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Abstract. We generalise the problem of inverse reinforcement learning
to multiple tasks, from multiple demonstrations. Each one may repre-
sent one expert trying to solve a different task, or as different experts
trying to solve the same task. Our main contribution is to formalise the
problem as statistical preference elicitation, via a number of structured
priors, whose form captures our biases about the relatedness of different
tasks or expert policies. In doing so, we introduce a prior on policy op-
timality, which is more natural to specify. We show that our framework
allows us not only to learn to efficiently from multiple experts but to also
effectively differentiate between the goals of each. Possible applications
include analysing the intrinsic motivations of subjects in behavioural
experiments and learning from multiple teachers.

Keywords: Bayesian inference, intrinsic motivations, inverse reinforce-
ment learning, multitask learning, preference elicitation

1 Introduction

This paper deals with the problem of multitask inverse reinforcement learning.
Loosely speaking, this involves inferring the motivations and goals of an unknown
agent performing a series of tasks in a dynamic environment. It is also equivalent
to inferring the motivations of different experts, each attempting to solve the
same task, but whose different preferences and biases affect the solution they
choose. Solutions to this problem can also provide principled statistical tools for
the interpretation of behavioural experiments with humans and animals.

While both inverse reinforcement learning, and multitask learning are well
known problems, to our knowledge this is the only principled statistical for-
mulation of this problem. Our first major contribution generalises our previous
work [20], a statistical approach for single-task inverse reinforcement learning,
to a hierarchical (population) model discussed in Section 3. Our second major
contribution is an alternative model, which uses a much more natural prior on
the optimality of the demonstrations, in Section 4, for which we also provide
computational complexity bounds. An experimental analysis of the procedures
is given in Section 5, while the connections to related work are discussed in
Section 6. Auxiliary results and proofs are given in the appendix.
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2 The general model

We assume that all tasks are performed in an environment with dynamics drawn
from the same distribution (which may be singular). We define the environment
as a controlled Markov process (CMP) ν = (S,A, T ), with state space S, action
space A, and transition kernel T = { τ(· | s, a) : s ∈ S, a ∈ A}, indexed in S×A
such that τ(· | s, a) is a probability measure3 on S. The dynamics of the environ-
ment are Markovian: If at time t the environment is in state st ∈ S and the agent
performs action at ∈ A, then the next state st+1 is drawn with a probability
independent of previous states and actions: Pν(st+1 ∈ S | st, at) = τ(S | st, at),
S ⊂ S, where we use the convention st ≡ s1, . . . , st and at ≡ a1, . . . , at to
represent sequences of variables, with St,At being the corresponding product
spaces. If the dynamics of the environment are unknown, we can maintain a
belief about what the true CMP is, expressed as a probability measure ω on the
space of controlled Markov processes N .

During the m-th demonstration, we observe an agent acting in the envi-
ronment and obtain a Tm-long sequence of actions and a sequence of states:
dm , (aTm

m , sTm
m ), aTm

m , am,1, . . . , am,T , s
Tm
m , sm,1, . . . , sm,Tm

. The m-th task
is defined via an unknown utility function, Um,t, according to which the demon-
strator selects actions, which we wish to discover. Setting Um,t equal to the total
discounted return,4 we establish a link with inverse reinforcement learning:

Assumption 1 The agent’s utility at time t is defined in terms of future re-
wards: Um,t ,

∑∞
k=t γ

krk, where γ ∈ [0, 1] is a discount factor, and the reward

rt is given by the reward function ρm : S ×A → R so that rt , ρm(st, at).

In the following, for simplicity we drop the subscript m whenever it is clear
by context. For any reward function ρ, the controlled Markov process and the
resulting utility U define a Markov decision process [17] (MDP), denoted by
µ = (ν, ρ, γ). The agent uses some policy π to select actions at ∼ π(· | st, at−1),
which together with the Markov decision process µ defines a distribution5 on the
sequences of states, such that Pµ,π(st+1 ∈ S | st, at−1) =

∫

A
τ(S | a, st) dπ(a |

st, at−1), where we use a subscript to denote that the probability is taken
with respect to the process defined jointly by µ, π. We shall use this nota-
tional convention throughout this paper. Similarly, the expected utility of a pol-
icy π is denoted by Eµ,π Ut. We also introduce the family of Q-value functions
{

Qπ
µ : µ ∈ M, π ∈ P

}

, where M is a set of MDPs, with Qπ
µ : S × A → R such

that: Qπ
µ(s, a) , Eµ,π (Ut | st = s, at = a). Finally, we use Q∗

µ to denote the op-
timal Q-value function for an MDP µ, such that: Q∗

µ(s, a) = supπ∈P Q
π
µ(s, a),

∀s ∈ S, a ∈ A. With a slight abuse of notation, we shall use Qρ when we only

3 We assume the measurability of all sets with respect to some appropriate σ-algebra.
4 Other forms of the utility are possible. For example, consider an agent who collects
gold coins in a maze with traps, and where the agent’s utility is the logarithm of the
number of coins it has after it has exited the maze.

