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Abstract

There has been a lot of recent work on Bayesian methods for reinforcement
learning exhibiting near-optimal online performance. Themain obstacle facing
such methods is that in most problems of interest, the optimal solution involves
planning in an infinitely large tree. However, it is possibleto obtain stochastic
lower and upper bounds on the value of each tree node. This enables us to use
stochastic branch and bound algorithms to search the tree efficiently. This paper
proposes two such algorithms and examines their complexityin this setting.

1 Introduction

Various Bayesian methods for exploration in Markov decision processes (MDPs) and
for solving known partially-observable Markov decision processes (POMDPs), were
proposed previously (c.f. [Poupart et al., 2006, Duff, 2002, Ross et al., 2008]). How-
ever, such methods often suffer from computational tractability problems. Optimal
Bayesian exploration requires the creation of an augmentedMDP model in the form of
a tree [Duff, 2002], where the root node is the current belief-state pair and children are
all possible subsequent belief-state pairs. The size of thebelief tree increases exponen-
tially with the horizon, while the branching factor is infinite in the case of continuous
observations or actions.

In this work, we examine the complexity of efficient algorithms for expanding the
tree. In particular, we propose and analyse stochastic search methods similar to the
ones proposed in [Bubeck et al., 2008, Norkin et al., 1998]. Related methods have been
previously examined experimentally in the context of Bayesian reinforcement learning
in [Dimitrakakis, 2008, Wang et al., 2005].

The remainder of this section summarises the Bayesian planning framework. Our
main results are presented in Sect. 2. Section 3 concludes with a discussion of related
work. Technical proofs and related results are presented inthe Appendix.

1.1 Markov Decision Processes

Reinforcement learning [c.f. Puterman [1994,2005]] is discrete-time sequential deci-
sion making problem, where we wish to act so as to maximise theexpected sum of
discounted future rewardsE∑T

k=1 γkrt+k, wherert ∈ R is a stochastic reward at timet.
We are only interested in rewards from timet to T > 0, andγ ∈ [0,1] plays the role of
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a discount factor. Typically, we assume thatγ andT are known (or have known prior
distribution) and that the sequence of rewards arises from aMarkov decision process
µ:

Definition 1 (MDP) A Markov decision process is a discrete-time stochastic process
with: A state st ∈ S at time t and a reward rt ∈ R, generated by the process µ, and an
action at ∈ A , chosen by the decision maker. We denote the distribution over next states
st+1, which only depends on st and at , by µ(st+1|st ,at). Furthermore µ(rt+1|st ,at) is
a reward distribution conditioned on states and actions. Finally, µ(rt+1,st+1|st ,at) =
µ(rt+1|st ,at)µ(st+1|st ,at).

In the above, and throughout the text, we usually takeµ(·) to meanPµ(·), the distri-
bution under the processµ, for compactness. Frequently such a notation will imply a
marginalisation. For example, we shall writeµ(st+k|st ,at) to mean:

∑
st+1,...,st+k−1

µ(st+k, . . . ,st+1|st ,at).

The decision maker takes actions according to a policyπ, which defines a distribution
π(at |st) overA , conditioned on the statest , i.e. a set of probability measures overA
indexed byst . A policy π is stationary ifπ(at = a|st = s) = π(at′ = a|st′ = s) for all
t, t ′. The expected utility of a policyπ selecting actions in the MDPµ, from timet to T
can be written as thevalue function:

Vπ,µ
t,T (s) = Eπ,µ

(

T

∑
k=1

γkrt+k

∣

∣

∣
st

)

, (1)

whereEπ,µ denotes the expectation under the Markov chain arising fromacting policy
π on the MDPµ. Whenever it is clear from context, superscripts and subscripts shall be
omitted for brevity. Theoptimalvalue function will be denoted byV∗ , maxπVπ. If the
MDP is known, we can evaluate the optimal value function policy in time polynomial
to the sizes of the state and action sets [Puterman, 1994,2005] via backwards induction
(value iteration).

