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Abstract

Networked computing environments are subject to con-
figuration errors, unauthorized users, undesired activi-
ties and attacks by malicious software. These can be
detected by monitoring network traffic, but network ad-
ministrators are overwhelmed by the amount of data that
needs to be inspected. In this paper, we describe how
clustering can be used for this application to reduce the
amount of data that has to be inspected. Rather than a
system that attempts to directly detect malicious soft-
ware and user, we propose a data-mining component to
group the open ports and users in the network and let
a human system administrator analyze the results. With
empirical study, we show that the behaviors of softwares
and users are very different. They should be clustered by
the appropriate clustering algorithm accordingly.

Introduction
Networked computing environments are subject to configu-
ration errors, undesired activities and attacks by malicious
software. These can be detected by monitoring network
traffic, but network administrators are overwhelmed by the
amount of data that needs to be inspected. Filtering tech-
niques are widely used by administrators to pick out the
unusual traffic (Chandola, Banerjee, and Kumar 2009). But
this approach requires the pre-defined filters, so it might mis-
s some unknown anomalies. To deal with this problem, more
intelligent techniques need to be adopted. Our work aims to
develop a clustering strategy based on hypergraph model for
the administrator so that the network traffic can be efficiently
inspected with a concise list.

The real-time enterprise desktop monitoring software de-
veloped by Nexthink (http://www.nexthink.com) continu-
ously monitors network traffic and application activities
(processes) on all desktops in an enterprise network (Fig-
ure 1). Unlike traditional system logs, the monitoring soft-
ware called Nexthink Collector is installed on the client side
rather than the server side. This feature allows complete
record of TCP/UDP connections, which includes not only
the common 5-tuple (source IP, destination IP, source port,
destination port, and protocol) but also the information ofthe
application that initialized the connection (e.g. application
name, application version, the user who is using the applica-
tion, etc.). In this work, we empirically study two problems

with the nexthink dataset, namely network service identifi-
cation and user affiliation identification. Both problems are
modeled with hypergraph where the goal is a partition of
vertices.
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Figure 1: Nexthink tool architecture.

With Nexthink Finder the administrator can select the part
of records of particular interest (by smart filters) and gen-
erate a connection graph for inspection. In the current ver-
sion, connections are grouped by the port number range (e.g.
1-1000, 1001-2000, etc.), which is obviously not a good
grouping strategy because in each port number range there
could be ports of different functionalities. Our work aims
to provide a better grouping strategy of the ports based on
network service, i.e. a set of ports that serves for the same
functionality. In the network service identification problem,
clusters of special interest are usually small (e.g. malware),
so the clustering approach that is able to isolate small clus-
ters is more preferable than the approach that generates good
average performance.

The similar idea is applied to identify the affiliation of a
user. Users from the same department tend to use the same
set of applications to access similar destinations since they
do similar works. The affiliation information can be direct-
ly obtained from the profile of the user, but there might exist
latent “affiliations” that reflect some unknown work profiles.
Thus an unsupervised learning result of user groups is par-
ticularly interesting from the perspective of network man-
agement. The identified user groups can be used for gener-
ating concise connection graph in Nexthink Finder, as well
as profiling work flows and improving security rules.

The above two problems in fact have different natures.
Although they take the same type of evidence which con-
sists of the connections from application to destination, the
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structures of the induced hypergraph model are very differ-
ent. The structure of hypergraph that involves software be-
haviors is less randomized than that of a hypergraph which
involves human behaviors. Depending on the structure of the
hypergraph, we should choose the appropriate clustering al-
gorithm accordingly. A measure calledhyperedge affinityis
proposed in the paper for studying the structure of the hy-
pergraph.

Our previous work has isolated malware in the network
traffic (Pu et al. 2010), while in this paper we compare a
broader range of state-of-the-art algorithms with the applica-
tions of clustering network traffic, including a new task that
identifies the affiliation of users. We also study the strate-
gy of choosing suitable clustering algorithm with hyperedge
affinity before any partition result is produced.