5 When the policy is reactive, then π(at | st, at−1) = π(at | st), and the process
reduces to first order Markov.
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Fig. 1. Graphical model of general multitask reward-policy priors. Lighter colour in-
dicates latent variables. Here η is the hyperprior on the joint reward-policy prior φ
while ρm and πm are the reward and policy of the m-th task, for which we observe
the demonstration dm. The undirected link between π and ρ represents the fact that
the rewards and policy are jointly drawn from the reward-policy prior. The implicit
dependencies on ν are omitted for clarity.

need to distinguish between different reward functions ρ, as long as the remaining
components of µ are clear from the context.

Loosely speaking, our problem is to estimate the sequence of reward func-
tions ρ , ρ1, . . . , ρm, . . . , ρM , and policies π , π1, . . . , πm, . . . , πM , which were
used in the demonstrations, given the data D = d1, . . . ,dm, . . . ,dM from all
demonstrations and some prior beliefs. In order to do this, we define a multitask
reward-policy prior distribution as a Bayesian hierarchical model.

2.1 Multitask priors on reward functions and policies

We consider two types of priors on rewards and policies. Their main difference
is how the dependency between the reward and the policy is modelled. Due to
the multitask setting, we posit that the reward function is drawn from some
unknown distribution for each task, for which we assert a hyperprior, which
is later conditioned on the demonstrations. The hyperprior η is a probability
measure on the set of joint reward-policy priors J . It is easy to see that, given
some specific φ ∈ J , we can use Bayes’ theorem directly to obtain, for any
A ⊂ PM , B ⊂ RM , where PM ,RM are the policy and reward product spaces:

φ(A,B | D ) =

∫

A×B
φ(D | ρ,π) dφ(ρ,π)

∫

RM×PM φ(D | ρ,π) dφ(ρ,π) =
∏

m

φ(ρm, πm | dm).

When φ is not specified, we must somehow estimate some distribution on it.
In the empirical Bayes case [19] the idea is to simply find a distribution η in
a restricted class H, according to some criterion, such as maximum likelihood.
In the hierarchical Bayes approach, followed herein, we select some prior η and
then estimate the posterior distribution η(· | D ).

We consider two models. In the first, discussed in Section 3 on the following
page, we initially specify a product prior on reward functions and on policy
parameters. Jointly, these determine a unique policy, for which the probability
of the observed demonstration is well-defined. The policy-reward dependency is
exchanged in the alternative model, which is discussed in Section 4 on page 5.
There we specify a product prior on policies and on policy optimality. This leads
to a distribution on reward functions, conditional on policies.
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3 Multitask Reward-Policy prior (MRP)

Let R be the space of reward functions ρ and P the space of policies π. Let
ψ(· | ν) ∈ R denote a conditional probability measure on the reward functions
R such that for any B ⊂ R, ψ(B | ν) corresponds to our prior belief that the
reward function is in B, when the CMP is known to be ν. For any reward function
ρ ∈ R, we define a conditional probability measure ξ(· | ρ, ν) ∈ P on the space
of policies P. Let ρm, πm denote the m-th demonstration’s reward function and
policy respectively. We use a product6 hyperprior7 η on the set of reward function
distributions and policy distribution R × P, such that η(Ψ,Ξ) = η(Ψ)η(Ξ) for
all Ψ ⊂ R, Ξ ⊂ P. Our model is specified as follows:

(ψ, ξ) ∼ η(· | ν), ρm | ψ, ν ∼ ψ(· | ν), πm | ξ, ν, ρm ∼ ξ(· | ρm, ν), (3.1)

In this case, the joint prior on reward functions and policies can be written as
φ(P,R | ν) ,

∫

R
ξ(P | ρ, ν) dψ(ρ | ν) with P ⊂ P, R ⊂ R, such that φ(· | ν) is a

probability measure on P×R for any CMP ν.8 In our model, the only observable
variables are η, which we select ourselves and the demonstrations D .

