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Abstract. Information acquisition through crowdsensing with mobile
agents is a popular way to collect data, especially in the context of
smart cities where the deployment of dedicated data collectors is ex-
pensive and ineffective. It requires efficient information elicitation mech-
anisms to guarantee that the collected data are accurately acquired and
reported. Such mechanisms can be implemented via smart contracts on
blockchain to enable privacy and trust. In this work we develop Orthos, a
blockchain-based trustworthy framework for spontaneous location-based
crowdsensing queries without assuming any prior knowledge about them.
We employ game-theoretic mechanisms to incentivize agents to report
truthfully and ensure that the information is collected at the desired lo-
cation while ensuring the privacy of the agents. We identify six necessary
characteristics for information elicitation mechanisms to be applicable
in spontaneous location-based settings and implement an existing state-
of-the-art mechanism using smart contracts. Additionally, as location
information is exogenous to these mechanisms, we design the Proof-of-
Location protocol to ensure that agents gather the data at the desired
locations. We examine the performance of Orthos on Rinkeby Ethereum
testnet and conduct experiments with live audience.

Keywords: Trustworthy AI · Spatiotemporal Data Acquisition · De-
centralised Applications · Smart Contracts

1 Introduction

Spatio-temporal data for modern applications and services can be acquired ei-
ther by centralized entities (e.g., online reviews about a restaurant) or mobile
agents (e.g., current queue length in a coffee shop). In the second case, infor-
mation needs to be collected and reported in a trustworthy manner. The need
for accurate location-based reports from mobile agents is, among others, highly
motivated by advances in smart cities, and more generally, smart infrastructure.

In Greek, Orthos means correct and accurate.
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(a) Start. (b) Insert a query. (c) Submit a query (d) Existing queries.

Fig. 1: Main activities of Orthos. The Orthos mobile application is connected to
a set of Ethereum smart contracts.

Representative examples can be found on health monitoring systems (e.g., pol-
lution levels in specific areas), smart farming, and others. For example, every
year crop insurance firms receive numerous claims that need to be verified. The
current solution is to send dedicated agents for on-field inspection. Trustworthy
crowdsensing frameworks can reduce the inspection cost by employing mobile
agents in the vicinity of the crop plot to verify the claims.

Mobile agents have limited time to respond to queries in spontaneous localized
settings /citefarm, therefore, it is probable for them to not have readily available
prior knowledge. Also, depending on their location, agents may not be found in
the vicinity. The potential unavailability of agents in locations of interest and
the lack of prior knowledge motivates the need for trustworthy frameworks that
can ensure the quality of the crowdsensed information. Mobile agents are ex-
pected to utilize their devices with multiple sensors to support services to (i)
deploy resources, (ii) produce unbiased measurements, (iii) augment sparse data
collected via static sensors, and (iv) supplement missing data caused by malfunc-
tioning static sensors. There are three main challenges in acquiring information
in spontaneous localized settings via mobile agents: (i) to ensure that they are
truthful, (ii) to validate their presence in the examined settings, and (iii) to
preserve their privacy while maintaining the transparency of the process.

To ensure agents’ truthful participation, information elicitation mechanisms
must guarantee non-negative utilities to agents and provide incentives to moti-
vate them to submit accurate reports. Rational agents are expected to maximize
their utility while not sacrificing a substantial amount of their resources. The
existing literature consists of many mechanisms that induce agents to submit
truthful reports [16, 17, 10, 25, 13, 26, 27]. We examine state-of-the-art informa-
tion elicitation mechanisms and present the necessary conditions for them to be
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applicable in spontaneous localized settings. After comparing these mechanisms,
we argue that the most applicable mechanism to the settings is the robust peer
truth serum for crowdsourcing (RPTSC) [26].

Unfortunately, all these mechanisms take for granted that the agents are
present at the requested area or assume that there exist parties (e.g., cellular
network providers) that can assure the mechanism about the existence of an
agent in the required location [7]. In the case where such location verification
mechanisms does not exist, agents can abuse the system by faking their location.
We design the Proof-of-Location (PoL) protocol, that does not require any fixed
infrastructure to function, to force every mobile agent to provide a proof that
their location is within a threshold.