Related work
There are several published works that address similar prob-
lems in the context of networks. Karagiannis et al. de-
veloped an approach called BLINC to classify network
flows according to the traffic patterns at three different lev-
els (Karagiannis, Papagiannaki, and Faloutsos 2005). This
work is similar to our work in the sense that it tries to
associate hosts with applications rather than solely clas-
sify applications. But in our work the information about
applications is in a finer granularity and more complete.
Bayer et al. developed a scalable clustering algorithm for
grouping malware execution traces by computing the ap-
proximated nearest neighbors with a technique called lo-
cality sensitive hashing (Bayer et al. 2009). Perdisci et al.
tested different clustering algorithms (single-linkage hierar-
chical clustering, complete-linkage hierarchical clustering,
and x-means) on the malware signature generation problem
(Perdisci, Lee, and Feamster 2010). The single-linkage hier-
archical clustering algorithm produces the best result.

Problem Statement
From the Nexthink records, five types of entities are con-
sidered:connectionsthat represent TCP/UDP sessions;ap-
plicationsthat denote processes of the same executable file-
name;destinationsare servers of an unique IP address that
open some ports to the applications;portsare combination-
s of port type (TCP or UDP) and port numbers; andusers
who are using the applications to access destinations. The
source IP address and source port information in the origi-
nal records are omitted because we treat the same applica-
tion on different client machines equally. Then anetwork
serviceis defined as a cluster that consists of one or more
ports. The goal of the network service identification prob-
lem is to extract network services in the dataset and identify
the machines/applications which provide/use those services.

The only evidence we extract from the original records s-
tates that if more than one connection is associated with the
same application-destination pair, the services of the ports
of the connections are likely to be the same. This simple ev-
idence generating rule helps to merge similar ports into one
cluster and actually defines a group of subsets where each
subset can be named by the application-destination pair. In

the end the whole dataset is transformed into subsets of port-
s. These subsets are calledset evidence. It can be observed
that the ports are not always used for the registered purpose
as shown in IANA (Internet Assigned Numbers Authority),
but we find that the functionality of one port is quite stable
within the enterprise network. So it is reasonable to assume
that one port only belongs to one service.

The above process of extracting set evidence from raw
data assumes the correlation between the service and a col-
lection of distinguishable application-destination pairs. Al-
though this assumption is quite tenable in our dataset, it
could be circumvented by malware that mimics the behavior
of normal software such that malicious ports are identified
as the same service as normal ports. But in order to hide it-
self, the malware has to know the ports of other services.
Thus we can offset the impact of this adversarial behavior
by excluding the well known ports to make it harder to hide
in a known service. As a transport layer approach, the as-
sumption is also vulnerable to the attacks that directly use
well known static ports. But this may cause port conflicts
and easy-identifiable anomaly.

The evidence used for user affiliation identification is sim-
ilar to that of the network service problem. Two or more
users are likely to be in the same affiliation if they use the
same application to access the same destination. Since net-
work users usually spend a lot of time on destinations out-
side the enterprise network, all the IP addresses (not only
local IP addresses) are included as destinations in the set
evidence. We also reduce the number of destinations by re-
placing the IP addresses with its corresponding net-names
and/or domain names. This procedure usually reduces the
raw IP addresses to less than 10% destinations.

Hypergraph model
Every port and every user in the processed data can be ex-
pressed as a feature vector whose length equals the number
of set evidence. The entry in the feature vector is set to 1
if the port or user is contained in the set evidence. By com-
puting the distances between the feature vectors of ports or
users, one can apply any distance-based clustering algorithm
(e.g. k-means) to the processed data. In this work, however,
we use the hypergraph model to represent the co-occurrence
relationship among the ports/users.

A hypergraphH = {V , E} consists of a finitevertex set
V and a finitehyperedge setE . Each hyperedgee ∈ E is a
subset ofV , i.e.e ⊆ V . Each hyperedgee is associated with
a positive real-valued weightw(e). Let W denote the set of
weights. We callH = {V , E , W} a weighted hypergraph.
A hyperedgee is incident with a vertexv if v ∈ e. The
weighted degree of a vertex isdeg(v) =

∑
v∈e,e∈E w(e).

The degree of a hyperedge isdeg(e) = |e|. For the network
service problem, the set of all ports is taken as the vertex set,
and each piece of set evidence is translated to a hyperedge.
For the user affiliation problem, the set of all users is taken
as the vertex set, and each piece of set evidence forms a hy-
peredge. In this paper, the weights of all hyperedges are set
to 1 for simplicity.