1.2 Bayesian Reinforcement Learning

If the MDP is unknown, we may use a Bayesian framework to represent our uncer-
tainty [Duff, 2002]. This requires maintaining a beliefξt , about which MDPµ∈ M
corresponds to reality. More precisely, we define a measurable space(M ,M), where
M is a (usually uncountable) set of MDPs, andM is a suitableσ-algebra. With an ap-
propriate initial densityξ0(µ), we can obtain a sequence of densitiesξt(µ), representing
our subjective belief at timet, by conditioningξt(µ) on the latest observations:

ξt+1(µ) ,
µ(rt+1,st+1|st ,at)ξt(µ)

R

M
µ′(rt+1,st+1|st ,at)ξt(µ′)dµ′

. (2)

In the following, we writeEξ to denote expectations with respect to any beliefξ.

1.3 Belief-Augmented MDPs

In order to optimally select actions in this framework, it isnecessary toexplicitly take
into account future changes in the belief when planning [Duff, 2002]. The idea is to
combine the original MDP’s statest and our belief stateξt into ahyper-state.
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Definition 2 (BAMDP) A Belief-Augmented MDPν (BAMPD) is an MDP with a set
of hyper-statesΩ = S ×B, whereB is an appropriate set of probability measures on
M andS ,A are the state and action sets of all µ∈ M . At time t, the agent observes
the hyper-stateωt = (st ,ξt) ∈ Ω and takes action at ∈ A . We write the transition
distribution asν(ωt+1|ωt ,at) and the reward distribution asν(rt |ωt).

The hyper-stateωt has the Markov property. This allows us to treat the BAMDP as
an infinite-state MDP with transitionsν(ωt+1|ωt ,at), and rewardsν(rt |ωt).1 When
the horizonT is finite, we need only require expand the tree to depthT − t. Thus,
backwards induction starting from the set of terminal hyper-statesΩT and proceeding
backwards toT −1, . . . ,t provides a solution:

V∗
n (ω) = max

a∈A
Eν(r|ω)+ γ ∑

ω′∈Ωn+1

ν(ω′|ω,a)V∗
n+1(ω

′), (3)

whereΩn is the set of hyper-states at timen. We can approximately solve infinite-
horizon problems if we expand the tree to some finite depth, ifwe have bounds on the
value of leaf nodes.

1.4 Bounds on the Value Function

We shall relate the optimal value function of the BAMDP,V∗(ω), for someω(s,ξ),
to the value functionsVπ

µ of MDPs µ ∈ M for someπ. The optimal policy forµ is
denoted asπ∗(µ). ThemeanMDP resulting from beliefξ is denoted as ¯µξ and has the
properties: ¯µξ(st+1|st ,at) = Eξ[µ(st+1|st ,at)], µ̄ξ(rt+1|st ,at) = Eξ[µ(rt+1|st ,at)].

Proposition 1 Dimitrakakis [2008] For anyω = (s,ξ), the BAMDP value function V∗

obeys:
Z

M

Vπ∗(µ)
µ (s)ξ(µ)dµ≥V∗(ω) ≥

Z

M

V
π∗(µ̄ξ)
µ (s)ξ(µ)dµ (4)

Proof By definition,V∗(ω) ≥ Vπ(ω) for all ω, for any policyπ. It is easy to see that
the lower bound equalsVπ∗(µ̄ξ)(ω), thus proving the right hand side. The upper bound
follows from the fact that for any functionf , maxx

R

f (x,u)du ≤
R

maxx f (x,u)du.

If M is not finite, then we cannot calculate the upper bound ofV(ω) in closed form.
However, we can use Monte Carlo sampling: Given a hyper-stateω = (s,ξ), we drawm
MDPs from its beliefξ: µ1, . . . ,µm∼ ξ,2 estimate the value function for eachµk, ṽω

U,k ,

Vπ∗(µk)
µk (s), and average the samples: ˆvω

U,m , 1
m ∑m

k=1 ṽω
U,k. Letvω

U ,
R

M
ξω(µ)V∗

µ (sω)dµ.
Then, limm→∞[v̂ω

U,m] = vω
U almost surely andE[v̂ω

U,m] = vω.
Lower bounds can be calculated via a similar procedure. We begin by calculating

the optimal policyπ∗(µ̄ξ) for the mean MDP ¯µξ arising fromξ. We then compute ˜vω
L,k ,

V
π∗(µ̄ξ)
µk , the value of that policy for each sampleµk and estimate ˆvω

L,m , 1
m ∑m

k=1 ṽω
L,k.

