
Differentially Private Multi-Agent Constraint Optimization
Sankarshan Damle

sankarshan.damle@research.iiit.ac.in

Machine Learning Lab, IIIT,

Hyderabad

Hyderabad, India

Aleksei Triastcyn

Boi Faltings

aleksey.tryastsyn@alumni.epfl.ch

boi.faltings@epfl.ch

Artificial Intelligence Laboratory,

EPFL

Lausanne, Switzerland

Sujit Gujar

sujit.gujar@iiit.ac.in

Machine Learning Lab, IIIT,

Hyderabad

Hyderabad, India

ABSTRACT
Several optimization scenarios involve multiple agents that desire

to protect the privacy of their preferences. There are distributed

algorithms for constraint optimization that provide improved pri-

vacy protection through secure multiparty computation. However,

it comes at the expense of high computational complexity and does

not constitute a rigorous privacy guarantee for optimization out-

comes, as the result of the computation itself may compromise

agents’ preferences. In this work, we show how to achieve pri-

vacy, specifically differential privacy, through the randomization

of the solving process. In particular, we present P-Gibbs, which

adapts the SD-Gibbs algorithm to obtain differential privacy guar-

antees with much higher computational efficiency. Experiments

on graph coloring and meeting scheduling show the algorithm’s

privacy-performance trade-off for varying privacy budgets, and the

SD-Gibbs algorithm.

CCS CONCEPTS
• Computing methodologies→ Distributed algorithms; • Se-
curity and privacy;

KEYWORDS
Distributed Constrained Optimization, Differential Privacy

ACM Reference Format:
Sankarshan Damle, Aleksei Triastcyn, Boi Faltings, and Sujit Gujar. 2021.

Differentially Private Multi-Agent Constraint Optimization. In WI-IAT ’21:
IEEE/WIC/ACM International Conference on Web Intelligence, December 14–
17, 2021, ESSENDON, VIC, Australia. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3486622.3493929

1 INTRODUCTION
One of the most successful applications of distributed computing is

distributed constraint optimization problem (DCOP), first introduced

in [26]. DCOP is a problem where agents collectively compute

their value assignments to maximize the sum of resulting constraint
rewards. In DCOP, constraints quantify the preference that each

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WI-IAT ’21, December 14–17, 2021, ESSENDON, VIC, Australia
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9115-3/21/12. . . $15.00

https://doi.org/10.1145/3486622.3493929

agent places on each of its possible assignments. DCOPs help model

various multi-agent coordination and resource allocation problems.

E.g., distributed scheduling of meetings and graph-coloring related

applications such as mobile radio frequency assignments.

1.1 DCOP Algorithms
Solving a DCOP instance is NP-Hard. Nevertheless, the field has

grown steadily over the years, with several algorithms being intro-

duced to solve DCOP instances, each providing some improvement

over the previous. These algorithms are either: (1) search-based

algorithms like SynchBB [12], and MGM [17], where the agents

enumerate through sequences of assignments in a decentralized

manner; and (2) inference-based algorithms like DPOP [20], and

max-sum [6], where the agents use dynamic programming to prop-

agate aggregated information to other agents.

Ottens et al. [19] propose Distributed Upper Confidence Tree

(DUCT), an extension of UCB [7] and UCT [8]. While DUCT out-

performs the algorithms above, its per-agent memory requirement

is exponential in the number of agents. It prohibits it from scaling

up to larger problems.

Nguyen et al. [18] improve upon DUCT through their sampling-

based DCOP algorithms: Sequential Distributed Gibbs (SD-Gibbs)
and Parallel Distributed Gibbs (PD-Gibbs). These are distributed

extensions of the Gibbs algorithm [15]. Both SD-Gibbs and PD-

Gibbs have a linear-space memory requirement, i.e., the memory

requirement per agent is linear in the number of agents. The authors

show empirically that SD-Gibbs and PD-Gibbs find better solutions

than DUCT, run faster, and solve large problems that DUCT fails to

solve due to memory limitations. Therefore, in this paper, we focus

on SD-Gibbs
1
.

1.2 Privacy in DCOPs
The need for preserving the privacy of an agent’s sensitive informa-

tion is vital. This need holds for DCOPs, too, as, in the process of

‘solving’ a DCOP instance, the transfer of information across agents

may leak sensitive information, such as agent’s preferences, to the

other participating agents. Thus, privacy-preserving solutions to

DCOPs are necessary.

1.2.1 Achieving Privacy through Crypto-systems. Privacy in DCOPs
has focused on using cryptographic primitives, such as partial ho-
momorphic encryption. Several privacy-preserving algorithms exist,

which use cryptographic primitives atop existing DCOP algorithms

to provide strong privacy guarantees. These include P-DPOP [5],

1
Our results also follow for PD-Gibbs.

https://doi.org/10.1145/3486622.3493929
https://doi.org/10.1145/3486622.3493929

WI-IAT ’21, December 14–17, 2021, ESSENDON, VIC, Australia Damle et al.

P
3/2

-DPOP, P
2
-DPOP [14], which build on the DPOP algorithm;

P-SyncBB [10] over SynchBB; and P-MaxSum [23] which presents

the privacy variant of the max-sum algorithm. However, crypto-

graphic primitives and the computationally expensive nature of

DCOPs results in these algorithms not being scalable. For instance,

P-MaxSum requires a computational overhead that can range from

minutes to an hour. Also, the algorithm’s run-time itself increases by

a factor of 1000s over its non-private variant [23]. PC-SyncBB [22],

which adds collusion resistance to SyncBB, also does not scale.

1.2.2 Other Privacy Notions. In a parallel line of work, the authors

in [16] use information entropy to quantify the privacy loss incurred

by an algorithm in the process of solving a distributed constraint

problem. The work is later furthered by [2, 9]. Grinshpoun et al. [9]

present private local-search algorithms based on the algorithms

above. The authors use this quantification to show that their algo-

rithms provide a high quality of solutions while preserving privacy.

While the privacy loss metric defined in [16] is interesting, it does

not provide a worst-case guarantee. Practically, even a minor leak

may result in information being revealed completely.

In summary, we aim to provide rigorous and provable privacy

guarantees for agent constraints. Another serious problem of all

exact DCOP algorithms is that the final assignment leaks further

information about agent preferences. We adopt differential privacy
(DP) techniques to avoid such leaks. That is, unlike the existing

literature, our privacy variant is immune to post-processing.

1.3 Differential Privacy (DP)
To reiterate, we aim to preserve privacy of agent preferences, i.e., en-

suring constraint privacy in DCOPs. We employ DP [3] for the same.

One may note that when the set of variables and agents involved is

globally known, there are more efficient techniques for distributed

optimization using a central coordinator and stochastic gradient de-

scent. Researchers have developed DP techniques for this context as

well [13]. While such algorithms are well-suited for contexts such

as federated learning, where the model parameters are common

knowledge, in meeting scheduling, they would leak the information

of who is meeting with whom, which is usually the most sensitive

information. Therefore, we focus on algorithms where each par-

ticipant has local information, i.e., only knows information about

agents it shares constraints with and nothing about the rest of the

problem. In particular, we focus on achieving privacy in SD-Gibbs

using DP techniques. Furthermore, we consider a stronger local
model of privacy [4], which ensures the indistinguishability of any

two agents.