3.1 The policy prior

The model presented in this section involves restricting the policy space to a
parametric form. As a simple example, we consider stationary soft-max policies
with an inverse temperature parameter c:

π(at | st, µ, c) = Softmax (at | st, µ, c) ,
exp(cQ∗

µ(st, at))
∑

a exp(cQ
∗
µ(st, a))

, (3.2)

where we assumed a finite action set for simplicity. Then we can define a prior
on policies, given a reward function, by specifying a prior β on c. Inference
can be performed using standard Monte Carlo methods. If we can estimate the
reward functions well enough, we may be able to obtain policies that surpass the
performance of the demonstrators.

3.2 Reward priors

In our previous work [20], we considered a product-Beta distribution on states
(or state-action pairs) for the reward function prior. Herein, however, we develop

6 Even if a prior distribution is a product, the posterior may not necessarily remain a
product. Consequently, this choice does not imply the assumption that rewards are
independent from policies.

7 In order to simplify the exposition somewhat, while maintaining generality, we usu-
ally specify distributions on functions or other distributions directly, rather than on
their parameters.

8 If the CMP itself is unknown, so that we only have a probabilistic belief ω on N , we
can instead consider the marginal φ(P,R | ω) ,

∫

N
φ(P,R | ν) dω(ν).
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a more structured prior, by considering reward functions as a measure on the
state space S with ρ(S) = 1. Then for any state subsets S1, S2 ⊂ S such that
S1∩S2 = ∅, ρ(S1∪S2) = ρ(S1)+ρ(S2). A well-known distribution on probability
measures is a Dirichlet process [11]. Consequently, when S is finite, we can use a
Dirichlet prior for rewards, such that each sampled reward function is equivalent
to multinomial parameters. This is more constrained than the Beta-product
prior and has the advantage of clearly separating the reward function from the
c parameter in the policy model. It also brings the Bayesian approach closer to
approaches which bound the L1 norm of the reward function such as [21].

3.3 Estimation

The simplest possible algorithm consists of sampling directly from the prior. In
our model, the prior on the reward function ρ and inverse temperature c is a
product, and so we can simply take independent samples from each, obtaining
an approximate posterior on rewards an policies, as shown in Alg. 1. While
such methods are known to converge asymptotically to the true expectation
under mild conditions [12], stronger technical assumptions are required for finite
sample bounds, due to importance sampling in step 8.

Algorithm 1MRP-MC: Multitask Reward-Policy Monte Carlo. Given the data
D , we obtain η̂, the approximate posterior on the reward-policy distirbution, and
ρ̂m, the η̂-expected reward function for the m-th task.

1: for k = 1, . . . ,K do

2: φ(k) = (ξ(k), ψ(k)) ∼ η, ξ(k) = Gamma(g
(k)
1 , g

(k)
2 ).

3: for m = 1, . . . ,M do

4: ρ
(k)
m ∼ ξ(ρ | ν), c(k)m ∼ Gamma(g

(k)
1 , g

(k)
2 )

5: µ
(k)
m = (ν, γ, ρ

(k)
m ), π

(k)
m = Softmax (· | ·, µ(k)

m , c
(k)
m ), p

(k)
m = π

(k)
m (aTm | sTm)

6: end for

7: end for

8: q(k) =
∏

m
p
(k)
m /

∑K

j=1

∏

m
p
(j)
m

9: η̂(B | D ) =
∑K

k=1 I

{

φ(k) ∈ B
}

q(k), for B ⊂ R×P.

10: ρ̂m =
∑K

k=1 ρ
(k)
m q(k), m = 1, . . . ,M .

An alternative, which may be more efficient in practice if a good proposal
distribution can be found, is to employ a Metropolis-Hastings sampler instead,
which we shall refer to as MRP-MH. Other samplers, including a hybrid Gibbs
sampler, hereafter refered to as MRP-Gibbs, such as the one introduced in [20]
are possible.

4 Multitask Policy Optimality prior (MPO)

Specifying a parametric form for the policy, such as the softmax, is rather awk-
ward and hard to justify. It is more natural to specify a prior on the optimality
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of the policy demonstrated. Given the data, and a prior over a policy class (e.g.
stationary policies), we obtain a posterior distribution on policies. Then, via a
simple algorithm, we can combine this with the optimality prior and obtain a
posterior distribution on reward functions.