1Because of the way that the BAMDPν is constructed from beliefs overM , the next reward now depends
on the next state rather than the current state and action.

2In the discrete case, we sample a multinomial distribution from each of the Dirichlet densities indepen-
dently for the transitions. For the rewards we draw independent Bernoulli distributions from the Beta of each
state-action pair.
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Figure 1: A belief tree, where the rewards are ignored for simplicity, with actions
A = {a1,a2} and statesS = {s1,s2}.

2 Complexity of belief tree search

We now present our main results. Detailed proofs are given inthe appendix. We
search trees which arise in the context of planning under uncertainty in MDPs using
the BAMDP framework. We can use value function bounds on the leaf nodes of a par-
tially expanded BAMDP tree to obtain bounds for the inner nodes through backwards
induction. The bounds can be used both for action selection and for further tree expan-
sion. However, the bounds are estimated via Monte Carlo sampling, something that
necessitates the use of stochastic branch and bound technique to expand the tree.

We analyse a set of such algorithms. The first is a search to a fixed depth that
employs exact lower bounds. We then show that if only stochastic bounds are available,
the complexity of fixed depth search only increases logarithmically. We then present
two stochastic branch and bound algorithms, whose complexity is dependent on the
number of near-optimal branches. The first of these uses bound samples on leaf nodes
only, while the second uses samples obtained in the last halfof the parents of leaf
nodes, thus using the collected samples more efficiently.

2.1 Assumptions and Notation

We present the main assumptions concerning the tree search,pointing out the relations
to Bayesian RL. The symbolsV andv have been overloaded to make this correspon-
dence more apparent. The tree that has a branching factor at mostφ. The branching is
due to both action choices and random outcomes (see Fig.1). Thus, the nodes at depth
k correspond to the set of hyper-states{ωt+k} in the BAMDP. By abusing notation, we
may also refer to the components of each nodeω = (s,ξ) ass(ω),ξ(ω).

We define a branchb as asetof policies(i.e. the set of all policies starting with
a particular action). The value of a branchb is Vb , maxπ∈bVπ. The root branch
is the set of all policies, with valueV∗. A hyper-stateω is b-reachable if∃π ∈ b
s.t Pπ,ν(ω|ωt) > 0.Any branchb can be partitioned at anyb-reachableω into a set of
branchesB(b,ω). A possible partition is anybi = {π ∈ b : i = argmaxa π(a|ω)} for any
bi ∈ B(b,ω). We simplify this by considering only deterministic policies. We denote
thek-horizon value function byVb(k) , maxπ∈bVπ

t,k(ωt). For each tree nodeω = (s,ξ),

we define upper and lower boundsvU(ω) , Eξ[V
∗
µ (s)], vL(ω) , Eξ[V

π∗(µ̄ξ)(s)], from
(4). By fully expanding the tree to depthk and performing backwards induction (3),
using eithervU or vL as the value of leaf nodes, we obtain respectively upper and lower
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Algorithm 1 Flat oracle search

1: Expand all branches until depthk = logγ ε/β or ∆̂L > βγk− ε.

2: Select the root brancĥb∗ = argmaxbVb
L (k).

Algorithm 2 Flat stochastic search

1: FSSEARCH(ωt ,k,m)
2: Let Ωk =

{

ωi
t+k : i = 1, . . . ,φk

}

be the set of allk-step children ofω
3: for ω ∈ Ωk do
4: Drawmsamples ˜vω

L, j = Vπ
µ , µ∼ ξ(ω)

5: v̂ω
L = 1

m ∑m
j=1 ṽω

L, j ,
6: end for
7: CalculateV̂b

8: return b̂∗ = argmax̂Vb.

boundsVb
U(k),Vb

L (k) on the value of any branch. Finally, we useC (ω) for the set of
immediate children of a nodeω and the short-handΩk for C k(ω), the set of all children
of ω at depthk. We assume the following:

Assumption 1 (Uniform linear convergence)There existsγ∈ (0,1) andβ > 0 s.t. for
any branch b, and depth k, Vb−Vb

L (k) ≤ βγk, Vb
U(k)−Vb ≤ βγk.