Recent advances in blockchain-based architectures advance the design of de-
centralized incentive mechanisms. Such architectures are maintained by a net-
work of peers, and motivate agents to participate in crowdsensing applications
since their reports will not be controlled by centralized entities. Architectures
like Ethereum, support the development of applications that are executed atop
blockchain [5] based on smart contracts. We use Ethereum smart contracts to
develop Orthos, a trustworthy framework for data acquisition in spontaneous lo-
calized settings. Orthos, via a set of smart contracts, (i) processes the submitted
reports, (ii) estimates the ground truth using weighted averaging techniques and
(iii) calculates the payments of the agents. Additionally, Orthos, via developed
cryptographic techniques, hides agents’ responses to guarantee that agents will
not deviate from their honest behavior. Figure 1 depicts some activities of the im-
plementation of Orthos on Android. Anyone can submit queries or load queries
that request for spatio-temporal information at their location. Every query is
defined by (i) a String (e.g., How is the availability in restaurant XYZ?), (ii) a
set of possible answers, (iii) the GPS coordinates close to which the responded
agents should be when answering the query, and (iv) the amount, in gas, the
requester is willing to pay. The screenshots of the activities that allow agents to
submit their answers to queries are presented after the description of Orthos in
Section 5. The contributions of this work are multi-fold and are listed below:

1) We define six necessary characteristics required by any information elicita-
tion mechanism to be used in spontaneous localized settings and investigate
existing mechanisms regarding their applicability to these settings.

2) We develop Orthos for the development of incentive mechanisms for applica-
tions and services that elicit information. It acts as a wrapper for information
elicitation mechanisms and facilitates the collection of agents’ reports and
the distribution of rewards in a decentralized and privacy-preserving fashion.

3) We design Proof-of-Location (PoL) protocol to detect and prevent malicious
agents from faking their location. PoL is executed in the mobile devices of
the agents to robustly verify that each interested agent can participate if she
is located in the correct location.

4) We examine the applicability of Orthos by testing it with 27 participants.

In summary, Orthos works in the trinity of game theory for incentives, mobile
computing for location validity, and blockchain technology.
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2 Background

Orthos is a framework for information elicitation mechanisms that can be used
efficiently in location-based applications and services such as mobile crowdsens-
ing. Orthos leverages blockchain to provide transparency as well as privacy in
a decentralized environment. In this section, we briefly explain what is mobile
crowdsensing, blockchain and smart contract.
Mobile Crowdsensing. Mobile crowdsensing is a paradigm that utilizes the
ubiquitousness of mobile users who are carrying smartphones and can collect
and process data. Similar to Orthos, the authors of [22] develop Medusa, a
framework to develop crowdsensing applications. However, the authors employ
cloud resources instead of a blockchain and do not guarantee agents’ privacy. The
authors of [14], motivated by the fact that if the available mobile agents are fewer
than the required ones, incentive mechanisms will lose efficacy, propose HySense.
HySense combines mobile devices with static sensor nodes. Furthermore, the
authors of [31] propose effSense, an energy-efficient and cost-effective framework
to reduce the participation cost of mobile agents.
Blockchains. Blockchains is a distributed mechanism for storing data in the
form of transactions. Bitcoin5, Ethereum6 and Ripple7 are few notable public-
distributed ledgers based on the blockchain architecture. These ledgers are main-
tained by their global peer-to-peer network of nodes. All transactions are stacked
in a block and then the block is appended to the public-ledger. Each block con-
tains a cryptographic hash of the previous block, a timestamp and transaction
data. The data is hashed and encoded into a Merkel Tree. The cryptographic
hash that forms the link to the previous block iteratively goes all the way back
to the genesis block, this ensures the integrity of the whole blockchain. The data
once recorded on a blockchain ledger is effectively immutable as any modera-
tion would require alteration of all subsequent blocks which requires consensus
of majority of the network nodes. Because of the decentralized nature of the
blockchain, data is replicated across all nodes of the network. This protects the
network from any threats to a particular node. However, publishing a block is
a challenging process and requires a lot of resources, its termed as mining in
blockchain nomenclature. A miner must validate all the transactions stacked in
the block and solve a crytographic puzzle through bruteforce computations in
order to mine a block, the solution obtained on solving the puzzle is termed as
proof-of-work. The time taken to mine a block is variable and depends mainly on
the difficulty level of the puzzle. The block time is the average time it takes for
the network to generate one block in the blockchain. The block time for bitcoin
is around 10 mins while the block time on Ethereum is around 15 seconds.
Smart Contracts. Nick Szabo [28] first coined the term and proposed the
idea of a smart contract, ”a set of promises, specified in digital form, including
protocols within which the parties perform on the other promises”. The idea
was later adopted by blockchains to offer additional functionalities on the stored
data. Each smart contract takes information as an input and processes that