As before, let D be the observed data and let ξ be a prior probability measure
on the set of policies P, encoding our biases towards specific policy types. In
addition, let {ψ(· | π) : π ∈ P } be a set of probability measures on R, indexed
in P, to be made precise later. In principle, we can now calculate the marginal
posterior over reward functions ρ given the observations D , as follows:

ψ(B | D ) =

∫

P

ψ(B | π) dξ(π | D ), B ⊂ R. (4.1)

The main idea is to define a distribution over reward functions, via a prior
on the optimality of the policy followed. The first step is to explicitly define
the measures on R in terms of ε-optimality, by defining a prior measure β on
R+, such that β([0, ε]) is our prior that the policy is ε-optimal. Assuming that
β(ε) = β(ε | π) for all π, we obtain:

ψ(B | π) =
∫ ∞

0

ψ(B | ε, π) dβ(ε), (4.2)

where ψ(B | ε, π) can be understood as the prior probability that ρ ∈ B given
that the policy π is ε-optimal. The marginal (4.1) can now be written as:

ψ(B | D ) =

∫

P

(
∫ ∞

0

ψ(B | ε, π) dβ(ε)
)

dξ(π | D ) (4.3)

We now construct ψ(· | ε, π). Let the set of ε-optimal reward functions with
respect to π be: Rπ

ε ,
{

ρ ∈ R : ‖V ∗
ρ − V π

ρ ‖∞ < ε
}

. Let λ (·) be an arbitrary
measure on R (e.g. the counting measure if R is discrete). We can now set:

ψ(B | ε, π) , λ (B ∩Rπ
ε )

λ (Rπ
ε )

, B ⊂ R. (4.4)

Then λ (·) can be interpreted as an (unnormalised) prior measure on reward
functions. If the set of reward functions R is finite, then a simple algorithm can
be used to estimate preferences, described below.

We are given a set of demonstration trajectories D and a prior on policies
ξ, from which we calculate a posterior on policies ξ(· | D ). We sample a set of
K policies Π = {π(i) : i = 1, . . . ,K} from this posterior. We are also given a
set of reward functions R with associated measure λ (·). For each policy-reward
pair (π(i), ρj) ∈ Π ×R, we calculate the loss of the policy for the given reward
function to obtain a loss matrix:

L , [ℓi,j ]K×|R|, ℓi,j , sup
s
V ∗
ρj
(s)− V π(i)

ρj
(s), (4.5)
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where V ∗
ρj

and V π(i)

ρj
are the value functions, for the reward function ρj , of the

optimal policy and π(i) respectively.9

Given samples π(i) from ξ(π | D ), we can estimate the integral (4.3) accu-

rately via ψ̂(B | D ) , 1
K

∑K
i=1

∫∞

0
ψ(B | ε, π(i)) dβ(ε). In addition, note that

the loss matrix L is finite, with a number of distinct elements at most K × |R|.
Consequently, ψ(B | ε, π(i)) is a piece-wise constant function with respect to ε.

Let (εk)
K×|R|
k=1 be a monotonically increasing sequence of the elements of L. Then

ψ(B | ε, π(i)) = ψ(B | ε′, π(i)) for any ε, ε′ ∈ [εk, εj+1], and:

ψ̂(B | D ) ,

K
∑

i=1

K×|R|
∑

k=1

ψ(B | εk, π(i))β([εk, εk+1)). (4.6)

Note that for an exponential prior with parameter c, we have β([εk, εk+1]) =
e−cεk −e−cεk+1 . We can now find the optimal policy with respect to the expected
utility.

Theorem 1. Let η̂k(· | D ) be the empirical posterior measure calculated via the
above procedure and assume ρ takes values in [0, 1] for all ρ ∈ R. Then, for any
value function Vρ,

Eη(‖Vρ − V̂ρ‖∞ | D ) ≤ 1

(1− γ)
√
K

(

2 +
1

2

√
lnK

)

, (4.7)

where the expectation is taken w.r.t the marginal distribution on R.

This theorem, whose proof is in the appendix, bounds the number of samples
required to obtain a small loss in the value function estimation, and holds with
only minor modifications for both the single and multi-task cases for finite R.
For the multi-task case and general R, we can use MPO-MC (Alg. 2 on the next
page), to sample N reward functions from a prior. Unfortunately the theorem
does not apply directly for infinite R. While one could define an ǫ-net on R, and
assume smoothness conditions, in order to obtain in optimality guarantees for
that case, this is beyond the scope of this paper.