1.4 Contributions
We show that SD-Gibbs may leak information about agent con-

straints during its execution. Its iterative nature may further lead

to a high privacy loss over the iterations. As such, we must con-

struct a scalable DCOP algorithm that preserves the privacy of the

constraints without requiring a centralized authority.

Towards this, we develop a new differentially private variant

of SD-Gibbs. We present a novel algorithm P-Gibbs: which uses

soft-max with temperature to smooth sampling distributions in SD-

Gibbs. Additionally, during computation, we add Gaussian noise to

the relative utility in our algorithm. We then provide a refined pri-

vacy analysis within the framework of (𝜖, 𝛿)-DP. Our experiments

demonstrate our algorithm’s practicality and robust performance

for a reasonable privacy budget, i.e., 𝜖 , with SD-Gibbs as the baseline.

2 PRELIMINARIES
Distributed Constraint Optimization Problem (DCOP) is a class of

problems comprising a set of variables, a set of agents owning

them, and a set of constraints defined over the set of variables.

These constraints reflect each agent’s preferences.

Definition 1 (DCOP). A Distributed Constraint Optimization
Problem (DCOP) is a tuple ⟨X,A,D, F , 𝛼⟩ wherein,
• X = {𝑥1, . . . , 𝑥𝑝 } is a set of variables;
• A = {1, . . . ,𝑚} is a set of agents;
• D = 𝐷1 × . . . × 𝐷𝑝 is a set of finite domains such that 𝐷𝑖 is the
domain of 𝑥𝑖 ;
• F is a set of utility functions 𝐹𝑖 𝑗 : 𝐷𝑖 × 𝐷 𝑗 → R. 𝐹𝑖 𝑗 gives the
utility of each combination of values of variables in its scope. Let
𝑣𝑎𝑟 (𝐹𝑖 𝑗) denote the variables in the scope of 𝐹𝑖 𝑗 .
• 𝛼 : X → A maps each variable to one agent.

In this work, w.l.o.g [25], we assume that 𝑝 =𝑚, i.e., the number

of agents and the number of variables are equal. Also, 𝐷 = 𝐷𝑖 =

𝐷 𝑗 , ∀𝑖, 𝑗 , i.e., all variables have the same domain. Total utility in

DCOP, for a complete assignment X = (𝑥1, . . . , 𝑥𝑝) is:

𝐹 (X) ≜
𝑚∑
𝑖=1

©«
∑
𝑗

𝐹𝑖 𝑗 (X | |𝐷)
ª®¬ , (1)

where X | |𝐷 is the projection of X to the subspace on which 𝐹𝑖 𝑗 is

defined. The objective of a DCOP is to find an assignment X∗ that
maximizes the total utility, i.e., 𝐹 (X∗) = maxX∈D𝐹 (X) .

In DCOP, each combination of variables/agents is referred to as a

constraint. The utility functions over these constraints quantify how
much each agent prefers a particular constraint. This constraint

structure is captured through a constraint graph.

Definition 2 (Constraint Graph (CG)). Given a DCOP defined
by ⟨X,A,D, F , 𝛼⟩, its constraint graph G = ⟨X, E⟩ is such that
(𝑥𝑖 , 𝑥 𝑗) ∈ E, ∀𝑗 ∈ 𝑣𝑎𝑟 (𝐹𝑖 𝑗).

A pseudo-tree arrangement has the same nodes and edges as the

constraint graph. The tree satisfies (i) there is a subset of edges,

called tree edges, that form a rooted tree; and (ii) two variables in

a utility function appear in the same branch of that tree. Such an

arrangement can be constructed using a distributed-DFS [11].

For the algorithms presented in this paper, let 𝑁𝑖 refer to the set

of neighbors of 𝑥𝑖 in CG. Also, let C𝑖 denote the set of children 𝑥𝑖
in the pseudo-tree, 𝑃𝑖 as the parent of variable 𝑥𝑖 , and 𝑃𝑃𝑖 as the

set of pseudo-parents of 𝑥𝑖 .

2.1 Sequential Distributed Gibbs (SD-Gibbs)
We now describe Sequential Distributed Gibbs (SD-Gibbs) as first

introduced in [18]. In this, the authors map DCOP to a maximum a
posteriori (MAP) estimation problem. Consider MAP on a Markov
Random Field (MRF). MRF consists of a set of random variables

represented by nodes, and a set of potential functions. Each potential

Differentially Private Multi-Agent Constraint Optimization WI-IAT ’21, December 14–17, 2021, ESSENDON, VIC, Australia

Variables Definition

𝑑𝑖 and ˆ𝑑𝑖 Values in current and previous iteration

𝑑∗
𝑖

Value in the best complete solution so far

¯𝑑𝑖 Best response value

𝐶𝑖 and𝐶𝑖 Context and best-response context

𝑡𝑖 , 𝑡
∗
𝑖
, 𝑡∗
𝑖

Time index, best-response and non-best response index

Δ𝑖 Difference in current and previous local solution of agent 𝑖

Δ̄𝑖 Difference in current best-response solution with previous

Ω Shifted utility of the current complete solution

Ω̄ Shifted utility of the best-response solution

Ω∗ Shifted utility of the best complete solution

Table 1: Variables maintained by each agent 𝑥𝑖 in SD-Gibbs

Algorithm 1: Sequential Distributed Gibbs [18]

1 Create pseudo-tree

2 Each agent 𝑥𝑖 calls INITIALIZE()

Procedure 1: INITIALIZE() [18]

1 𝑑𝑖 ← ˆ𝑑𝑖 ← 𝑑∗
𝑖
← ¯𝑑𝑖 ← ValInit(𝑥𝑖)

2 𝐶𝑖 ← 𝐶𝑖 ← {(𝑥 𝑗 ,ValInit(𝑥 𝑗)) |𝑥 𝑗 ∈ 𝑁𝑖 }
3 𝑡𝑖 ← 𝑡∗

𝑖
← 𝑡∗

𝑖
← 0

4 Δ𝑖 ← Δ̄𝑖 ← 0

5 if 𝑥𝑖 is root then
6 𝑡𝑖 ← 𝑡∗

𝑖
← 𝑡∗

𝑖
← 0

7 SAMPLE()

8 end

function, represented by \𝑖 𝑗 (𝑥𝑖 ;𝑥 𝑗), is associated with an edge. We

denote the nodes and edges of the graph constituting MRF by ⟨𝑉 , 𝐸⟩.
Let 𝑃𝑟 (𝑥𝑖 = 𝑑𝑖 ;𝑥 𝑗 = 𝑑 𝑗) be defined as exp(\𝑖 𝑗 (𝑥𝑖 = 𝑑𝑖 ;𝑥 𝑗 = 𝑑 𝑗)).