From a weighted hypergraphH, we can build a simple
graphH̄ = {V , Ē} with edge set̄E where an edge is added
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betweenvi, vj ∈ V if vi and vj belong to the same hy-
peredge inE . Each edgēe = (vi, vj) ∈ Ē has weight
w(ē) =

∑
vi,vj∈e w(e)/deg(e) . This simple graphH̄ is

called theinduced graphof H.
A k-way partition T consists ofk clusters where each

clustert ⊆ V ,
⋃

t∈T t = V , and∀t1, t2 ∈ T , t1 6= t2,
t1 ∩ t2 = ∅. For clustert, let tc denote the compliment oft.
The volume oft is V ol(t) =

∑
v∈t deg(v). A hyperedgee

is said to be incident with a clustert if e ∩ t 6= ∅.

Extracting Clusters with Hypergraph Min-Cut
Unsupervised learning on simple graphs or hypergraphs
is a well-studied topic with many applications. Various
techniques can be used to form the partition according to the
clustering fitness measures, e.g. graph cut (Schaeffer 2007),
hypergraph cut (Karypis and Kumar 1999), graph mod-
ularity (Brandes et al. 2007), kernel-defined measure
(Kulis et al. 2009) , etc. The idea of cut-based approaches
is to search for the partition that minimizes the cost of
(hyper)edges on the partition boundary. There are various
definitions of the cost of (hyper)graph cut, which lead
to different min-cut approaches. We first introduce two
existing definitions of hypergraph cut and then propose a
hierarchical clustering algorithm based on a non-pairwise
hypergraph cut. The hypergraph modularity is used to
determine the optimal number of clusters.

Hypergraph cut
LetD(e) = {t|e∩t 6= ∅, t ∈ T } denote the incident clusters
of e. For each clustert, let A(t) = {e|e ∩ t 6= ∅, ∀t′ 6=
t, e ∩ t′ = ∅} denote the set of hyperedges that are only
incident with t, C(t) = {e|e ∩ t 6= ∅} denote the set of
hyperedges that are incident witht, andB(t) = C(t) \ A(t)
denote the set of hyperedges that are not only incident with
t but also with some other cluster.

By (Karypis and Kumar 1999; Xiao 2010), thek-cut of a
hypergraph is the weighted sum of hyperedges that have to
be removed to producek disconnected parts, i.e.

kCut(H, T ) =
∑

e∈∪tB(t)

w(e). (1)

By (Zhou, Huang, and Scholkopf 2007), the cut volume
of t is V ol2(∂t) =

∑
e∈B(t) w(e)|e∩t||e∩tc|/deg(e) where

we use subscript 2 becauseV ol2(∂t) actually computes the
pairwise connections of all vertices in the cut. Thenormal-
ized hypergraph cutis then defined as

NHC2(H, T ) =
∑

t∈T
V ol2(∂t)/V ol(t), (2)

where the normalizerV ol(t) introduces a penalty on ex-
tremely small clusters and encourages more balanced cluster
sizes. One can easily show that the normalized hypergraph
cut equals to the normalized simple graph cut on the induced
graphH̄ from the original hypergraphH. Our previous work
has shown the connection betweenNHC2 cut and the ob-
jective of Markov logic in a network service identification
problem (Pu et al. 2010).

(a) (b) (c) 

Figure 2: Different definitions of hypergraph cut.

On the other hand, from that fact that∪t∈T B(t) =
{e|D(e) > 1}, it is reasonable to directly count the number
of pieces of the cut hyperedge as the cost of the cut. Because
each hyperedge must be incident with at least one cluster, it
only adds a constant (the sum of hyperedge weights) to the
total cost if we count the hyperedge pieces inC(t) instead
of B(t). For clustert, we define another cluster cut volume
V ol0(∂t) =

∑
e∈C(t) w(e), which leads to the following

definition of hypergraph cut,

HC0(H, T ) =
∑

t∈T
V ol0(∂t). (3)

HC0 counts the weighted pieces of cut hyperedges instead
of the weighted sum of cut edges in the induced graph. It can
be shown thatHC0 =

∑
e∈E w(e)|D(e)|. This means we

make the same penalty regardless the distribution of vertices
across the partition boundary. As shown in Figure 2 (a), we
want to divide the hypergraph with 3 hyperedges into 2 parts.
TheNHC2 cut by the partition in Figure 2 (b) is 0.46 and by
the partition in Figure 2 (c) is 0.27. This pairwise counting
approach would prefer an uneven partition of the hyperedge
rather than an even partition. It also means that large clusters
will dominate the partition while the small clusters have s-
maller influence on the cut. With the non-pairwise cutHC0

we can avoid this problem and keep the cuts in both Figure
2 (b) and (c) the same value. Thek-cut has the same cost
asHC0 if k = 2, but we will show in the experiments that
k-cut is not appropriate for clustering tasks whenk > 2.