Remark 1 For BAMDPs with rt ∈ [0,1] and γ < 1, Ass. 1 holds, from boundedness
and the geometric series, withβ = 1/(1− γ), since Vb

L (k) and Vb
U(k) are the k-horizon

value functions with the value of leaf nodes bounded in1/(1− γ).

We analyse algorithms which search the tree and then select an (action) brancĥb∗.
For each algorithm, we examine the number of leaf node evaluations required to bound
the regretV∗−Vb̂∗ .

2.2 Flat Search

With exact bounds, we can expand all branches to a fixed depth and then select the
branchb̂∗, with the highest lower bound. This is Alg. 1, with complexity given by the
following lemma.

Lemma 1 Alg. 1 on a tree with branching factorφ, γ ∈ (0,1), samplesO (φ1+logγ ε/β)
times to bound the regret byε.

Proof Bound thek-horizon value function error with Ass. 1 and note that thereare
φk+1 leaves.

In our case, we only have a stochastic lower bound on the valueof each node. Algo-
rithm 2 expands the tree to a fixed depth and then takes multiple samples from each
leaf node.

Lemma 2 Calling Alg. 2 with k= ⌈logγ ε/2β⌉, m= 2⌈logγ(ε/2β)⌉ · logφ, we bound

the regret byε usingO
(

φ1+logγ ε/2β logγ(ε/2β) · logφ
)

samples.
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Algorithm 3 Stochastic branch and bound 1
1: Let L0 be the root.
2: for n = 1,2, . . . do
3: for ω ∈ Ln do
4: mω++, µ∼ ξ(ω), ṽω

mω = V∗
µ (s(ω)).

5: v̂ω
U = 1

mω ∑mω
i=1 ṽω

i
6: end for
7: ω̂∗

n = argmaxω v̂ω
U .

8: Ln+1 = C (ω̂∗
n)∪Ln\ω̂∗

n
9: end for

Proof The regret now is due to both limited depth and stochasticity. We bound each
by ε/2, the first via Lem. 1 and the second via Hoeffding’s inequality.

Thus, stochasticity mainly adds a logarithmic factor to theoracle search. We now
consider two algorithms which do not search to a fixed depth, but select branches to
deepen adaptively.

2.3 Stochastic Branch and Bound 1

A stochastic branch and bound algorithm similar to those examined here was originally
developed by Norkin et al. [1998] for optimisation problems. At each stage, it takes
an additional sample at each leaf node, to improve their upper bound estimates, then
expands the node with the highest mean upper bound. Algorithm 3 uses the same basic
idea, averaging the value function samples at every leaf node.

In order to bound complexity, we need to bound the time required until we discover
a nearly optimal branch. We calculate the number of times a suboptimal branch is
expanded before its suboptimality is discovered. Similarly, we calculate the number of
times we shall sample the optimal node until its mean upper bound becomes dominant.
These two results cover the time spent sampling upper boundsof nodes in the optimal
branch without expanding them and the time spent expanding nodes in a sub-optimal
branch.

Lemma 3 If N is the (random) number of samplesṽi from random variable V∈ [0,β]
we must take until its empirical meanV̂k , ∑k

i=1 ṽi > EV −∆, then:

E[N] ≤ 1+ β2∆−2 (5)

P[N > n] ≤ exp
(

−2β−2n2∆2) . (6)

Proof The first inequality follows from the Hoeffding inequality and an integral bound
on the resulting sum, while the second inequality is proven directly via a Hoeffding
bound.

By setting∆ to be the difference between the optimal and second optimal branch, we
can use the above lemma to bound the number of timesN the leaf nodes in the optimal
branch will be sampled without being expanded. The converseproblem is bounding
the number of times that a suboptimal branch will be expanded.
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Algorithm 4 Stochastic branch and bound 2
1: for ω ∈ Ln do
2: V̂ω

U = 1
∑ω′∈C (ω) mω′

∑ω′∈C (ω) ∑m′
ω

i=1 ṽω′

i

3: end for
4: Use (3) to obtain̂VU for all nodes.
5: Setω0 to root.
6: for d = 1, . . . do
7: a∗d = argmaxa ∑ω∈Ωd