Then, the most probable assignment is:

Pr(X) = 1

𝑍

∏
𝑖, 𝑗 ∈𝐸

𝑒\𝑖 𝑗 (𝑥𝑖 ,𝑥 𝑗) =
1

𝑍
exp

∑
𝑖, 𝑗 ∈𝐸

\𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗)
 .

Here, 𝑍 is the normalization factor. This corresponds to the maxi-

mum solution of DCOP if,

𝐹 (X) =
∑
𝑖, 𝑗 ∈𝐸

\𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗) .

2.1.1 Sampling. We now describe sampling in SD-Gibbs. Let 𝐶𝑖
denote agent 𝑖’s context, defined as the set consisting of its neighbors
and the value assigned to them. In each iteration, each agent 𝑖

samples a value 𝑑𝑖 with the following equation,

Pr(𝑥𝑖 |𝑥 𝑗 ∈ 𝑁𝑖) =
1

𝑍
exp

∑

⟨𝑥 𝑗 ,𝑑 𝑗 ⟩∈𝐶𝑖

𝐹𝑖 𝑗 (𝑑𝑖 , 𝑑 𝑗)
 (2)

Let, P𝑖 (x𝑖) = {Pr(𝑥𝑖 |𝑥 𝑗 ∈ X \ {𝑥𝑖 }) |𝑥𝑖 = 𝑑𝑖 ∀𝑑𝑖 ∈ 𝐷𝑖 }. That is,
P𝑖 represents the SD-Gibbs’s probability distribution of each agent

𝑖 . The relevant notations required for the SD-Gibbs algorithm are

presented in Table 1.

Procedure 2: SAMPLE() [18]

1 𝑡𝑖 ← 𝑡𝑖 + 1;
ˆ𝑑𝑖 ← 𝑑𝑖

2 𝑑𝑖 ← Sample based on (2)

3 ¯𝑑𝑖 ← argmax𝑑′
𝑖
∈𝐷𝑖

∑
⟨𝑥 𝑗 ,

¯𝑑 𝑗 ⟩∈�̄�𝑖
𝐹𝑖 𝑗 (𝑑′𝑖 , ¯𝑑 𝑗)

4 Δ𝑖 ←
∑
⟨𝑥 𝑗 ,𝑑 𝑗 ⟩∈𝐶𝑖

[
𝐹𝑖 𝑗 (𝑑𝑖 , 𝑑 𝑗) − 𝐹𝑖 𝑗 (ˆ𝑑𝑖 , 𝑑 𝑗)

]
5 Δ̄𝑖 ←

∑
⟨𝑥 𝑗 ,

¯𝑑 𝑗 ⟩∈𝐶𝑖

[
𝐹𝑖 𝑗 (¯𝑑𝑖 , ¯𝑑 𝑗) − 𝐹𝑖 𝑗 (ˆ𝑑𝑖 , ¯𝑑 𝑗)

]
6 Send VALUE(𝑥𝑖 , 𝑑𝑖 , ¯𝑑𝑖 , 𝑡

∗
𝑖
, 𝑡∗
𝑖
) to each 𝑥 𝑗 ∈ 𝑁𝑖

Procedure 3: VALUE(𝑥𝑠 , 𝑑𝑠 , ¯𝑑𝑠 , 𝑡
∗
𝑠 , 𝑡
∗
𝑠) [18]

1 Update ⟨𝑥𝑠 , 𝑑′𝑠 ∈ 𝐶𝑖 ⟩ with (𝑥𝑠 , 𝑑𝑠)
2 if 𝑥𝑠 ∈ 𝑃𝑃𝑖 ∪ {𝑃𝑖 } then
3 Update ⟨𝑥𝑠 , 𝑑′𝑠 ∈ 𝐶𝑖 ⟩ with (𝑥𝑠 , ¯𝑑𝑠)
4 else
5 Update ⟨𝑥𝑠 , 𝑑′𝑠 ∈ 𝐶𝑖 ⟩ with (𝑥𝑠 , ¯𝑑𝑠)
6 end
7 if 𝑥𝑠 = 𝑃𝑖 then
8 if 𝑡∗𝑠 ≥ 𝑡∗𝑠 and𝑡∗𝑠 > max{𝑡∗

𝑖
, 𝑡∗
𝑖
} then

9 𝑑∗
𝑖
← ¯𝑑𝑖 ; 𝑡

∗
𝑖
← 𝑡∗𝑠

10 else if 𝑡∗𝑠 ≥ 𝑡∗𝑠 and𝑡∗𝑠 > max{𝑡∗
𝑖
, 𝑡∗
𝑖
} then

11 𝑑∗
𝑖
← ¯𝑑𝑖 ; 𝑡

∗
𝑖
← 𝑡∗𝑠

12 end
13 SAMPLE()

14 if 𝑥𝑖 is a leaf then
15 Send BACKTRACK(𝑥𝑖 ,Δ𝑖 , Δ̄𝑖) to 𝑃𝑖
16 end
17 end

Procedure 4: BACKTRACK(𝑥𝑠 ,Δ𝑠 , Δ̄𝑠) [18]
1 Δ𝑖 ← Δ𝑖 + Δ𝑠 ; Δ̄𝑖 ← Δ̄𝑖 + Δ̄𝑠

2 if Received BACKTRACK from all children in this iteration then
3 Send BACKTRACK(𝑥𝑖 ,Δ𝑖 , Δ̄𝑖) to 𝑃𝑖
4 if 𝑥𝑖 is root then
5 Ω̄ ← Ω + Δ̄𝑖 ; Ω ← Ω + Δ𝑖

6 if Ω ≥ Ω̄ and Ω > Ω∗ then
7 Ω∗ ← Ω;𝑑∗

𝑖
← 𝑑𝑖 ; 𝑡

∗
𝑖
← 𝑡𝑖

8 else if Ω̄ ≥ Ω and Ω̄ > Ω∗ then
9 Ω∗ ← Ω̄;𝑑∗

𝑖
← ¯𝑑𝑖 ; 𝑡

∗
𝑖
← 𝑡𝑖

10 end
11 SAMPLE()

12 end
13 end

2.1.2 Algorithm. Table 1 presents the values each agent 𝑖 main-

tains in SD-Gibbs. Procedure 2 describes the complete sampling

function. For completeness, we present the SD-Gibbs algorithm in

Algorithm 1. The algorithm can be summarized as follows:

(1) The algorithm starts with the construction of the pseudo-tree.

Each agent then initializes its variables, from Table 1 to their

default values. The root then starts the sampling, as described

in Procedure 2 and sends the VALUE message (line 6) to each

of its neighbors.

(2) Upon receiving a VALUE message, each agent invokes Proce-

dure 3. In it, an agent 𝑖 first updates its current contexts, 𝐶𝑖

WI-IAT ’21, December 14–17, 2021, ESSENDON, VIC, Australia Damle et al.

and 𝐶𝑖 with the sender’s values. If the message is from agent

𝑖’s parents, then the agent itself samples, i.e., executes Proce-

dure 2. This sampling stage continues until all the leaf agents
have sampled.