For NHC2 andHC0 the following property would help
to group vertices in the preprocessing stage.

Proposition 1. For any F ⊆ E , K = (
⋂

e∈F e) \
(
⋃

e∈E\F e), there exists a minimumHC0 partition T̂ such

that∃t ∈ T̂ andK ⊆ t. (Proof omitted.)

The vertices inK can be seen as “flat areas” in the hyper-
graph. The partition can only be placed on the boundary of
“flat areas”, so we can assign the vertices inK to the same
cluster in the preprocessing stage. But the number of vertices
in K depends on the choice ofF .

Hypergraph modularity
If no prior knowledge or constraint about the number of
clusters is given, minimizing the hypergraph cut would pro-
duce a trivial solution with a single cluster. To tackle this
problem, a more sophisticated clustering fitness measure
called modularity is proposed to consider both non-cut and
cut edges in a single real-value number. Modularity is de-
fined as the actual edge weights in the cluster minus the
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expected edge weights in the cluster as if the edges are
randomly placed between vertices with an expected prob-
ability (Newman and Girvan 2004; Brandes et al. 2007). In-
spired by the simple graph modularity, for a weighted hy-
pergraphH = {V , E , W} and partitionT we extend it to
hypergraph modularitybased on the distribution of hyper-
edge weights

Q(H, T ) =
∑

t∈T




w(A(t))

w(E)
−




∑
e∈C(t)

w(e)
|D(e)|

w(E)




2
 , (4)

wherew(A(t)) =
∑

e∈A(t) w(e) andw(E) =
∑

e∈E w(e).
If all the hyperedges inE contain exact two vertices, we get
the modularity definition for a simple graph.

One can show that hypergraph modularity has similar
bounds as modularity for simple graph, which is from -1 to
1. It suggests a good cluster structure ifQ(H, T ) is close to
1 and totally non-cluster structure if it is close to−1.

Algorithm
The combinatorial problems of finding the partition that
minimizes NHC2, HC0, and maximizes (hyper)graph
modularity are proven to be NP-hard (Shi and Malik 2002;
Brandes et al. 2006). In this work we use a simple agglom-
erative hierarchical clustering algorithm that minimizesthe
hypergraph cutsP mentioned in previous section (P could
beNHC2 or HC0), and determines the optimal number of
clusters with hypergraph modularity. The algorithm works
as following,

Algorithm 1 : T = AgglomerativeClustering(H)
1: Build an initial partitionT in which each cluster con-

tains exact one vertex. Group the must-link vertices ac-
cording to Proposition 1.

2: Chooset1, t2 ∈ T and merge them to get a new parti-
tion T ′ such that the improvement of clustering fitness
measure∆P (H, T ) = P (H, T ) − P (H, T ′) is maxi-
mized.

3: Set the output toT ′ if Q(H, T ′) is larger than that of
any previous iterations. LetT = T ′ and repeat step 2
until |T | = 1.

Usually the above algorithm gives some partition with
|T | > 1 because the modularity reaches a local maximum.
In step 2 not all the entries of∆P (H, T ) need to be recom-
puted after merging clusterst1 andt2 because the clusters
other thant1, t2 remain the same.

The complexity of the algorithm is following: in step 1
each vertex is chosen in turns as the seed of findingF in
Lemma 1. One can first sort the vertices by the adjacency
matrix to make the process faster, so the complexity of step
1 isO(|V| log |V|). In step 2 one has to update the improve-
ment ofP for the newly combined cluster, which takes time
|E|. Then each newly computed improvement is inserted in-
to a sorted list for choosing the next best combination, which
takes timelog(|V|). Finally step 2 could be repeated at most
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Figure 3: The hyperedge affinity distribution of two hyper-
graphs.

|V| − 1 times, so the worst case complexity of the algorithm
is O(|E||V| log |V|), and the space complexity isO(|V|).