ωd−1( j|a)V̂U(ω)
8: ωd ∼ ωd−1( j|a∗d)
9: if ωd ∈ Ln then

10: Ln+1 = C (ωd)∪Ln\ωd

11: Break
12: end if
13: end for

Lemma 4 If b is a branch with Vb = V∗−∆, then it will be expanded at least to depth
k0 = logγ ∆/β. Subsequently,

P(K > k) < O
(

exp
{

−2β−2[(k−k0)∆2]}) . (7)

Proof In the worst case, the branch is degenerate and only one leaf has non-zero prob-
ability. We then apply a Hoeffding bound to obtain the desired result.

2.4 Stochastic Branch and Bound 2

The degeneracy is the main problem of Alg. 3. Alg. 4 not only propagates upper
bounds from multiple leaf nodes to the root, but also re-usesupper bound samples from
inner nodes, in order to handle the degenerate case where only one path has non-zero
probability. (Nevertheless, Lemma 3 applies without modification to Alg. 4). Because
we are no longer operating on leaf nodes, we can take advantage of the upper bound
samples collected along a given trajectory. However, if we use all of the upper bounds
along a branch, then the early samples may bias our estimatesa lot. For this reason, if
a leaf is at depthk, we only average the upper bounds along the branch to depthk/2.
The complexity of this approach is given by the following lemma:

Lemma 5 If b is s.t. Vb = V∗−∆, it will be expanded to depth k0 > logγ ∆/β and

P(K > k) / exp
(

−2(k−k0)
2(1− γ2)

)

, k > k0

Proof There is a degenerate case where only one sub-branch has non-zero probabil-
ity. However we now re-use the samples that were obtained at previous expansions,

thus allowing us to upper bound the bias by∆(1−γk+1)
(k−k0)(1−γ) . This allows to use a tighter

Hoeffding bound and so obtain the desired outcome.

This bound decreases faster withk. Furthermore, there is no dependence on∆ after the
initial transitory period, which may however be very long. The gain is due to the fact
that we are re-using the upper bounds previously obtained ininner nodes. Thus, this
algorithm should be particularly suitable for stochastic problems.
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2.5 Lower Bounds for Bayesian RL

We can reduce the branching factorφ, (which is |A × S × R | for a full search) by
employing sparse sampling methods [Kearns et al., 1999] toO {|A |exp[1/(1− γ)]}.
This was essentially the approach employed by [Wang et al., 2005]. However, our
main focus here is to reduce the depth to which each branch is searched.

The main problem with the above algorithms is the fact that wemust reachk0 =
⌈logγ ∆⌉ to discard∆-optimal branches. However, since the hyper-stateωt arises from
a Bayesian belief, we can use an additional smoothness property:

Lemma 6 The Dirichlet parameter sequenceψt/nt , with nt , ∑K
i=1 ψi

t , is a c-Lipschitz
martingale with ct = 1/2(nt +1).

Proof Simple calculations show that, no matter what is observed,Eξt (ψt+1/nt+1) =
ψt/nt . Then, we bound the difference|ψt+k/nt+k −ψt/nt | by two different bounds,
which we equate to obtainct .

Lemma 7 If µ, µ̂ are such that‖T − T̂ ‖∞ ≤ ε and‖r − r̂‖∞ ≤ ε, for someε > 0, then
∥

∥Vπ − V̂π∥
∥

∞ ≤ ε
(1−γ)2 , for any policyπ.

Proof By subtracting the Bellman equations forV,V̂ and taking the norm, we can
repeatedly apply Cauchy-Schwarz and triangle inequalities to obtain the desired result.

The above results help us obtain better lower bounds in two ways. First we note that
initially 1/k converges faster thanγk, for largeγ, thus we should be able to expand less
deeply. Later,nt is large so we can sample even more sparely.

If we search to depthk, and the rewards are in[0,1], then, naively, our error is
bounded by∑∞

n=k γn = γk/(1− γ). However, the mean MDPs forn > k are close to the
mean MDP atk due to Lem. 6. This means thatβ can be significantly smaller than
1/(1− γ). In fact, the total error is bounded by∑∞

n=k γn(n− k)/n. For undiscounted
problems, our error is bounded byT−k in the original case and byT−k[1+ log(T/k)]
when taking into account the smoothness.