(3) Each leaf agent 𝑗 then sends a BACKTRACK message to its

parent comprising 𝑥 𝑗 ,Δ 𝑗 , and Δ̄ 𝑗 . As described in Procedure 4,

when a parent receives such a message, it too sends a BACK-

TRACK message to its parent. The process continues until the

root receives the message – concluding one iteration.

(4) To reach a solution, each agent 𝑖 uses its current (Δ𝑖) and cur-

rent best-response (Δ̄𝑖) local utility differences. We refer to

these differences as relative utilities. Upon receiving a BACK-

TRACK message, agent 𝑖 adds the delta variables of its children

to its own. Consequently, these variables for the root agent

quantify the relative global utility. Based on this, at the end of

an iteration, the root decides to keep or throw away the current

solution (Procedure 4, line 4).

As aforementioned, in this work, we focus on constraint privacy
to ensure the privacy of agent preferences. From Faltings et al. [5],

constraint privacy states that no agent must be able to discover

the nature of constraint that does not involve a variable it owns.

Since absolute privacy is not an achievable goal [3], we formalise

constraint privacy in terms of (𝜖, 𝛿)-DP [4].

2.2 Differential Privacy (DP)
Differential Privacy (DP) is normally defined for adjacent databases,
i.e., databases differing in a single entry. However, in this instance,

we not only want to protect privacy against external adversaries but

also against curious fellow agents, i.e., agents looking to decipher

sensitive information. To do so, we consider the local model of

privacy [4]. It is defined on individual entries rather than databases,

or in our setting, on individual agents. As a result, local-DP does

not require defining adjacency. Formally, we want our algorithm

for any two utility functions (vectors in R𝑝) to satisfy the following
definition, from [4],

Definition 3 (Local Differential Privacy). A randomized
mechanismM : F → R with domain F and range R satisfies (𝜖, 𝛿)-
DP if for any two inputs 𝐹, 𝐹 ′ ∈ F and for any subset of outputs
𝑂 ⊆ R we have,

Pr[M(𝐹) ∈ 𝑂] ≤ 𝑒𝜖 Pr[M(𝐹 ′) ∈ 𝑂] + 𝛿 (3)

Privacy loss, useful for our analysis of DP, is defined as

𝐿𝑜M(𝐹) | |M(𝐹 ′) = ln

(
Pr[M(𝐹) = 𝑜]
Pr[M(𝐹 ′) = 𝑜]

)
(4)

2.2.1 Privacy Leakage in SD-Gibbs. In SD-Gibbs, constraint privacy
is compromised in the following two ways:

(1) By sampling. Each variable value in SD-Gibbs is sampled accord-

ing to agent 𝑖’s utility 𝐹𝑖 𝑗 . As values with more utility are more
likely to be drawn, SD-Gibbs leaks sensitive information about

these utility functions. Fortunately, this stage can be secured by

simply making distributions more similar across agents (Sec-

tion 4.2).

(2) By relative utility Δ. Every leaf agent 𝑗 in the pseudo-tree sends

its Δ 𝑗 and Δ̄ 𝑗 to its parent 𝑖 . The parent agent adds the values

to its Δ𝑖 and Δ̄𝑖 , respectively, and passes them on up the tree.

The process continues until the values reach the root. Thus, any

intermediate agents, or an adversary observing Δ, can learn

something about 𝑗 ’s utility even if sampling is private. E.g.,

suppose a particular assignment has a high utility for agent 𝑗

but low for others (and it is known). In that case, an intermediate

agent will learn about agent 𝑗 even from the aggregated utility.

These privacy leaks follow by observing what critical information

gets transferred by each agent 𝑖 in Algorithm 1. We ignore 𝑡∗ and
𝑡∗ because these are simply functions of utility, i.e., will be private

by post-processing property once the utility is private.

Sensitivity. In order to achieve DP, particularly for Δ’s, we need
to bound its sensitivity. Sensitivity is defined as the maximum pos-

sible change in the output of a function we seek to make privacy-

preserving. Formally,

Definition 4 (Sensitivity (𝜏)). It is the maximum absolute dif-
ference between any two relative utility values Δ and Δ′, i.e.,

𝜏 = max

Δ,Δ′

��Δ − Δ′�� (5)

3 OUR APPROACH AND PAPER OVERVIEW
In a nutshell, we aim to ensure constraint privacy in DCOP using

DP techniques. Firstly, observe that SD-Gibbs in its current form is

non-private. This is because the probability distributions defined

in (2) may not be bounded. As a result, 𝜖 in (3) tends to∞.
To provide meaningful privacy guarantees for constraint privacy

in DCOPs, we present P-Gibbs (Section 4). We first use soft-max

with temperature to bound the SD-Gibbs distributions (Section 4.2).

The resulting bound only depends on the temperature parameter

and does not leak any agent’s sensitive information. Then, we “clip"

the relative utilities to further bound the sensitivity (Section 4.3).

Lastly, to reduce the growth of 𝜖 , we randomly select a subset of

agents to sample new values at each iteration. We then provide a

refined privacy analysis for the resulting (𝜖, 𝛿)-DP (Theorem 1).

We validate P-Gibbs empirically over several problem instances

of benchmark problems in DCOP literature (Section 5). Our exper-

iments highlight our privacy variant’s efficiency. Specifically, we

show P-Gibbs provides only a tiny drop in solution qualities than

SD-Gibbs for a desirable privacy budget, i.e., 𝜖 .

With these as a backdrop, we now build upon SD-Gibbs to for-

mally present our novel, scalable algorithm for DCOPs that preserve

constraint privacy, namely P-Gibbs.

4 P-GIBBS: PRESERVING CONSTRAINT
PRIVACY IN DCOPWITH SD-GIBBS

First, typically for DP, we need to ensure full support of the outcome

distribution. Indeed, if Pr[M(𝐷 ′) = 𝑜] = 0 for some 𝑜 , the privacy

loss incurred is infinite and one cannot bound 𝜖 . It implies that

all agents must have the same domain for their variables and non-

zero utility for each value within the domain.
2
In other words,

𝐷1 = 𝐷2 = . . . = 𝐷𝑝 and

��𝐹𝑖 𝑗 (·, ·)�� > 0,∀𝑖 .

2
If an agent has a zero utility for some value, then all agents must have zero utility,

and w.l.o.g., we can exclude such values from all domains.

Differentially Private Multi-Agent Constraint Optimization WI-IAT ’21, December 14–17, 2021, ESSENDON, VIC, Australia

4.1 P-Gibbs
The novelty in P-Gibbs, when compared to SD-Gibbs, is in the sam-

pling procedure. We formally provide the sampling in P-Gibbs with

Procedure 5. The differences, compared to SD-Gibbs, are summa-

rized as follows:

(1) To preserve constraint privacy loss due to sampling:

• P-Gibbs uses soft-max function over SD-Gibbs distributions

for sampling 𝑑𝑖 ’s, ∀𝑖 . As shown later in Claim 1, this bounds

any two agent distributions in SD-Gibbs, resulting in finite

privacy loss.