Hyperedge Affinity
The purpose of hypergraph modularity is to estimate the de-
gree of existence of cluster structure in a hypergraph, but
it requires a partition to compute the result. Can we make
similar estimation without knowing any partition? The idea
is to examine the degree of overlapping between the hyper-
edges that are incident with a chosen vertex. If these hy-
peredges cover the same set of vertices, it suggests a strong
cluster structure. The hyperedge affinity of a hypergraphH
is a mappingd : H → R|V| where each dimensiondi corre-
sponds to a vertexv

di =
2
∑

e1,e2∈C(v) |e1 ∩ e2|
| ∪ C(v)||C(v)|(|C(v)| − 1)| , (5)

whereC(v) is the set of hyperedges that are incident with
v. The denominator is just a normalizer that takes the largest
possible value of the numerator. It is easy to verify that0 <
di ≤ 1. If most vertices have largedi, it is likely to make a
good partition for the hypergraph.

The histograms ofd(H) for network service and user af-
filiation are shown in Figure 3. For the hypergraph of net-
work service, although there exists vertices of low hyper-
edge affinity, some vertices have very highdi. Those ver-
tices of highdi could form several “cores” of the clusters,
which allows good partitions. For the hypergraph of user af-
filiation, more vertices stay in the small hyperedge affinity
range. It indicates that the behavior of users is more dis-
persive than the behavior of softwares. In the histogram of
network service there are several peaks generated by some
fixed routines in the software, while the histogram of user
affiliation is smoother.

We have studied the hyperedge affinity with other dataset-
s. Usually vertices ofdi > 0.9 indicate very strong co-
occurrence relations and these relations are normally gener-
ated by non-human mechanism (e.g. software). On the other
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hand, a concentration of vertices in the intervaldi < 0.2
suggests that the hypergraph does not carry cluster struc-
ture. The experimental results in the next section show that
certain algorithms have better performances on hypergraph
generated by non-human mechanism, and vice versa. The
hyperedge affinity can be used to choose a suitable cluster-
ing algorithm.

Experimental Results
Hypergraph clustering approaches
Besides Algorithm 1 based onNHC2 and HC0, we al-
so use several other popular clustering algorithms. First k-
means is taken as the baseline in the experiments which
directly obtains a feature vector of length|E| for each
vertex where the entry is 1 if the vertex is included in
the hyperedge, otherwise 0. If all the feature vectors are
written in a row, it forms a matrixH of size |E| × |V|
which is called the incident matrix. The single-linkage al-
gorithm is reported to be the best clustering approach for
network traffic or other signatures generated by softwares
(Bayer et al. 2009; Perdisci, Lee, and Feamster 2010). We
use the cosine distance for computing the pairwise distance
in the single-linkage algorithm. The third algorithm called
hMETIS is developed by Electronic Design Automation re-
searchers (http://glaros.dtc.umn.edu/gkhome/views/metis).
In hMETIS a multi-level clustering algorithm is implement-
ed to minimize thek-cut.

The same feature vectors are also processed by the al-
gorithm that adopts the spectral clustering (SC) approach
described in (Zhou, Huang, and Scholkopf 2007). This ap-
proach is operated on the induced simple graph of the o-
riginal hypergraph. The hypergraph Laplacian is computed
from the normalized Laplacian of the induced graph. All the
vertices are then mapped into points in ak dimension Eu-
clidian space by the eigenvectors of the hypergraph Lapla-
cian. Fork > 2 a distance-based clustering algorithm has to
be applied to read the cluster information from the mapped
points.

We also take the non-negative matrix factoriza-
tion (NMF) approach as an extension of k-means
(Ding, He, and Simon 2005). The idea is to decompose
the incident matrixH into two non-negative matricesW
andG of low rank such that the difference‖ H − WT G ‖
is minimized. IfW andG havek rows, the rows ofW are
the k cluster centroids and columns ofG are the cluster
indicators for the vertices. We simply choose the index of
maximum entry of each column inG as the cluster number
of the corresponding vertex.