5 https://bitcoin.org/ 6 https://ethereum.org/ 7 https://ripple.com
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information using the set of rules defined in the contract. It can also trigger
other smart contracts and access information stored on remote servers. Every
smart contract is executed in a virtualized environment maintained by every peer
in the blockchain. Whenever a smart contract is called, via a transaction, it is
executed when the nodes that maintain the blockchain process the corresponding
transaction. Every node has to execute the code of the contract and depending
on its complexity and the capabilities of the peers, it may take a lot of time
and resources. This contract execution paradigm motivates proposals for off-
chain code execution. Blockchain-based mechanisms can execute parts of their
modules on remote servers, also known as oracles, to improve their performance
and increase the privacy of the agents [11]. Given that everything stored in the
blockchain, including the code of smart contracts and the data stored on them, is
visible to everyone, private information should be stored on oracles to motivate
agents’ participation. By building on top of a blockchain, smart contracts provide
a trusted framework for many potential applications. For example, Bogner et.
al. [3] present a decentralized application for sharing resources like Uber and
Airbnb without the involvement of any trusted third party. Internet of Things
(IoT) devices form a crucial part of any smart city project, however, privacy and
security remain an issue. The authors of [36] and [38] propose smart contract
based solutions for safe and secure access control of IoT devices. Unlike other
online software applications, the code of a smart contract cannot be altered
once deployed on the network. In [1], the authors have compared five different
tools for detecting vulnerabilities in the smart contract, namely Oyente [19],
Securify [30], Remix [12], Smartcheck [29] and Mythril [9], one can use these tools
to safeguard the smart contracts against potential threats. Ethereum is one of
the most popular smart contracts platform and Solidity8 the most recommended
language to develop smart contracts. Smart contracts are written in high-level-
language code is then compiled to bytecodes. This bytecode is published to the
Etheruem blockchain where it is executed on Ethereum Virtual Machine (EVM).
The EVM consumes resources in the form of gas units to execute commands in
the smart contract.

3 Spontaneous Localized Settings

Considering an entity in question EiQ, a set of nearby mobile agents U , and
a budget B, we want to estimate a function f (e.g., EiQ can be the Eiffel
Tower, f the current queue length in the tickets counter and B can be 1$).
A (A ⊆ U) agents choose to participate and assess EiQ. Every agent i ∈ A
observes a signal si ∈ S and reports a signal ri ∈ S which can be different
from si. After submitting ri, agent i collects a reward ui (

∑
i∈A ui ≤ B). If the

equality holds and the budget is fully utilized, the mechanism is called Strong
Budget Balanced. Orthos ensures this property while distributing rewards. The
spontaneity of the requests and zero prior knowledge about the EiQ adds to
the sophistication of the spontaneous localized settings. It, therefore, requires

8 https://solidity.readthedocs.io
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very specific mechanisms that can be used in such scenarios. Below, we list
six essential characteristics a mechanism needs and discuss the applicability of
seventeen mechanisms concerning these characteristics.

3.1 Essential Characteristics for Spontaneous Localized Settings

Before introducing existing information elicitation mechanisms and presenting
Orthos’ function in detail, we introduce the characteristics, these mechanisms
should have to be applicable in spontaneous localized settings.

[C1] Bayesian Incentive Compatibility: A social choice function f : Θi ×
... × Θn → X is said to be Bayesian incentive compatible (or truthfully im-
plementable in Bayesian Nash equilibrium) if the direct revelation mechanism
D = ((Θi)i∈N , f(.)) has a Bayesian Nash equilibrium s∗(.) = (s∗i (), ..., s∗n(.)) in
which s∗i (θi) = θi,∀θi ∈ Θi,∀i ∈ N . As ground truth is not readily available in
many scenarios, the verification of an agent’s report depends on the reports of
other agents. Therefore, the mechanism must induce Bayesian Nash Equilibrium
where truthful reporting is the best response when agents are also truthful.

[C2] No Common Knowledge: Spontaneous localized settings refer to enti-
ties the information to which is difficult to access online. As a result, common
knowledge parameters like prior belief models and posterior expectations used
by most mechanisms are rendered futile for spontaneous localized settings.

[C3] Minimalistic Mechanism: A mechanism is minimalistic if the agents
need to submit only the information report i.e. observed private signal for the
EiQ. In addition to information report, many mechanisms require agents to
submit a prediction report, that reflects the agents’ belief about the distribution
of information reports in the population. In the spontaneous localized settings,
agents have limited time to respond to the request, therefore, we require a min-
imalistic mechanism where agents only have to submit the information report.

[C4] Interim Individual Rationality (IIR): Aggregated information from
a few agents is less reliable and more prone to human error. Hence, to increase
participation and guarantee information robustness, the mechanism must offer
non-negative rewards to participating agents. If a mechanism ensures positive
expected utility to the agents, it is said to satisfy IIR.

[C5] Prevent Free-riders: Free-riders can benefit from an IIR mechanism
by submitting random responses and hence, the mechanism should not admit
uninformed equilibria where free-riders benefit by abusing the mechanism.

[C6] Collusion Resistant: Agents must be located nearby the EiQ in sponta-
neous localized settings. Agents operating in close proximity expose the system
to collusion. Therefore, the mechanism should be able to prevent such collusions.