• P-Gibbs randomly chooses subsets of agents to sample new

values in each iteration. More specifically, in every iteration,

each agent 𝑖 samples a new value 𝑑𝑖 with probability 𝑞 or

uses previous values with probability 1 − 𝑞.
(2) To preserve constraint privacy loss due to relative utilities:

• In P-Gibbs, we sanitize the relative utilities with calibrated

Gaussian Noise.
• To further bound the sensitivity, we “clip" the relative utilities

by ±𝑐 , where 𝑐 is the clipping constant (Procedure 5, Lines 13
and 14). This trivially implies, from (5), that 𝜏 = 2 · 𝑐 .

In the following subsection, we formally show that soft-max

bounds the SD-Gibbs probability distributions. We then provide a

formal analysis for privacy loss due to sampling.

4.2 Bounding Sampling Divergence with
Soft-max

Towards achieving bounded sampling divergence without compro-

mising on constraint privacy itself, we propose to apply soft-max
to sampling distributions. Let 𝑝𝑖 be the soft-max distribution with

temperature parameter as 𝛾 , i.e.,

𝑝𝑖 (x𝑖 , 𝛾) =
{

exp(P𝑖 (𝑥𝑖 = 𝑑𝑘)/𝛾)∑
𝑑𝑙 ∈𝐷 exp(P𝑖 (𝑥𝑖 = 𝑑𝑙)/𝛾)

;∀𝑑𝑘 ∈ 𝐷
}

(6)

Firstly, observe that 𝑝𝑖 (·, 𝛾), for a finite 𝛾 , has full support of the
outcome determination. That is, 𝑝𝑖 (𝑥𝑖 , 𝛾) > 0 s.t. 𝑥𝑖 = 𝑑𝑘 ,∀𝑑𝑘 ∈
𝐷 . Secondly, to also ensure that 𝜖 is finite, we require that the

bound
𝑝𝑖 (·)
𝑝 𝑗 (·) for any distinct pair 𝑖 and 𝑗 is bounded. To this end,

the following claim shows that the ratio of the resulting soft-max

probabilities, 𝑝𝑖 (·) and 𝑝 𝑗 (·) for any two agents 𝑖 and 𝑗 , is bounded
by 2/𝛾 . The proof uses the fact that 𝐷 = 𝐷𝑖 = 𝐷 𝑗 and 1/𝑒 ≤
exp(𝑝𝑖 (𝑥) − 𝑝 𝑗 (𝑥)) ≤ 𝑒 .

Claim 1. For two probability distributions using soft-max, 𝑝𝑖 and
𝑝 𝑗 defined by (6), we have, ∀𝑖, 𝑗 , ∀𝑑 ∈ 𝐷 and ∀𝐷 , s.t. |𝐷 | > 1, 𝛾 ≥ 1

ln

[
𝑝𝑖 (𝑥𝑖 = 𝑑,𝛾)
𝑝 𝑗 (𝑥 𝑗 = 𝑑,𝛾)

]
≤ 2

𝛾

Proof. (SKETCH) We have,

max

©«ln
[
𝑝𝑖

𝑝 𝑗

]ª®¬ = max

©«
ln

exp(P𝑖 (𝑥𝑘)/𝛾)∑

𝑥𝑙 ∈𝐷 exp(P𝑖 (𝑥𝑙)/𝛾)
exp(P𝑗 (𝑥𝑘)/𝛾)∑

𝑥𝑙 ∈𝐷 exp(P𝑗 (𝑥𝑙)/𝛾)

ª®®®®¬

= max

©«ln
[
exp(1/𝛾 (P𝑖 − P𝑗)))

𝑁1/𝑁2

]ª®¬ .

Procedure 5: P-Gibbs SAMPLE()

1 𝑡𝑖 ← 𝑡𝑖 + 1;
ˆ𝑑𝑖 ← 𝑑𝑖

2 𝛽 ∼ Uniform(0, 1)
// Sub-sampling

3 if 𝛽 ∈ (0, 𝑞] then
4 P𝑖 (x𝑖) ← from (2)

// Bounding SD-Gibbs distribution with

Soft-max

5 𝑝𝑖 (x𝑖 , 𝛾) ← from (6)

6 𝑑𝑖 ← Sample based on 𝑝𝑖 (x𝑖 , 𝛾)
7 else
8 𝑑𝑖 ← 𝑑𝑖

9 end
10 ¯𝑑𝑖 ← argmax𝑑′

𝑖
∈𝐷𝑖

∑
⟨𝑥 𝑗 , ¯𝑑 𝑗 ⟩∈𝐶𝑖

𝐹𝑖 𝑗 (𝑑 ′𝑖 , ¯𝑑 𝑗)

11 Δ𝑖 ←
∑
⟨𝑥 𝑗 ,𝑑 𝑗 ⟩∈𝐶𝑖

[
𝐹𝑖 𝑗 (𝑑𝑖 , 𝑑 𝑗) − 𝐹𝑖 𝑗 (ˆ𝑑𝑖 , 𝑑 𝑗)

]
12 Δ̄𝑖 ←

∑
⟨𝑥 𝑗 , ¯𝑑 𝑗 ⟩∈𝐶𝑖

[
𝐹𝑖 𝑗 (¯𝑑𝑖 , ¯𝑑 𝑗) − 𝐹𝑖 𝑗 (ˆ𝑑𝑖 , ¯𝑑 𝑗)

]
// Clipping

13 if |Δ𝑖 | > 𝑐 then Δ𝑖 = (Δ𝑖 ≥ 0) ? 𝑐 : −𝑐
14 if

��Δ̄𝑖 �� > 𝑐 then Δ̄𝑖 = (Δ̄𝑖 ≥ 0) ? 𝑐 : −𝑐
// Perturbing utilities with Gaussian noise

15 Δ𝑖 ← Δ𝑖 + N(0, 𝜏2𝜎2)
16 Δ̄𝑖 ← Δ̄𝑖 + N(0, 𝜏2𝜎2)
17 Send VALUE(𝑥𝑖 , 𝑑𝑖 , ¯𝑑𝑖 , 𝑡

∗
𝑖
, 𝑡∗
𝑖
) to each 𝑥 𝑗 ∈ 𝑁𝑖

Here,𝑁1 =
∑
𝑥𝑙 ∈𝐷 exp(P𝑖 (𝑥𝑙)/𝛾) and𝑁2 =

∑
𝑥𝑙 ∈𝐷 exp(P𝑗 (𝑥𝑙)/𝛾).

The claim follows by observing that 𝑁1/𝑁2 ≤ 1/𝑒1/𝛾
and the maxi-

mum value of the numerator is 𝑒1/𝛾
. □

Discussion.