Finally the theory of centrality and PageRank
(Bonacich and Lloyd 2001) is extended to fill in the
zero entries of the feature vectors such that the distance
between vertices in the same cluster becomes smaller. For
each vertexv, we assign a non-negative importance score
sv(e) for every hyperedgee. The score of hyperedges
that are directly incident withv is set to 1 as in the fea-
ture vector.sv(e) of other hyperedges is determined by
sv(e) =

∑
e1∈N(e) w(e1)sv(e1), whereN(e) denotes the

set of hyperedges that share at least one vertex withe. This

computation is similar to a random walk on hyperedges
with teleportation, and helps to identify other important
hyperedges which is not directly incident withv in the
original hypergraph due to noises. The “improved” features
filled by the importance scores are then processed by
another distance-based clustering approach. We call this
approach hyperedge centrality (HCe).

In the experiments, if the algorithm requires the number
of desired clusters as input, we set it to the number of clus-
ters in ground-truth.

Network service identification
Two classes of datasets are used for network service identi-
fication, i.e., synthetic data and real data collected by Nex-
think. The process of generating a synthetic dataset simu-
lates the software and service behaviors in a real network.
Each port is first associated with a service. The ratio of max-
imum service size over minimum service size is denoted by
α, which indicates the degree of unbalance among services
(clusters). Samples of application-destination pairs using the
same service are uniformly drawn from all possible pairs,
and a service is assigned to each pair. Then some connec-
tions are generated by associating ports in the corresponding
services to application-destination pairs. To test the perfor-
mance of the algorithm under noise, the ports of a fraction
β of connections are chosen from a random service, which
brings incorrect hyperedges into the dataset. In each syn-
thetic dataset, there are 8000 connections, 80 applications,
40 destinations, and 180 ports which form 40 services.

The dataset collected by Nexthink contains records from
July 2008 to September 2008 in a real enterprise network.
There are 13774 connections, 320 applications, 840 desti-
nations, and 474 ports. All connections are recorded in Win-
dows systems. The connections with destinations outside the
enterprise network are omitted, because we are only con-
cerned about the services inside the local network. For the
real data, we find many ports are not used as the registered
functionality in IANA, so it is hard to label all the ports.

The algorithms are first tested on the synthetic data. We
use the micro and macro average F-score to evaluate the re-
sults. Another two internal validation indices are also adopt-
ed to assess the goodness of the clustering results. The first
index Dunn indexis designed to identify dense and well-
separated clusters and defined as the ratio between the min-
imal intra-cluster distance to maximal inter-cluster distance
(Brun et al. 2007). A partition is better if it has larger Dun-
n index. The second indexDavies-Bouldin indexis mea-
sured by the average distance of points in a cluster to the
center of the cluster and the distance between cluster cen-
ters (Davies and Bouldin 1979). A smaller value of Davies-
Bouldin index indicates a better cluster structure.

Figure 4 shows the average performance on datasets of
different degrees of noise and different degrees of unbal-
anced cluster sizes. We could confirm the fact that the single-
linkage algorithm gives the best result in all cases. Since
single-linkage finds the nearest neighbor clusters in each
step and combines them into a new cluster, the result on-
ly depends on the local distances between a vertex and its
neighbors. A vertex of high hyperedge affinity value indi-
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Figure 4: Performance of different algorithms on syntheticdatasets. The parameters of the datasets areD1: α = 2, β = 0, D2:
α = 2, β = 0.05, D3: α = 2, β = 0.1, D4: α = 5, β = 0, D5: α = 10, β = 0. For each dataset the performance is averaged
on 50 trails. The maximal and minimal values are also shown inthe figure.

cates that its neighbors are very close. Thus single-linkage
algorithm could easily identify the clusters from the local
connectivity. If we known that the dataset is generated by
non-human mechanism (e.g. from hyperedge affinity analy-
sis), single-linkage would be the first choice.

One can observe that theHC0-based algorithm produces
good average results (better than that ofNHC2-based algo-
rithm) when the data is noiseless, but it becomes not so good
when the data is noisy. Essentially theHC0-based algorith-
m is similar to the centroid linkage algorithm, so the result
varies due to the change of centroids in the presence of nois-
es. The performance of hyperedge centrality approach also
decreases a lot with noisy data, because the connectivity be-
tween hyperedges used for computing importance scores is
not reliable anymore.

k-means, spectral clustering, and non-negative matrix fac-
torization produce relatively good results in all cases. The
latter two methods can be seen as modifications of k-means.
What is interesting is that the performance of these three
methods becomes better when the data is noisy. This fol-
lows the fact that when the data manifold is fractured, some
points might be near to the centroid of their true cluster.