Any mechanism that has the above set of attributes can be used in Orthos.
We now investigate existing mechanisms in the literature to examine their ap-
plicability in spontaneous localized settings.
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3.2 Information Elicitation Mechanisms

Many information elicitation mechanisms have been proposed but most of them
are not applicable in spontaneous localized settings. Miller et.al. [20], rely on the
common knowledge assumption where every agent shares the same prior belief
about an event, however, it is not possible to provide a prior belief model for
all queries. Prelec et.al. [21], on the other hand, proposes Bayesian Truth Serum
(BTS), which does not require knowledge of any common prior information but
is applicable only for a large number of agents. Since queries in spontaneous
localized settings are strict location specific, not many agents are expected to
participate all the time. Also, it suffers from free-riding and does not resist
collusion. Witkowski et.al. [34] propose Robust Bayesian Truth Serum (RBTS),
which simplifies BTS but is only applicable for binary signals space and still
suffers from free-riding and collusion. Radanovic et.al. [23, 24] improve RBTS
by making it compatible with non-binary and continuous outcomes respectively
but both of these mechanisms do not address free-riding and collusion. Similarly
to BTS, Zhang et.al. [37] and Lambert et.al. [18] do not require common prior
information but suffer from free-riding and collusion among agents. Furthermore,
in the mechanism proposed in [18], the agents are indifferent between being
honest and misreporting in the equilibrium.

Witkowski et.al. [32, 33] propose mechanisms that assume neither any com-
mon prior information nor a large number of agents and are robust to private
beliefs of agents. However, they suffer from temporal separation. This requires
the agent to submit one report before and one after executing the crowdsourced
task. Temporal separation is not practical in many situations and slows down
the crowdsensing process. Also, both the mechanisms lack provisions for resisting
collusion among agents and free-riding. Riley et.al. [27] propose a minimalistic
mechanism under the assumption that all the agents with the same outcome
have the same posterior expectations. Jurca et.al. [16, 17] propose mechanisms
that are more suitable for interactive reputation markets where agents interact
and rate each other. Both mechanisms are susceptible to collusion. Moreover,
the former is not independent of agents’ private beliefs and the latter assumes a
prior belief distribution. Faltings et.al. [13] introduce Peer Truth Serum (PTS),
a minimalistic mechanism that assumes a prior belief model. The mechanism
also admits uninformed equilibria where agents do not perform measurements.
Such equilibria can result in free-riding agents that lower the quality of the col-
lected information. Orthos requires a mechanism that does not depend on any of
the aforementioned assumptions as the requests can arrive almost spontaneously
and the mechanism must be robust to incorporate the report of as many nearby
agents willing to participate as possible.

Considering the introduced essential characteristics we review four applicable
mechanisms: M1 by [10] is a strong incentive compatible mechanism that can
only be applied to binary settings. It is worth mentioning however that binary
outcomes limit the usability of Orthos in many scenarios and compromise with
the quality of aggregated information.
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C1 C2 C3 C4 C5 C6

M1 X X - X X -
M2 (LPTS) X - X X X X
M3 (PTSC) X X X X X X
M4 (RPTSC) X X X X X X

Table 1: Comparison matrix of the ex-
amined mechanisms.

M2 by [25] improves PTS by intro-
ducing Logarithmic PTS and elimi-
nating the dependency on a prior be-
lief model. M2 produces worse pay-
off than truthful reporting for un-
informed equilibria and against mis-
behaving agents acting on collusion
strategies.

M3 & M4 by [26] are optimized ver-
sions of PTS. M3, Peer Truth Serum

for Crowdsourcing (PTSC) is more robust than PTS in cases where the number
of participating agents is small. M4, Robust PTSC (RPTSC) is a furthermore ro-
bust version of PTSC which excludes the possibilities of ill-defined results from
PTSC. PTSC and RPTSC enable the agents to participate in multiple tasks,
however, for our purpose, we will restrict to single tasks scenarios.

It is clear from the comparison matrix (Table 1) that M3 and M4 satisfy
all the requirements for spontaneous localized settings, however, since M4 (i.e.
RPTSC) is a more robust version of M3, we select it for our Orthos protocol.