3 Conclusions and related work

Much recent work on Bayesian RL focused on myopic estimates or full expansion of
the belief tree up to a certain depth. Exceptions include [Poupart et al., 2006], which
uses an analytical bound based on sampling a small set of beliefs and [Wang et al.,
2005], which uses Kearn’s sparse sampling algorithm [Kearns et al., 1999] to expand
the tree. Both methods have complexity exponential in the horizon, something which
we improve via the use of smoothness properties induced by the Bayesian updating.

There are also connections with work on POMDPs problems [Ross et al., 2008].
However this setting, though equivalent in an abstract sense, is not sufficiently close
to the one we consider. Results on bandit problems, employing the same value func-
tion bounds used herein were reported in [Dimitrakakis, 2008], which experimentally
compared algorithms operating on leaf nodes only.

Related results on the online sample complexity of BayesianRL were developed by
[Kolter and Ng, 2009], who employs a different upper bound toours and [Asmuth et al.,
2009], who employs MDP samples to plan in an augmented MDP space, similarly to
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Auer et al. [2008] (who consider the set of plausible MDPs) and uses Bayesian con-
centration of measure results [Zhang, 2006] to prove mistake bounds on the online
performance of the algorithm.

Interestingly, Alg. 4 resembles HOO [Bubeck et al., 2008] inthe way that it tra-
verses the tree, with two major differences. (a) The search is adapted tostochas-
tic trees. (b) We use means of samples of upper bounds, rather than upper bounds
on sample means. For these reasons, we are unable to simply restate the arguments
in [Bubeck et al., 2008].

We presented complexity results and counting arguments fora number of tree
search algorithms on trees where stochastic upper and lowerbounds satisfying a smooth-
ness property exist. These are the first results of this type and partially extend the results
of [Norkin et al., 1998], which provided an asymptotic convergence proof, under sim-
ilar smoothness conditions, for a stochastic branch and bound algorithm. In addition,
we introduce a mechanism to utilise samples obtained at inner nodes when calculating
mean upper bounds at leaf nodes. Finally, we relate our complexity results to those
of [Kearns et al., 1999], for whose lower bound we provide a small improvement. We
plan to address the online sample complexity of the proposedalgorithms, as well as
their practical performance, in future work.
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A Proofs of the main results

Proposition 1 By definition,V∗(ω) ≥ Vπ(ω) for all ω, for any policyπ. The lower
bound follows trivially, since

Vπ∗(µ̂ω)(ω) ,
Z

Vπ∗(µ̂ω)
µ (sω)ξω(µ)dµ. (8)

The upper bound is derived as follows. First note that for anyfunction f , maxx
R

f (x,u)du≤
R

maxx f (x,u)du. Then, we remark that:

V∗(ω) = max
π

Z

Vπ
µ (sω)ξω(µ)dµ (9a)

≤

Z

max
π

Vπ
µ (sω)ξω(µ)dµ (9b)

=

Z

Vπ∗(µ)
µ (sω)ξω(µ)dµ. (9c)

Lemma 1 For anyb′ with Vb′
L <Vb

L , we have:Vb′ ≤Vb′
L +βγk < Vb

L +βγk ≤Vb+βγk.
This holds forb = b̂∗. Thus, in the worst case, the regret that we suffer if there exists
someb′ : Vb′ > V b̂∗ is ε = Vb′ −V b̂∗ < βγk. To reach depthk in all branches we need
n= ∑k

t=1 φk < φk+1 expansions. Thus, we requirek= log(ε/β)
logγ andn≤ φ1+logγ(ε/β).