• Effect of Soft-max. We illustrate the effect of soft-max on the

SD-Gibbs sampling distribution with the following example. Let

𝐷 𝑗 = {𝑑1, 𝑑2, 𝑑3},∀𝑗 such that P𝑖 = [0.8, 0.15, 0.05]. Observe
that the distribution is such that the probability of sampling 𝑑1

is significantly more than others. Now, the corresponding soft-

max distributions, from (6), will be: 𝑝 (·, 𝛾 = 1) = [0.50, 0.26, 0.24],
𝑝 (·, 𝛾 = 2) = [0.41, 0.30, 0.29], and 𝑝 (·, 𝛾 = 10) = [0.35, 0.33, 0.32].
That is, the soft-max distribution is more uniform than the orig-

inal distribution. This implies that the maximum ratio of the

probabilities will be smaller. That is, an adversary will be more

indifferent towards the domain values while sampling. For e.g.,

𝑑1 and 𝑑2 in 𝑝 (·, 𝛾 = 10) compared to in 𝑝 (·, 𝛾 = 1).
• Observe that the bound provided in Claim 1 does not depend on

an agent’s sensitive information. This implies that the bound

does not encode (and reveal) any sensitive information. Thus, we

conclude that the bound provided in Claim 1 is desirable; and

hence use it to construct the sampling distribution in P-Gibbs.

4.2.1 Privacy Guarantees for Sampling in P-Gibbs. We first calcu-

late the privacy parameters of the sampling stage, denoted by 𝜖𝑠
and 𝛿 , in P-Gibbs. We use an extension of the moments accountant

method [1] for non-Gaussian mechanisms. Following derivations

WI-IAT ’21, December 14–17, 2021, ESSENDON, VIC, Australia Damle et al.

Figure 1: Variation of 𝜖𝑠 with _

by [24],

Pr[𝐿 ≥ 𝜖𝑠] ≤ max

𝐹,𝐹 ′
𝑒_D_+1 [M(𝐹) | |M(𝐹 ′)]−_𝜖𝑠 . (7)

Here, 𝐿 is the privacy loss between any two agents and D_ (·| |·)
is Renyi divergence of order _ ∈ N with a slight abuse of notation

(usingM(·) instead of a distribution imposed by it). Unlike [24],

we consider the classical DP. Using their notion of Bayesian DP

could improve the bounds, but we leave it for future work.

Also from [24], we borrow the notion of privacy cost 𝑐𝑡 (_). By
trivial manipulation, for each iteration 𝑡 ,

𝑐𝑡 (_) = max

𝑖, 𝑗
D+1

[
𝑝𝑖 (𝑑) | |𝑝 𝑗 (𝑑)

]
≤ _2/𝛾, (8)

where (8) is due to monotonicity D_ (𝑃 | |𝑄) ≤ D_+1 (𝑃 | |𝑄) ≤
D∞ (𝑃 | |𝑄), ∀_ ≥ 0. Importantly, this cost can be further reduced

by subsampling agents with probability 𝑞 << 1, as we outline next.

Reproducing the steps of the sampled Gaussian mechanism anal-

ysis by [24] for our mechanism and classical DP, we formulate the

following result.

Theorem 1. Privacy cost 𝑐𝑡 (_) at iteration 𝑡 of a sampling stage
of P-Gibbs, with agent subsampling probability 𝑞, is

𝑐
(𝑠)
𝑡 (_) = lnE𝑘∼𝐵 (_+1,𝑞)

[
𝑒𝑘2/𝛾

]
, (9)

where 𝐵(_, 𝑞) is the binomial distribution with _ experiments and
probability of success as 𝑞, _ ∈ N.

Proof. The result follows by substituting 2/𝛾 in place of the

ratio of normality distributions in [24, Theorem 3]. □

Unlike the analysis in [24, Theorem 3], we do not have 𝑐𝐿𝑡 (_)
and 𝑐𝑅𝑡 (_), as well as expectation over the data. This is because we

compute the conventional differential privacy bounds, instead of

Bayesian DP, and thus, directly use the worst-case ratio, i.e., 2/𝛾 .
Finally, merging the results, we can compute 𝜖𝑠 , 𝛿 across multiple

iterations as

ln𝛿 ≤ ∑𝑇
𝑡=1

𝑐
(𝑠)
𝑡 (_) − _𝜖𝑠

𝜖𝑠 ≤ 1

_

(∑𝑇
𝑡=1

𝑐
(𝑠)
𝑡 (_) − ln𝛿

) (10)

Figure 1 shows the variation of 𝜖𝑠 for different values of _ and

𝛾 , with the sampling probability 𝑞 = 0.1. We observe that _ has a

clear effect on the final 𝜖𝑠 value, and one should ideally minimize

the bound over _.

Figure 2: Variation of 𝜖𝑛 with _

4.2.2 P-Gibbs∞: An Extreme Case. We presented P-Gibbs, which

uses a soft-max with temperature function to bound the sampling

divergence, thereby bounding the privacy loss incurred by sampling.

We smooth the distribution using soft-max’s temperature parameter

to reduce further the information encoded in SD-Gibbs sampling.

We then use Theorem 1 to quantify privacy parameters 𝜖𝑠 and 𝛿 .

FromClaim 1, observe that the temperature parameter in P-Gibbs

may be tuned to decrease the overall privacy budget for sampling,

i.e., 𝜖𝑠 . An “extreme" case occurs when 𝛾 → ∞. For this, we have
𝑝𝑖 = 𝑝 𝑗 , which implies that 𝜖𝑠 → 0. Thus, increasing 𝛾 leads to

P-Gibbs sampling distribution mimicking an uniform distribution,

as more information of SD-Gibbs sampling distribution is lost. To

distinguish this extreme case, we refer to P-Gibbs with 𝛾 →∞ as

P-Gibbs∞.

4.3 Privacy of Relative Utilities (Δ) in P-Gibbs
In the previous subsection, we deal with the privacy loss occurring

due to sampling in P-Gibbs. As aforementioned, the values Δ and Δ̄
also leak information about agents’ constraints. We must sanitize

these values so as to fully preserve privacy. We achieve this through

the Gaussian noise mechanism [4] defined as

M𝐺 (Δ) ≜ Δ + 𝑌𝑖 ,

where 𝑌𝑖 ∼ N(0, 𝜏2𝜎2), 𝜏 is the sensitivity and 𝜎 is the noise pa-

rameter.

Privacy parameters for the relative utility Δ, denoted by 𝜖𝑛 and

𝛿 , can be computed either using the basic composition along with

[4, Theorem A.1] or the moments accountant [1]. The latter can be

unified with the accounting for the sampling stage by using:

𝑐
(𝑛)
𝑡 (_) = lnE𝑘∼𝐵 (_+1,𝑞)

[
𝑒𝑘D_+1 [N(0,𝜏2𝜎2) | |N (𝜏,𝜏2𝜎2)]

]
. (11)

Figure 2 shows the variation of 𝜖𝑛 for different values of _ and 𝜏 ,

with the sampling probability 𝑞 = 0.1 and 𝜎 = 1. We observe that _

has a clear effect on the final 𝜖𝑛 value as well, although the change

is virtually the same for 𝜏 = 10, 25 and 50. The trend is similar to the

one observed in Figure 1, i.e., 𝜖𝑛 decreases as _ increases. However,

the decrease is not smooth when 𝜏 = 5, which sees a sharp change

in 𝜖𝑛 as _ increases. This change is similar to what is observed in

[24, Figure 5], suggesting that one should be careful while deciding

on the value of _.