3.3 Robust Peer Truth Serum for Crowdsourcing

Robust Peer Truth Serum for Crowdsourcing (RPTSC), proposed in [26] is a
minimalistic payment mechanism that incentivizes the honest behavior of agents.
It is a Bayesian incentive compatible mechanism and is independent of agents’
private prior beliefs. Agents only announce their observation in their reports to
participate in the process. For every report, RPTSC generates a non-negative
score. Any uninformed equilibrium, where agents do not perform measurements,
including random reporting or collusion on one value and collusion strategies
that are based on agents’ measurements, result in worse payoff than truthful
reporting. Thus, agents are incentivized to submit honest reports. An agent i
submits a report ri ∈ S to the system. Randomly select a peer agent p and let
her report be rp. RPTSC calculates the fractional frequency of agent i’s report,
Ri, as follows:

Ri(ri, p) =
num−i(ri)∑

s∈S num−{i,p}(s)
(1)

where num is the function that counts occurrences of reported values among
all the reports. The summation in the denominator reduces to total number of
reports submitted. Given a constant α > 0, the reward of agent i is

τ(ri, rp) =

(
α

Ri(ri, p)

)
if ri = rp and Ri(ri, p) 6= 0 and 0 otherwise. (2)
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4 Implementing Decentralized Data Acquisition
Mechanisms

Information elicitation mechanisms can be integrated into decentralized appli-
cations (DApps) in the form of smart contracts. Ethereum smart contracts are
compiled into bytecode and executed on EVM. For each computation, the EVM
consumes some fuel, named gas. Gas is the unit of measurement for the resources
consumed in Ethereum. The monetary expenditure depends on the consumed
gas units and the gas price at that moment. The gas price is the valuation of
gas units in terms of ether and it changes according to market dynamics.

Reading information from a contract is gas-free and nearly instant, however,
writing into a smart contract requires gas proportional to the storage needs.
Similarly, computations on a smart contract require gas proportional to the
computational complexity. Transactions on Ethereum are executed in batches
and stored in blocks. Each block has a gas limit that forces the sum of all the gas
needs of the transactions stored on each block to not exceed this limit. Hence,
it is not possible to accomplish complex tasks on smart contracts via a single
transaction. Also, since storage on the blockchain is expensive, its impractical
to maintain long logs of persistent data for a complex task to be carried out
in disjoint transactions. It is also worth mentioning that Ethereum does not
support floating-point numbers (i.e., all divisions are integer divisions) making
computations that require floating-point numbers to be handled on a case by
case basis that usually imposes additional computation overhead.

The two primary tasks of any data acquisition mechanism are collecting and
storing reports from all agents and performing computations on those reports to
determine rewards for the agents. Both of these tasks are anti-complimentary to
the smart contract. In the previous sections, we discussed various information
elicitation mechanisms and presented four that apply to spontaneous localized
settings. However, among them, only M3 (PTSC) and M4 (RPTSC) are com-
putationally feasible to implement on the smart contract. M1 is a very complex
mechanism with dependency on multiple tasks while M2 uses a logarithm scoring
rule which is difficult to implement on the smart contract because of no support
for floating-point numbers. PTSC and RPTSC are very similar mechanisms but
between them, RPTSC is a more robust mechanism as it excludes the possibility
of ill-defined results from PTSC. Hence, we recommend using RPTSC for data
acquisition on decentralized mechanisms. According to our measurements, the
gas needs of RPTSC is 2495101, which corresponds to less than half USD.

5 Orthos

Orthos is a blockchain-based data acquisition mechanism applicable in sponta-
neous localized settings. RPTSC and any other mechanism that meets the essen-
tial criteria presented in Table 1 can be applied for crowdsensing in spontaneous
localized settings securely and anonymously using Orthos. The architecture of
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Fig. 2: The four phases an agent follows to produce a proof of her location.

Orthos is split into two parts: a mobile application and a DApp. We have de-
signed a protocol, called Orthos protocol, to dictate the interaction between the
two components during the data acquisition process. Figures 1 and 3 show a
total of six screenshots of the developed mobile application that allows mobile
agents to submit a query, load existing queries in their location and answer
existing queries by submitting a report.

The Orthos protocol is composed of four phases: commitment phase, reveal
phase, scoring phase, and reward distribution phase. In the commitment phase,
each agent i assesses EiQ, observes signal si and commits to a report ri. Fig-
ure 3a shows the screen of the mobile application after the submission of the
commitment. No more agents are accepted once this phase ends. Only the final
commitment of the agent is taken into consideration and is revealed in the reveal
phase where the report is processed, as depicted in Figure 3b. Participating mo-
bile agents need to transact with the blockchain part of Orthos to submit their
commitments and reveal their reports by calling the submit() and reveal()

smart contract functions respectively.
In the scoring phase, each agent i is rewarded based on her report ri and

the payment mechanism. Information elicitation mechanisms for spatio-temporal
queries are unable to detect if an agent commits a signal after assessing EiQ
at the required location. Agents can attempt to manipulate their location by
faking their GPS reading if it is beneficial. Orthos bypasses this limitation using
Proof-of-Location (PoL), a distributed protocol that is executed by the agents.
PoLs have been used in the design of location-based cryptocurrencies, where
agents are required to be either at a specific location to be rewarded [35] or the
agents’ interconnectivity affects their rewards [8].