The results of hMETIS are not as good as other cut-
based algorithms even when the data is noiseless main-
ly due to thek-cut criterion. One can imagine that with
thek-cut criterion big hyperedges are always first removed
such that more disconnected clusters can be produced. But
with HC0 or NHC2, removing big hyperedge would in-
troduce more penalties because big hyperedge usually inter-
sects with more clusters.

In Table 1, the individual F-scores of the smallest 2 clus-
ters and the biggest 2 clusters are computed for all the al-
gorithms. If we compare the unbalanced case (D5, α = 8)
with the more balanced case (D1, α = 2), one can observe
that single-linkage andHC0 always produce the same good
results on small and big clusters, while the other algorithm-

kmeans 

TCP2967, UDP2967, UDP38293 

rtvscan.exe, savroam.exe 

10.0.0.8, 10.100.0.5, 10.104.0.8, ... 

SP 

TCP2967, UDP1281, UDP2967, … 

rtvscan.exe, savroam.exe 

10.0.0.8, 10.100.0.5, 10.104.0.8, ... 

hMETIS 

TCP2967, UDP1153, UDP1179, … 

outlook.exe, rtvscan.exe, savroam.exe 

10.0.0.8, 10.10.3.21, 10.100.0.5, ... 

NMF 

TCP2967, TCP8080, UDP8080 

rtvscan.exe, yahoomessenger.exe 

10.0.0.8, 10.100.0.5, 10.104.0.8, ... 

single 

TCP2967, UDP2967, UDP38293 

rtvscan.exe,  savroam.exe 

10.0.0.8, 10.100.0.5, 10.104.0.8, ... 

NHC2 

TCP2967, UDP1281, UDP2967, UDP38293 

rtvscan.exe,  savroam.exe 

10.0.0.8, 10.100.0.5, 10.104.0.8, ... 

HC0 

TCP2967, UDP1281, UDP2967, UDP38293 

rtvscan.exe,  savroam.exe 

10.0.0.8, 10.100.0.5, 10.104.0.8, ... 

HCe 
TCP2967 

rtvscan.exe, 10.0.0.8, 10.100.0.5, 10.104.0.8, … 

 

Table 2: Example of network service detected from Nex-
think dataset by different algorithms.

s usually show better F-scores on big clusters and worse
F-scores on small clusters. In the network service identifi-
cation problem, the services of special interest are usually
small clusters (rare behaviors, malware, etc.), so the single-
linkage andHC0 algorithm are more capable of isolating
small interested services from a huge amount of traffic.

The algorithms usually output about 70 to 85 services
(clusters) on Nexthink dataset when the maximum modu-
larity is reached. We identified some network services in the
dataset, where one example is shown in in Table 2. Usually
the clusters generated by single-linkage,NHC2 andHC0

coincide with each other, which indicate that the local con-
nectivity in Nexthink data is very strong. The normalized
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pre. rec. F-score pre. rec. F-score pre. rec. F-score pre. rec. F-score
clusterD1 S1 S2 L1 L2
k-means 0.877 0.993 0.906 0.901 0.987 0.918 0.936 0.970 0.941 0.877 0.960 0.897

SP 0.754 0.947 0.769 0.723 0.953 0.752 0.762 0.977 0.817 0.845 0.987 0.883
hMETIS 0.695 1.000 0.773 0.656 1.000 0.749 0.929 0.953 0.929 0.926 0.942 0.919

NMF 0.861 1.000 0.902 0.909 1.000 0.936 0.976 0.963 0.963 0.992 0.955 0.967
single 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
NHC2 0.490 0.947 0.502 0.490 0.920 0.496 0.546 0.917 0.550 0.681 0.876 0.635
HC0 0.988 1.000 0.991 0.988 1.000 0.991 1.000 1.000 1.000 1.000 1.000 1.000
HCe 1.000 0.993 0.996 0.990 0.987 0.985 0.989 0.990 0.988 1.000 0.990 0.994

clusterD5 S1 S2 L1 L2
k-means 0.915 1.000 0.937 0.901 0.990 0.925 0.984 0.910 0.933 0.942 0.914 0.910