9



Lemma 2 The total number of samples iskm, the number of leaf nodes times the
number of samples at each leaf node. The search is until depth

k =
⌈

logγ ε/2β
⌉

≤ 1+ logγ ε/2β (10)

and the number of samples is

m= 2logγ(ε/2β) logφ. (11)

The complexity follows trivially. Now we must prove that this bounds the expected
regret withε. Note thatβγk < ε/2, so for all branchesb:

V̂b
L −Vb < ε/2. (12)

The expected regret can now be written as

ER≤
ε
2

+E[R|V̂ b̂∗
L < V̂b∗

L + ε/4]P(V̂ b̂∗
L < V̂b∗

L + ε/4) (13)

+E[R|V̂ b̂∗
L ≥ V̂b∗

L + ε/4]P(V̂ b̂∗
L ≥ V̂b∗

L + ε/4). (14)

From the Hoeffding bound (21)

P(V̂L −VL > ε/4) < exp

(

−
1
8

mβ−2γ−2kε2
)

and with a union bound the total error probability is boundedbyφk exp
(

− 1
8mβ−2γ−2kε2

)

.
If our estimates are withinε/4 then the sample regret is bounded byε/4, while the other
terms are trivially bounded by 1, to obtain

ER≤
ε
2

+

{

φk exp

(

−
1
8

mβ−2γ−2kε2
)

+
ε
4
.

}

(15)

Substitutingm andk, we obtain the stated result.

Lemma 3

E[N] =
∞

∑
n=1

n
n−1

∏
j=1

P(V̂( j) ≥V + ε)P(V̂(n) < V + ε) (16)

≤
∞

∑
n=1

nexp

(

−2β−2ε2
n−1

∑
j=1

j

)

=
∞

∑
n=1

nexp
(

−β−2ε2n(n+1)
)

(17)

Let us now setρ = exp(−β−2ε2). Observe thatnρn(n+1) < nρn2
, sinceρ < 1. Then,

note that
R

nρn2
dn= O

(

ρn2

2 logρ

)

. So we can bound the sum by

∞

∑
n=1

nρn(n+1) < 1+

[

ρn2

2logρ

]∞

1

1+
exp(−β−2ε2)

2β−2ε2 < 1+

(

β
ε

)2

. (18)

This proves the first inequality. For the second inequality,we have:

P(N > n) = P

(

n̂

k=1

V̂(k) > V + ε

)

<
n

∏
k=1

exp
(

−2kβ−2ε2) (19)

= exp
(

−β−2ε2n(n+1)
)

< exp
(

−n2β−2ε2) . (20)

This completes the proof for the first case. The second case ise symmetric.

10



Lemma 4 In order to stop expanding a sub-optimal branchb, at depthk, we must have
Vb

U(k) < V∗, since in the worst caseV∗
U(k) = V∗ for all k. SinceVb = V∗−∆, this only

happens whenk is greater thank0 ,
⌈

logγ ∆/β
⌉

, which is the minimum depth we must

expand to. Subsequently, we shall note that the probabilityof stopping isP(V̂b
U(k) >

∆− βγk) < exp(−2(∆− βγk)2β−2). We can not do better due to the degenerate case
where only one leaf node of the branch has non-zero probability.

The probability of not stopping at depthk is bounded by:

P(K > k) ≤
k

∏
j=k0

exp(−2(∆−βγ j)2β−2) ≤ exp

(

−2β−2
k

∑
j=k0

(∆−βγ j)2

)

≤ exp

[

−
2
β2

(

(k−k0)∆2 +
βh

1− γ2

)]

,

h = β(γ2k0 − γ2(k+1)−2∆(γk0 − γk+1)(1+ γ)

= β(∆2− γ2(k+1)−2∆(∆− γk+1)(1+ γ).

Lemma 5 Similarly to the previous lemma, there is a degenerate case where only one
sub-branch has non-zero probability. However this algorithm re-uses the samples that
were obtained at previous expansions. When at depthk, we average the bounds from

⌈k/2⌉ to k. Since, in the worst case, we cannot stop untilk > k0 =
⌈

logγ ∆/β
⌉

, we shall

bound the probability that we stop at some depthK > 2k0. Then the mean upper bound
bias is at most:

hk ,
1

k−k0

k

∑
n=k0

βγn =
βγk0

k−k0

1− γk+1

1− γ
<

∆
k−k0

1− γk+1

1− γ
.