5.1 Location Proofs in Spontaneous Localized Settings

Agents need to include a PoL whenever they submit an answer to a query for
an EiQ. Using their mobile devices, an agent i that wants to produce a proof
of her location broadcasts her context to all nearby mobile devices. Orthos is
based on Google’s Nearby Connections API to connect with mobile phones in
Bluetooth and Wi-Fi range. After collecting the broadcasted context, nearby
peers respond with their respective contexts. Similar to agent i, all nearby peers
exchange their contexts to form their own list of contexts. Then agent i shares
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this list of contexts with his nearby peers who compare agent i’s list of context
with their own list of contexts to assess the validity of agent i’s location. If
valid, each peer responds with a digital signature certifying the validity of agent
i’s location. Agent i must have enough peer validations to cross the security
threshold set by Orthos smart contract. In detail, agent i proves her location is
as measured by her GPS or any localization method [4, 6], by following the four
phases of the following cryptographic protocol:

Scanning Phase: Scan for neighbours and produce Li = {li,Pi}, a message
composed of the agent’s estimated location, li, and her neighbors, Pi.

Tag Production Phase: Use Li to produce a tag LT
i = f (Li(t)) of fixed size

via a pseudo-random function [15] known to every agent.
Commitment Phase: Use the secret key ki of agent i to produce a commit-

ment for every neighbor Mi:

Commt
(
Li, L

T
i

)
→Mi. (3)

Verification Phase: Every neighbour receives Mi and examines whether user
i is at li:

Verify
(
Li, L

T
i ,Mi

)
→ LV

ji ∈ {yes, no}. (4)

LV
ji equals to “yes” if user j verifies that user i is her neighbour and “no”

otherwise. User j returns “yes” if her estimated location has a difference of
less than a threshold from the location of agent i.

Every user, after receiving Mi uses the public key of i to extract her location,
neighbours and LT

i . User i, by sending Mi instead of Li makes sure that her
neighbors can only answer to her claim. Misbehaving agents cannot change the
location agent i claims to be in. Practically, a malicious agent can only try to
produce a PoL for a location she is not currently in. By doing that, she will not
be able to verify her fake location by normal agents. Via this process, user i
constructs a PoL that a set of her neighbors are within a given distance:

πi(EiQ)

Mi,
⋃
j∈Pi

LV
ji,

1

|Pi|

|Pi|∑
j=1

1{LV
ji)==“yes′′}

 (5)

PoL is defined as the set of messages from the neighbouring devices of a user
that the user is at a specific location. Each message is signed by the neighbouring
users. Figure 2 depicts the four phases of the Proof-of-Location protocol. The
Orthos smart contract contains a method named verifyLocation() that is
responsible for verifying the submitted PoLs from the mobile agents.

5.2 Orthos Protocol

A requester can add her query on the network using the addQuery() method
by specifying the exact query (Q), query location (L), signal space (all possible
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signals, S), and budget (B). The requester does not need to provide personal
information on the network. Once the query is added to the contract, all agents
can access it. Next, we present the protocol through which agents can submit and
receive a reward for their contributions. For ease of understanding, we consider
an arbitrary agent i to walk through the various phases of the protocol.

Commitment Phase: Agents can access all queries of the smart contract and
chose to participate in the queries related to a nearby location. Agents can
submit their reports using the submit() method of the smart contract. Since
Ethereum is a public blockchain, in order to conceal an agent’s report, we
require them to submit the hash of their report. For an agent i, submit()
takes a cipher ci, which is the commitment (ci = keccak256(ri, ki)

9, where
ri is the reported signal and ki is the secret key of the agent) of the reported
signal, list of peers (identified by their Ethereum addresses) and a list of
digital signatures by the peers validating the agent i’s location. Every agent
is allowed to update her report as long as the phase continues but only the
latest report will be considered.

Reveal Phase: Agent i, reveals her commitment by submitting ri and ki using
the reveal() method. The agent report is accepted only if her commitment
matches with the reported value i.e. ci = keccak256(ri, ki) and if the sub-
mitted proof of location is accepted by the verifyLocation() method that
implements the verification phase of the PoL protocol.

Scoring Phase: Once the reveal phase is over, agent i calculates the score of her
contribution by calling calcScore(). Agent i is scored using the requester
specified mechanism. For RPTSC, Ri is calculated using Equation 1 and the
final score is based on Ri, as described by Equation 2. The score of agent i is
stored on the smart contract before being normalized when all agents have
been scored. Agent i gets his reward in the next phase.

Reward Distribution Phase: Once the scoring is finished, agent i adds the
corresponding reward to her balance by calling updateBalance(). To ensure
budget balancing, Orthos normalizes the scores irrespective of the payment
scheme and calculates the reward for each agent i by:

ui =
scorei∑

j∈A scorej
×B, (6)

where B is the total budget for the request. Agents can call getBalance() to
get their balance and withdraw() to transfer it to their Ethereum accounts.