5 Experiments

Given a distribution on the reward functions ψ, and known transition distribu-
tions, one can obtain a stationary policy that is optimal with respect to this
distribution via value iteration. This is what single-task algorithms essentially
do, but it ignores differences among tasks. In the multi-task setting, we infer the
optimal policy π̂∗

m for them-th task. Its L1-loss with respect to the optimal value
function is ℓm(π̂∗

m) ,
∑

s∈S V
∗
ρm

(s) − V π
ρm

(s). We are interested in minimising
the total loss

∑

m ℓm across demonstrations. We first examined the efficiency

9 Again, we abuse notation slightly and employ Vρj to denote the value function of the
MDP (ν, ρj), for the case when the underlying CMP ν is known. For the case when
we only have a belief ω on the set of CMPs N , Vρj refers to the expected utility with
respect to ω, or more precisely V π

ρj
(s) = Eω(Ut | st = s, ρj , π) =

∫

N
V π
ν,ρj

(s) dω(ν).
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Algorithm 2 MPO-MC Multitask Policy Optimality Monte Carlo posterior
estimate
1: Sample N reward functions ρ1, . . . , ρN ∼ ψ.
2: for k = 1, . . . ,K do

3: (ξ(k), ψ(k)) ∼ η, where ψ(k) is multinomial over N outcomes.
4: for m = 1, . . . ,M do

5: π
(k)
m ∼ ξ(k)(· | dm).

6: end for

7: end for

8: Calculate φ̂m(· | dm) from (4.6) and {π(k)
m : k = 1, . . . ,K}.
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(a) Sampling comparison
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(b) Model comparison

Fig. 2. Expected loss for two samplers, averaged over 103 runs, as the number of total
samples increases. Fig. 2(b) compares the MRP and MPO models using a Monte
Carlo estimate. Fig. 2(a) shows the performance of different sampling strategies for the
MTPP model: Metropolis-Hastings sampling, with different numbers of parallel chains
and simple Monte Carlo estimation.

of sampling. Initially, we used the Chain task [8] with 5 states (c.f. Fig. 3(a)),
γ = 0.95 and a demonstrator using standard model-based reinforcement learn-
ing with ǫ-greedy exploration policy using ǫ = 10−2, using the Dirichlet prior
on reward functions. As Fig. 2(a) shows, for the MRP model, results slightly
favour the single chain MH sampler. Figure 2(b) compares the performance of
the MRP and MPO models using an MC sampler. The actual computing time
of MPO is larger by a constant factor due to the need to calculate (4.6).

In further experiments, we compared the multi-task perfomance of MRP

with that of an imitator, for the generalised chain task where rewards are sampled
from a Dirichlet prior. We fixed the number of demonstrations to 10 and varied
the nnumber of tasks. The gain of using a multi-task model is shown in Fig. 3(b).
Finally, we examined the effect of the demonstration’s length, independently of
the number of task. Fig. 3(c),3(d) show that when there is more data, then MPO

is much more efficient, since we sample directly from ξ(π | D ). In that case, the
MRP-MC sampler is very inefficient. For reference, we include the performance
of MWAL and the imitator.
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Fig. 3. Experiments on the chain task. (a) The 3-state version of the task. (b) Em-
pirical performance difference of MRP-MC and Imit is shown for {1, 2, 5, 10} tasks
respectively, with 10 total demonstrations. As the number of tasks increases, so does
the performance gain of the multitask prior relative to an imitator. (c,d) Single-task
sample efficiency in the 5-state Chain task with r1 = 0.2, r2 = 0, r3 = 1. The data
is sufficient for the imitator to perform rather well. However, while the MPO-MC is
consistently better than the imitator, MRP-MC converges slowly.

The second experiment samples variants of Random MDP tasks [20], from
a hierarchical model, where Dirichlet parameters are drawn from a product of
Gamma(1, 10) and task rewards are sampled from the resulting Dirichlets. Each
demonstration is drawn from a softmax policy with respect to the current task,
with c ∈ [2, 8] for a total of 50 steps. We compared the loss of policies derived
from MRP-MC, with that of algorithms described in [16, 18, 21], as well as a flat
model [20]. Fig. 4(a) on the following page shows the loss for varying c, when
the (unknown) number of tasks equals 20. While flat MH can recover reward
functions that lead to policies that outperform the demonstrator, the multi-task
model MRP-MH shows a clear additional improvement. Figure 4(b) shows that
this increases with the number of available demonstrations, indicating that the
task distribution is estimated well. In contrast, RP-MH degrades slowly, due to
its assumption that all demonstrations share a common reward function.
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Fig. 4. Experiments on random MDP tasks, comparing MTPP-MH with the original
(RP-MH) sampler[20], a demonstrator employing a softmax policy (soft), Policy Walk
(PolWalk) [18] and Linear Programming (LinProg) [16] MWAL [21], averaged over
102 runs. Fig. 4(a) shows the loss as the inverse softmax temperature c increases, for
a fixed number of M = 20 tasks Fig. 4(b) shows the loss relative to the optimal policy
as the number of tasks increases, for fixed c = 8. There is one 50-step demonstration
per task. The error bars indicate standard error.