Note. We provide the formal sampling procedure comprising the

privacy techniques discussed above with Procedure 5. The rest of

Differentially Private Multi-Agent Constraint Optimization WI-IAT ’21, December 14–17, 2021, ESSENDON, VIC, Australia

Algorithm (𝜖𝑠 , 𝛿) (𝜖𝑛, 𝛿) (𝜖 = 𝜖𝑠 + 𝜖𝑛, 𝛿) for 𝑇 iterations

P-Gibbs

(
2/𝛾, 0

)
(𝜏𝜎

√
2 ln

1.25

𝛿
, 𝛿)

(
𝑇
_
𝑐
(𝑠)
𝑡 (_) +

𝑇
_
𝑐
(𝑛)
𝑡 (_) −

1

_
ln𝛿, 𝛿

)
P-Gibbs∞ (0, 0) (𝜏𝜎

√
2 ln

1.25

𝛿
, 𝛿)

(
𝑇
_
𝑐
(𝑛)
𝑡 (_) −

1

_
ln𝛿, 𝛿

)
Table 2: Per-iteration and final (𝜖, 𝛿) bounds.

the procedures are the same as provided with Algorithm 1. Table 2

summarises expressions for per-iteration and total 𝜖 values for

P-Gibbs and P-Gibbs∞.

5 EXPERIMENTS
We now empirically evaluate the performance of our novel algo-

rithms, P-Gibbs w.r.t. to SD-Gibbs.

Setup. pyDCOP [21] is a Python module that provides implementa-

tions of many DCOP algorithms (DSA, MGM, MaxSum, DPOP, etc.).

It also allows easy implementation of one’s DCOP algorithm by

providing all the required infrastructure: agents, messaging system,

metrics collection, etc. We use pyDCOP’s public implementation

of the SD-Gibbs algorithm to run our experiments. In addition, we

also implement P-Gibbs.

Generating Test-cases. pyDCOP allows for generating random

test-cases for various problems through its command line’s generate
option. We generate graph-coloring and meeting scheduling prob-

lem instances. These are benchmark problems in DCOP literature.

We test the performance of our algorithms across 20 such randomly

generated problems.

Method. We consider the utility given by SD-Gibbs’ solution as

our baseline. Further, these algorithms, i.e., SD-Gibbs and P-Gibbs,

are random algorithms. Hence, we run each benchmark problem

instance 25 times for a fair comparison and use the subsequent

average utility for our results.

(𝜖, 𝛿)-bounds. Throughout our experiments, we choose 𝛿 = 10
−2
,

𝑇 = 50 and _s as 100. As standard, our choice of 𝛿 is such that

𝛿 < 1/𝑚. We calculate 𝜖 using different permutations of 𝛾 ∈
{8, 20,∞}, 𝑞 ∈ {0.1, 0.2, 0.3}, and 𝜎 ∈ {1, 5, 25, 1000}. We sample

𝜏 from {5, 10, 25, 50} to get 𝜖 ∈ {0.045, 0.655, 1.312, 2.03, 4.09, 7.18}.
Note that, the case with 𝜖 = 0.045 corresponds to P-Gibbs∞.

Solution Quality (SQ).

Definition 5 (SolutionQuality (SQ)). Solution quality SQA
of an algorithm A is defined as

SQA =

𝑈𝑆

𝑈A
for minimization

𝑈A
𝑈𝑆

for maximization

for utility of A as𝑈A and SD-Gibbs as𝑈𝑆 .

With SQ, we normalize P-Gibbs’ utility in the context of SD-

Gibbs. SQ ≈ 1 indicates that utility does not deteriorate than SD-

Gibbs. On the other hand, SQ ≈ 0 means little utility as compared to

the SD-Gibbs solution. It is possible that SQ > 1 due to randomness

and privacy noise acting as simulated annealing.

𝜖
SQ (mean ± std)

GC Benchmark MS Benchmark

0.045 0.854 ± 0.0314 0.875 ± 0.0866

0.65 0.873 ± 0.0224 0.933 ± 0.0490

1.312 0.879 ± 0.0231 0.942 ± 0.0418

2.03 0.887 ± 0.0220 0.971 ± 0.0234

4.09 0.901 ± 0.0165 0.982 ± 0.0142

7.18 0.907 ± 0.0192 0.986 ± 0.0137

Table 3: P-Gibbs: SQs for GC and MS Benchmarks

Figure 3: Problem-wise SQs for Graph-coloring

5.1 Benchmark Problems
Graph-Coloring (GC). We generate 20 sample graph-coloring

problems. The problems are such that the number of agents/variables

lies between [30, 75) and agents’ domain size between [10, 20). Each
constraint is a random integer taken from (0, 10). Graph-coloring
is a minimization problem.

Meeting-Scheduling (MS).We generate 20 sample meeting sched-

uling problems. The problems are that the number of agents and

variables lie between [1, 75) with the number of slots, i.e., domain

for each agent randomly chosen from [50, 100). Each constraint

is a random integer taken from (0, 100), while each meeting may

randomly occupy [1, 5] slots. Meeting-scheduling is amaximization
problem.

Importantly, we perform our experiments on much larger prob-

lems than earlier complete algorithms (e.g., [5]) can handle.

5.2 Results
Table 3 and Figures 3 and 4 present our experimental results. They

provide (i) SQ scores averaged across all problems and (ii) problem-

wise SQ for P-Gibbs. We only plot 6 problem instances for each

WI-IAT ’21, December 14–17, 2021, ESSENDON, VIC, Australia Damle et al.

Figure 4: Problem-wise SQs for Meeting-scheduling

benchmark for readability out of the 20 generated. For both bench-

marks, the average SQ improves between 𝜖 ∈ [0.045, 7.18]. This
behavior is expected as greater 𝜖s imply an increase in the sub-

sampling probability and decrease in the noise added (𝜎). The in-

crease in the probability of sub-sampling allows an agent to explore

more values in its domain. That is an increase in the chance of

encountering better assignments for itself. Other comments:

• We observe that the average solution quality for GC is slightly

lower than that of MS. For both the benchmarks, the quality

increases considerably with increasing privacy budget, i.e., 𝜖 . P-

Gibbs’ performance for meeting-schedule is strong, especially

for higher 𝜖s.

• Note that 𝜖 < 1 is desirable. We consider 𝜖 ≥ 1 for illustrative

purposes. We observe that P-Gibbs also provides good solution

qualities for 𝜖 < 1. Specifically, for GC, the average quality re-

mains above 0.87 and 0.933 for MS. The quality consistently

increases as 𝜖 increases.

• The sudden increase in the qualities as 𝜖 varies from 0.045→ 0.65

can be attributed to the large variation in 𝜎 , from 1000→ 5.

• Since ours is the first method of its kind, to the best of our knowl-

edge, we believe these are strong results, and future work will

further improve the performance. One may study the fine-tuning

of the hyperparameters 𝛾, 𝜎, 𝑐, and 𝑞 to arrive at the optimal (em-

pirical) trade-off between the solution quality and 𝜖 .