6 Performance Evaluation

We implement Orthos as a decentralized application (DApp) that is composed
of Ethereum smart contracts that are deployed on Rinkeby Testnet Network10

9 Keccak is a versatile cryptographic function. Best known as a hash function, it nev-
ertheless can also be used for authentication, encryption and pseudo-random num-
ber generation. For more information, please refer to https://keccak.team/keccak.html
10 rinkeby.etherscan.io
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and an Android mobile application that is presented in Figures 1 and 3. We
measure the gas needs and the cost in USD of each implemented method of
Orthos. Additionally, we recruited 27 students (18 male and 9 female) with an
average age of 22 years and asked them to install Orthos and participate as
mobile agents. We generated a query to ask them about the difficulty of the

(a) Commit answer. (b) Reveal answer.

Fig. 3: After submitting an answer, by
triggering the submit() method, the de-
veloped application waits until the dead-
line to reveal the submitted answer,
by calling the reveal() method. After
that, Orthos calculates the score of each
report and distributes the rewards.

subject and provided four signals. We
used the acquired data to measure
gas costs for executing Orthos. Each
query completes in about 10 mins.

Implementation. Agents are identi-
fied via their Ethereum address. For
every new account, Ethereum gen-
erates a random pair of a public
key and the correspondent private
key. The keys are completely unre-
lated to the real-world identity of the
agent, hence, granting an anonymous
medium of participation to the agent.
The Ethereum address is the last 20
bytes of the hash of the public key.
Agents are encouraged to create a new
Ethereum address for every new query
to avoid any privacy leaks. The mo-
bile part of Orthos is built to tar-
get mobile devices with Android SDK
version 28 and supports devices with
minimum SDK version 23. To connect
a mobile device with the Ethereum
blockchain, the device must host an
Ethereum node. However, the hosting

of an Ethereum node on a mobile device is energy demanding and demotivating
for mobile agents. As a solution to this problem, we use the Infura API11. Infura
is a hosted Ethereum node cluster that supports JSON-RPC over HTTPS and
WebSocket interfaces and allows mobile agents to perform requests and set up
subscription-based connections to Ethereum blockchains. Once the connection
to the Ethereum blockchain is established, we integrate wrapper functions to the
mobile part of Orthos to automate the call of smart contract methods on the
blockchains. We use Web3j 12 to generate equivalent wrapper functions of the
smart contract for Java/Kotlin which we then use for the development of the
mobile part.

Experiments. Orthos enables mobile agents to both add queries and respond
to existing ones. Table 2 lists the methods that require gas to be executed while
Table 3 lists additional helping methods for secondary functionalities such as
payments between the query requester and the responding mobile agents. Table 2

11 https://infura.io/docs 12 https://www.web3labs.com/web3j
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Name Gas Used USD Cost

ContractCreation() 2495101 0.47
addQuery() 442183 0.08
submit() 1013457 0.19
reveal() 74138 0.01
verifyLocation() 183733 0.03
calcScore() 6431116 1.20

Table 2: Gas consumption for deploying Orthos, and transact with it on Rinkeby
Ethereum testnet. For converting gas to USD we used the default gas price
(1 GWei) and the price of Ethereum on 13-Nov-2019. (i.e., USD = gas·188·10−9).

Name Description

getScore() Returns the score for a particular query
getBalance() Returns the total balance of an agent in the protocol

withdraw() Withdraws the total balance from the protocol
updateBalance() Updates agents’ balance after the query

Table 3: Helping methods. getScore() and getBalance() are gas-free while the
gas needs of withdraw() and updateBalance() are negligible.

shows that the required gas for deploying a smart contract that implements
RPTSC (ContractCreation) is 2495101, which corresponds to less than half
USD. Adding a new query for spatio-temporal data using addQuery() requires
only 8 cents. Every participating mobile agent spends 19 USD cents for the call
of submit() on the first phase of Orthos protocol, 6 USD cents during the second
phase for the calls of reveal() and verifyLocation(), and 1.2 USD for the
calculation of her score via the calcScore() on the third phase. The collection of
the reward is gas-free. Note that for the cost calculation we considered the default
gas price that leads to the completion of each call within 15 seconds. Lower gas
prices can reduce the cost for each mobile agent but delay the collection of the
data. Depending on the deadline of a query, the mobile agents are responsible
to device the gas price they are willing to use for submitting their readings.