6 Related work and discussion

A number of inverse reinforcement learning [1, 5, 7, 16, 18, 20, 23] and preference
elicitation [4, 6] approaches have been proposed, while multitask learning itself
is a well-known problem, for which hierarchical Bayesian approaches are quite
natural [13]. In fact, two Bayesian approaches have been considered for multitask
reinforcement learning. Wilson et al. [22] consider a prior on MDPs, while Lazaric
and Ghavamzadeh [14] employ a prior on value functions.

The first work that we are aware of that performs multi-task estimation of
utilities is [3], which used a hierarchical Bayesian model to represent relationships
between preferences. Independently to us, [2] recently considered the problem
of learning for multiple intentions (or reward functions). Given the number of
intentions, they employ an expectation maximisation approach for clustering.
Finally, a generalisation of IRL to the multi-agent setting, was examined by
Natarajan et al. [15]. This is the problem of finding a good joint policy, for a
number of agents acting simultaneously in the environment.

Our approach can be seen as a generalisation of [3] to the dynamic setting
of inverse reinforcement learning; of [2] to full Bayesian estimation; and of [20]
to multiple tasks. This enables significant potential applications. For example,
we have a first theoretically sound formalisation of the problem of learning from
multiple teachers who all try to solve the same problem, but which have different
preferences for doing so. In addition, the principled Bayesian approach allows
us to infer a complete distribution over task reward functions. Technically, the
work presented in this paper is a direct generalisation of our previous paper [20],
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which proposed single task equivalents of the policy parameter priors discussed
in Sec. 3, to the multitask setting. In addition to the introduction of multiple
tasks, we provide an alternative policy optimality prior, which is a not only a
much more natural prior to specify, but for which we can obtain computational
complexity bounds.

In future work, we may consider non-parametric priors, such as those consid-
ered in [10], for the policy optimality model of Sec. 4. Finally, when the MDP is
unknown, calculation of the optimal policy is in general much harder. However,
in a recent paper [9] we show how to obtain near-optimal memoryless policies
for the unknown MDP case, which would be applicable in this setting.
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A Auxillary results and proofs

Lemma 1 (Hoeffding inequality). For independent random variables X1, . . . , Xn

such that Xi ∈ [ai, bi], with µi , EXi and t > 0:

P

(

n
∑

i=1

Xi ≥
n
∑

i=1

µi + nt

)

= P

(

n
∑

i=1

Xi ≤
n
∑

i=1

µi − nt

)

≤ exp

(

− 2n2t2
∑n

i=1(bi − ai)2

)

.

Corollary 1. Let g : X × Y → R be a function with total variation ‖g‖TV ≤
√

2/c, and let P be a probability measure on Y . Define f : X → R to be f(x) ,
∫

Y
g(x, y) dP (y). Given a sample yn ∼ Pn, let fn(x) , 1

n

∑n
i=1 g(x, yi). Then,

for any δ > 0,with probability at least 1− δ, ‖f − fn‖∞ <
√

ln 2/δ
cn .

Proof. Choose some x ∈ X and define the function hx : Y → [0, 1], hx(y) =
g(x, y). Let hnx be the empirical mean of hx with y1, . . . , yn ∼ P . Then note that
the expectation of hx with respect to P is Ehx =

∫

hx(y)dP (y) =
∫

g(x, y)dP (y) =

f(x). Then Pn ({yn : |f(x)− fn(x))| > t}) < 2e−cnt2 , for any x, due to Hoeffd-
ing’s inequality. Substituting gives us the required result.

Proof (Proof of Theorem 1 on page 7). Firstly, note that the value function has
total variation bounded 1/(1− γ). Then corollary 1 applies with c = 2(1− γ)2.
Consequently, the expected loss can be bounded as follows:

E ‖V − V̂ ‖∞ ≤ 1

1− γ

(
√

ln 2/δ

2K
+ δ

)

.

Setting δ = 2/
√
K gives us the required result.
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