SP 0.691 1.000 0.745 0.664 0.940 0.681 0.824 0.960 0.859 0.851 0.989 0.897
hMETIS 0.517 1.000 0.616 0.648 1.000 0.716 0.967 0.907 0.926 0.972 0.931 0.943

NMF 0.619 1.000 0.693 0.718 1.000 0.782 0.989 0.965 0.971 0.988 0.959 0.968
single 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
NHC2 0.816 1.000 0.829 0.575 0.940 0.573 0.706 0.911 0.701 0.701 0.915 0.690
HC0 0.983 1.000 0.986 0.968 1.000 0.973 1.000 0.997 0.998 0.995 0.998 0.996
HCe 0.894 1.000 0.917 0.910 1.000 0.931 0.994 1.000 0.996 1.000 0.998 0.999

Table 1: The precision, recall, and F-score of the 2 smallestclusters (S1, S2) and the 2 biggest clusters (L1, L2) with datasets
D1 (α = 2) andD5 (α = 8). The performance is averaged on 50 trails.
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Figure 5: The normalized mutual information between the
partitions by different algorithms on Nexthink dataset.

mutual information (NMI) between the partitions by differ-
ent algorithms is shown in Figure 5. We follow the definition
of NMI in (Strehl and Ghosh 2003).

User affiliation identification

Another dataset used for user affiliation identification is col-
lected by Nexthink from computer rooms where the users
from different departments could access local and Internet
contents. With the data collected in a period of two weeks,
we get 237 users and 1604 hyperedges after removing those
hyperedges which consist of only one user. The affiliation
of users is directly taken from the user profile and used as
labels. Although the labels may not reflect the underlying
group structure of users, we use them for evaluating cluster-
ing algorithms. In the label list, there are 12 affiliations.The
smallest and largest affiliation contains 7 users and 45 users
respectively. A cleaned spy plot of the hypergraph is shown
in Figure 6.

The F-scores and modularity are shown in Table 3. What
is different from the data generated by a non-human mech-
anism, we can observe an almost reversed ranking of algo-
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Figure 6: A spy plot of the hypergraph for user affiliation
identification. Each vertex represents a user, and each hy-
peredge denotes a set evidence. There is a dot if the user is
included in the set evidence. The vertices are sorted by labels
and different colors on the bottom indicate the labels.

rithms. The algorithms that are similar to k-means show bet-
ter performances than the hierarchical clustering methods.
This is mainly due to the fact that the assumed manifold
structure behind the nearest neighbor rule becomes unreli-
able when the user behavior is more dispersive. The F-scores
indicate that the partitions of all algorithms are very differ-
ent from labels. But a partial reason of the low F-score is
that the labels from user profiles are not reflecting the real
underlying cluster structure. A maximum modularity parti-
tion of HCe algorithm consists of only 3 clusters instead of
12 clusters in the labels (Figure 7). The modularity of the
labels is actually the lowest among all algorithms.

Conclusion
In this work, the network service identification problem and
user affiliation identification problem are studied. The re-
sults help to group the open ports and users in the network
such that a human system administrator could efficiently an-
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Figure 7: A spy plot of user affiliation with maximum mod-
ularity partition from HCe algorithm.

F-micro modularity
k-means 0.262± 0.085 0.037± 0.005

SP 0.225± 0.092 0.086± 0.012
NMF 0.267± 0.064 0.033± 0.039
single 0.198± 0.000 0.011± 0.000
NHC2 0.203± 0.000 0.012± 0.000
HC0 0.205± 0.002 0.012± 0.007
HCe 0.268± 0.000 0.058± 0.000
labels – -0.121

Table 3: The performance of different algorithms on the user
affiliation identification. hMETIS is not listed in the table
because it usually fails to give a valid partition.

alyze the records. By adopting the hypergraph model, we
propose an agglomerative hierarchical clustering algorithm
based on a non-pairwise hypergraph cutHC0. Experimental
results on both synthetic and real data show that hierarchi-
cal clustering algorithms based on the nearest neighbor rule
performs better on the data generated by a non-human mech-
anism. With the user generated records, k-means-like algo-
rithms usually produces better results because the assumed
manifold structure behind the nearest neighbor rule is not
reliable in such cases. The experimental result also confirms
the indication suggested by the hyperedge affinity analysis,
which allows us to identify the nature of dataset before ap-
plying any clustering algorithm.
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