7 Design Tradeoffs

We design Orthos as an Ethereum-based framework that functions via smart
contracts. Although the use of smart contracts on every component of Orthos
guarantees its auditability and generalisability, it increases the cost of its opera-
tion in terms of gas. In this section we discuss the design tradeoffs for the stored
data and the computational demanding components of Orthos.
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Storage Gas Cost (ETH) Cost(USD)

256-bit word 20000 0.00002 0.177
1 MB (31250 words) 625× 106 18.75 5531.25
1 GB (1000 MB) 625× 109 18750 531250

Table 4: Contract storage costs on 13/11/2019, 1 ETH=188$, 1 gas=10−9 ETH.

Storage requirements of Orthos. Actions performed on Orthos are recorded
as transactions and get logged to the Ethereum blockchain. Anyone can access
these logs and verify the operations of Orthos. There are two methods to store
persistent data on the smart contract, contract storage and log storage. Data
stored on the contract storage can be accessed by the corresponding smart con-
tract and other smart contracts depending on the permissions provided. How-
ever, the cost of storing data on the contract storage is very high, and therefore
only state variables and only the most crucial data required by the smart contract
should be stored there. Table 4 provides cost details for contract storage. Orthos
stores agent commitments and their reports on the contract storage as it needs
it to verify agent reports and then use it to compute their scores. The contract
also stores the agents’ PoLs which are required to validate their location.

A cheaper alternative is log storage where data is stored on transaction logs
created by triggering events13. For every log event, the gas price is:

Gas prince = 8 ∗ (nBytes) + 375 ∗ (1 + iArgs),

where nBytes denotes the number of bytes and iArgs the number of the indexed
arguments. A limitation to this form of storage is that smart contracts cannot
access directly the data stored on log storage and need additional functions for
that. Another alternative is to use external storage (e.g., IPFS [2]) and store
hashed of the externally stored data. Unfortunately, this increases the required
setup on the agents’ mobile devices.
Reward Calculation. It is possible to store the reports on the logs and then
use third party services (oracles) to compute the agent reward using the logged
data. In this way, each agent will save more than 50% of her participation cost.
However, the requester will have to cover the fees for the oracle service provider.
Provable14 is one such popular oracle service provider designed to act as an
untrusted intermediary. Provable is referred to as a provable honest service as it
provides cryptographic proofs showing that the data they provide is really the
one that the server gave them at a specific time. It works in the following way:
first, a smart contract uses the provable API to request for a task execution
off-chain, and then Provable performs the task off-chain and makes a callback
transaction to provide the results of the task and the proof of authenticity.
With each request, the contract must pay enough fee to Provable to execute
the task and send a callback transaction. The fee consists of two parts: The gas

13 solidity.readthedocs.io/en/v0.4.24/contracts.html#events 14 https://provable.xyz
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Proof Type
Data Source Base Price TLSNotary Android Ledger

URL 0.01$ +0.04$ +0.04$ N/A
WolframAlpha 0.03$ N/A N/A N/A
IPFS 0.01$ N/A N/A N/A
random 0.05$ N/A N/A +0.0$
computation 0.50$ +0.04$ +0.04$ N/A

Table 5: Provable Fee Structure.

that corresponds, using a recent exchange rate, to the USD price for the data
source and the authenticity proof requested and the gas Provable will spend for
sending the callback transaction. Table 5 provides fee details for the data source
and authenticity proof.

Note that using an oracle service to compute the rewards off-chain defeats
the purpose of an otherwise decentralized framework as the services centrally
compute all the rewards. Hence, the rewards are computed on blockchain and
stored on public storage to maintain transparency. The rewards are only asso-
ciated with Ethereum addresses and therefore do not compromise privacy even
though stored publicly. We allow agents to accumulate their reward as a balance
on the smart contract and retrieve it whenever they want. It is a design trade-off
to avoid repetitive transactions that pay agents agent for every query.

8 Conclusion

Smart cities require constant and accurate data to function properly. Existing
data acquisition systems are built on centralized architectures that imply trust-
ing third parties on providing reliable and secure services. Motivated by these
challenges in robust spatio-temporal information acquisition in smart cities, we
proposed Orthos, a blockchain-based framework that enables the deployment
of information elicitation mechanisms. After introducing the necessary charac-
teristics of data acquisition mechanisms in spontaneous localized settings and
analyzing the state of the art, we concluded that RPTSC is the most suitable.
Additionally, we proposed the Proof-of-Location protocol to assist Orthos on
guaranteeing that agents participating in information elicitation mechanisms are
at the expected locations when reporting their measurements. We used Ethereum
smart contracts to develop the methods needed to support any information elic-
itation mechanism. To test Orthos and assess its applicability, we deployed its
smart contracts on a popular Ethereum testnet and developed an Android Ap-
plication to perform experiments with a live audience. In summary, Orthos assist
agents in posting their queries and answer others’ queries on their mobile devices
at extremely very low rates. It protects agents’ privacy and provides a secure
and transparent platform for exchange and acquisition of information with no
tampering or interference by any centralized entity.
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