$, where τ is defined by RPTSC.

[^4]: ${ }^{5}$ www.atmo-alsace.net

[^5]: ${ }^{6}$ Notice that we examine the correlations using the true data, not sensors' reports that are not necessarily truthful.

[^6]: ${ }^{7}$ The mean payoffs for honest and collude are identical for stationary (Table I) and mobile sensors (Table III) simply because the means are calculated on the same set of values (the only difference is that in the mobile scenario these values are permuted). For the random reporting strategies, these means are different because we run two different experiments over two different (randomly generated) set of reports.

[^7]: (C) 2016 ACM 2157-6904/2016/01-ARTA $\$ 15.00$

[^8]: ${ }^{9}$ Proficiency is a probability of obtaining the correct evaluation.