• Concerning the infeasibility of a DCOP solution, we remark

that incomplete (or random) algorithms like MGM, DUCT, SD-

Gibbs, and PD-Gibbs do not aim to solve problems with hard

constraints. A hard constraint will leak vital information about

the constraints, and a differentially private solution will not work

in such a setting. Like [18], we focus on soft constraints; thus,

infeasible solutions will not occur.

6 CONCLUSION
In this paper, we addressed the problem of privacy-preserving dis-

tributed constraint optimization. With our novel algorithm– P-

Gibbs, we are the first to show a DP guarantee for the same. As

we use the local DP model, our algorithm preserves the privacy of

unrelated agents’ preferences. This guarantee also extends to the

solution. We also achieve high-quality solutions with reasonably

strong privacy guarantees and efficient computation, especially in

meeting scheduling problems.

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC Conference on CCS. 308–318.
[2] Ismel Brito, Amnon Meisels, Pedro Meseguer, and Roie Zivan. 2009. Distributed

constraint satisfaction with partially known constraints. Constraints 14, 2 (2009),
199–234.

[3] Cynthia Dwork. 2006. Differential Privacy. In 33rd International Colloquium on
Automata, Languages and Programming, part II (ICALP 2006) (33rd international

colloquium on automata, languages and programming, part ii (icalp 2006) ed.)

(Lecture Notes in Computer Science, Vol. 4052). Springer Verlag, 1–12.
[4] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differen-

tial Privacy. Theoretical Computer Science 9, 3-4 (2014), 211–407.
[5] Boi Faltings, Thomas Léauté, and Adrian Petcu. 2008. Privacy guarantees through

distributed constraint satisfaction. In 2008 IEEE/WIC/ACM International Confer-
ence on Web Intelligence and Intelligent Agent Technology, Vol. 2. IEEE, 350–358.

[6] Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas R Jennings. 2008.

Decentralised coordination of low-power embedded devices using the max-sum

algorithm. (2008).

[7] Wilfried Fischer and Bernd W Muller. 1991. Method and apparatus for the

manufacture of a product having a substance embedded in a carrier. US Patent

5,043,280.

[8] Sylvain Gelly and David Silver. 2007. Combining online and offline knowledge

in UCT. In Proceedings of the 24th international conference on Machine learning.
273–280.

[9] Tal Grinshpoun, Alon Grubshtein, Roie Zivan, Arnon Netzer, and AmnonMeisels.

2013. Asymmetric distributed constraint optimization problems. Journal of
Artificial Intelligence Research 47 (2013), 613–647.

[10] Tal Grinshpoun and Tamir Tassa. 2016. P-SyncBB: A privacy preserving branch

and bound DCOP algorithm. Journal of Artificial Intelligence Research 57 (2016),

621–660.

[11] Youssef Hamadi, Christian Bessiere, and Joël Quinqueton. 1998. Distributed

Intelligent Backtracking.. In ECAI. 219–223.
[12] Katsutoshi Hirayama and Makoto Yokoo. 1997. Distributed partial constraint

satisfaction problem. In International Conference on Principles and Practice of
Constraint Programming. Springer, 222–236.

[13] Zhenqi Huang, Sayan Mitra, and Nitin Vaidya. 2015. Differentially private dis-

tributed optimization. In Proceedings of the 2015 International Conference on
Distributed Computing and Networking. 1–10.

[14] Thomas Léauté. 2011. Distributed Constraint Optimization: Privacy Guarantees and
Stochastic Uncertainty. PhD Thesis. Ecole Polytechnique Fédérale de Lausanne

(EPFL), Lausanne, Switzerland. http://thomas.leaute.name/main/DCOP_privacy_

uncertainty_thesis.html

[15] JG Liao. 1998. Variance reduction in Gibbs sampler using quasi random numbers.

Journal of Computational and Graphical Statistics 7, 3 (1998), 253–266.
[16] Rajiv T Maheswaran, Jonathan P Pearce, Emma Bowring, Pradeep Varakantham,

and Milind Tambe. 2006. Privacy loss in distributed constraint reasoning: A

quantitative framework for analysis and its applications. Autonomous Agents
and Multi-Agent Systems 13, 1 (2006), 27–60.

[17] Rajiv T Maheswaran, Jonathan P Pearce, and Milind Tambe. 2006. A family of

graphical-game-based algorithms for distributed constraint optimization prob-

lems. In Coordination of large-scale multiagent systems. Springer, 127–146.
[18] Duc Thien Nguyen, William Yeoh, Hoong Chuin Lau, and Roie Zivan. 2019.

Distributed gibbs: A linear-space sampling-based dcop algorithm. Journal of
Artificial Intelligence Research 64 (2019), 705–748.

[19] Brammert Ottens, Christos Dimitrakakis, and Boi Faltings. 2012. DUCT: An upper

confidence bound approach to distributed constraint optimization problems. In

Twenty-Sixth AAAI Conference on Artificial Intelligence.
[20] Adrian Petcu and Boi Faltings. 2005. DPOP: A scalable method for multiagent

constraint optimization. In IJCAI 05. 266–271.
[21] Pierre Rust, Gauthier Picard, and Fano Ramparany. 2019. pyDCOP: a DCOP

library for Dynamic IoT Systems. In International Workshop on Optimisation in
Multi-Agent Systems.

[22] Tamir Tassa, Tal Grinshpoun, and Avishay Yanai. 2019. A Privacy Preserving Col-

lusion Secure DCOP Algorithm. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI. 4774–4780.

[23] Tamir Tassa, Tal Grinshpoun, and Roie Zivan. 2017. Privacy preserving im-

plementation of the Max-Sum algorithm and its variants. Journal of Artificial
Intelligence Research 59 (2017), 311–349.

[24] Aleksei Triastcyn and Boi Faltings. 2020. Bayesian Differential Privacy for Ma-

chine Learning. In Proceedings of the 37th International Conference on Machine
Learning.

[25] Makoto Yokoo. 2012. Distributed constraint satisfaction: foundations of cooperation
in multi-agent systems. Springer Science & Business Media.

[26] Makoto Yokoo, Edmund H Durfee, Toru Ishida, and Kazuhiro Kuwabara. 1998.

The distributed constraint satisfaction problem: Formalization and algorithms.

IEEE Transactions on knowledge and data engineering 10, 5 (1998), 673–685.

http://thomas.leaute.name/main/DCOP_privacy_uncertainty_thesis.html
http://thomas.leaute.name/main/DCOP_privacy_uncertainty_thesis.html

	Abstract
	1 Introduction
	1.1 DCOP Algorithms
	1.2 Privacy in DCOPs
	1.3 Differential Privacy (DP)
	1.4 Contributions

	2 Preliminaries
	2.1 Sequential Distributed Gibbs (SD-Gibbs)
	2.2 Differential Privacy (DP)

	3 Our Approach and Paper Overview
	4 P-Gibbs: Preserving Constraint Privacy in DCOP with SD-Gibbs
	4.1 P-Gibbs
	4.2 Bounding Sampling Divergence with Soft-max
	4.3 Privacy of Relative Utilities () in P-Gibbs

	5 Experiments
	5.1 Benchmark Problems
	5.2 Results

	6 Conclusion
	References