The procedure continues only if the sampling error exceeds∆− hk, so it suffices to
boundP(X̂k > X̄k + ε), whereX̂k = ∑k

n=⌈k/2⌉ V̂U(k) and X̄k = V + hk for ε = ∆(1−

1−γk

(k−k0)(1−γ)): P(X̂k > X̄k + ε) < exp

(

− 2(k−k0)
2ε2

∑k
n=k0

(βγn)2

)

. Since∑k
n=k0

(βγn)2 = ∆2 1−γ2(k+1)

1−γ2 :

P(X̂k > X̄k + ε) < exp
(

− 2(k−k0)
2(1−γ2)ε2

∆2(1−γ2(k+1))

)

. By settingε = ∆−hk we can bound this by

exp

(

−
2(k−k0)

2(1− γ2)

(1− γ2(k+1))
·

(

1−
1− γk+1

(k−k0)(1− γ)

)2
)

.

For largek, this is approximatelyO (exp(−k2)).

Lemma 6 It is easy to see thatE(ψt+1/nt+1|ξt) = ψt/nt . This follows trivially when
no observations are made sinceψt+1 = ψt . When one observation is made,nt+1 =
1+ nt . ThenE(ψt+1/nt+1|ξt) = [ψt + ξt(ψ)]/nt+1 = [ψt + ψt/nt ]/(1+ nt) = ψt/nt .
Thus, the matrixTξt is a martingale. We shall now prove the Lipschitz property. For
all k > 0, ψt > 0:

ψi
t/(nt +k) ≤ ψi

t+k/nt+k ≤ (ψi +k)/nt+k.

Note that

∣

∣

∣

∣

ψi
t+k

nt+k
− ψi

t
nt

∣

∣

∣

∣

is upper bounded byk(nt−ψi
t)

nt(nt+k) and kψi
t

nt(nt+k) and thus by
kmin{ψi

t ,nt−ψi
k}

nt(nt+k) .

Equating the two terms, we obtain

∣

∣

∣

∣

ψi
t+k

nt+k
−

ψi
t

nt

∣

∣

∣

∣

≤ k
2(nt+k) .
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Lemma 7 The transitionsP, P̂ induced by any policy obey‖P− P̂‖∞ < ε. By repeated
use of Cauchy-Schwarz and triangle inequalities:

‖V − V̂‖∞ =
∥

∥r − r̂ + γ
(

PV− P̂V̂
)
∥

∥

∞

≤ ‖r − r̂‖∞ + γ
∥

∥PV− P̂V̂
∥

∥

∞

≤ ε+ γ
∥

∥PV− (P− P̃)V̂
∥

∥

∞

≤ ε+ γ
(∥

∥P(V − V̂)
∥

∥

∞ +
∥

∥P̃V̂
∥

∥

∞
)

≤ ε+ γ
(

‖P‖∞ · ‖V − V̂‖∞ +‖P̃‖∞ · ‖V̂‖∞
)

≤ ε+ γ
(

∥

∥V − V̂
∥

∥

∞ + ε ·
1

1− γ

)

whereP̃ = P− P̂, for which of course holds‖P̃‖∞ < ε. Solving gives us the required
result.

B Hoeffding bounds for weighted averages

Hoeffding bounds can also be derived for weighted averages.Let us first recall the
standard Hoeffding inequality:

Lemma 8 (Hoeffding inequality) If x̂n , 1
n ∑n

i=1xi , with xi ∈ [bi ,bi + hi] drawn from
some arbitrary distribution fi andx̄n , 1

n ∑i E[xi ], then, for allε ≥ 0:

P(x̂n ≥ x̄n + ε) ≤ exp

(

−
2n2ε2

∑n
i=1h2

i

)

. (21)

We have a weighted sum, ˆx′n , ∑n
i=1wix′i , ∑n

i=1wi = 1. If we setvi , nwi , then we can
write the above as1n ∑n

i=1vix′i . So, if we letxi = vix′i and assume thatx′i ∈ [b,b+h], then
xi ∈ [vib+vi(b+h)]. Substituting into (21) results in

P(x̂n ≥ x̄+ ε) ≤ exp

(

−
2ε2

h2∑n
i=1w2

i

)

. (22)

Furthermore, note that

P(x̂n ≥ x̄+ ε) < exp

(

−
2ε2

h2

)

, (23)

sincew2
i ≤ wi for all i, aswi ∈ [0,1]. Thus∑i w

2
i ≤ ∑i wi = 1. Note that∑i w

2
i = 1 iff

wj = 1 for somej.
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