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Incentive Mechanisms for Community Sensing

Boi Faltings, Jason Jingshi Li, Radu Jurca

Abstract—Sensing and monitoring of our natural environment are important for sustainability. As sensor systems grow to large scale, it
will become infeasible to place all sensors under centralized control. We investigate community sensing, where sensors are controlled
by self-interested agents that report their measurements to a center. The center can control the agents only through incentives that
motivate them to provide the most accurate and useful reports. We consider different game-theoretic mechanisms that provide such
incentives and analyze their properties. As an example, we consider an application of community sensing for monitoring air pollution.

Index Terms—Mechanism design, multi-agent systems, sensor networks, game theory, participatory sensing.

1 INTRODUCTION

ENSING is an important part of computational sus-
Stainabﬂity, where we collect, store and interpret ev-
idence about important environmental phenomena that
humans cannot directly observe or quantify. One exam-
ple for such phenomena is outdoor air pollution: many
air pollutants cannot be seen or smelled by humans,
but exposure to air pollutants has a direct impact to
human health. The WHO estimated that urban outdoor
air pollution caused up to 1.3 million deaths per year
world wide [35]. Therefore, it is important for us to
deploy many air quality sensors in order to assess and
minimize our exposure to these harmful pollutants.

Traditional measurement of air pollution requires large
and expensive installations, and most European and
North American cities make such measurements in only
a few locations that are representative of the urban
background pollution levels. More recently, progress in
sensor technology has enabled the development of much
smaller and cheaper sensors that can be installed on typi-
cal rooftops, buses and trams, or even attached to mobile
phones (see Figure 1 for examples). Early deployments
with such sensors, for example in the dataset provided
by Li et al. [20], showed that the measured pollution
varies strongly even in small geographical areas. Thus,
the few measurement stations that are currently used are
certainly not sufficient to give a detailed picture of the
pollution level that people are exposed to at the specific
place where they live or work. A more detailed map,
constructed from many sensors, would be extremely
useful for people to minimize their personal exposure
to high levels of air pollution.

As many sensors are needed to build a detailed map
of air pollution, and many of them may have to be
placed on private properties, it is clearly not feasible
for them to be installed by a central authority. Instead,
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Fig. 1. Air pollution sensors that could be used in com-
munity sensing. Top left: on top of a bus; bottom left:
on top of a tram; top right: attached to a solar-powered
weather station on a building; and bottom right: attached
to a smartphone.

a good paradigm is community sensing [1], [15], where
sensors are installed and maintained by individuals,
and a public authority operates a center that aggregates
their measurements into a pollution map that is made
publicly available. This poses an issue of quality control,
as the center has no control over the quality of the
measurements it receives.

Previous work has concentrated on assessing the qual-
ity of sensor data to obtain the best possible estimate
given unreliable data, and optimizing sensor placement
or selection. For example, [25] proposes a probabilis-
tic model of trust communicated over a decentralised
reputation system. They evaluate the trustworthiness
of agents over multidimensional contracts, and use a
Dirichlet distribution to estimate the mean and covari-
ance matrix of outcomes. [30] propose a trust model
that evaluates and aggregates individual reports from
a crowd based on the maximum likelihood framework,
and use it for crowdsourcing applications with an ap-
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plication of estimating cell tower locations. [6] considers
how to maximize map quality by selecting and combin-
ing different sensors, and [29] shows a mechanism for
selecting an optimal-cost combination of sensors using
an online auction. Common to all these techniques is that
they take the quality and location of sensors for granted,
and focus on their selection and combination.

An additional possibility for further improving quality
is to provide incentives for sensor operators to provide
better and more relevant data in the first place. This is
particularly attractive as sensor operators will have to be
compensated for providing and maintaining the sensors
anyway, and this compensation can be scaled so that
high-quality data is rewarded more. In this paper, we
describe game-theoretic schemes that use coherence of
the measurements to determine rewards that are maxi-
mized by reporting accurate and useful information.

Such rewards motivate sensor operators to provide
data of better quality, an approach that is complementary
to optimal selection and combination and can further
improve the results. In contrast to the quality evaluation
underlying earlier work on sensor selection schemes,
which characterize the usefulness of the end result to
the center, the rewards provide incentives from the per-
spective of sensor operators. The functions used to assign
reputation and trust, such as proposed in [30], generally
reward agreement with the existing model, and thus in-
centivize sensors to report whatever is already predicted
by the model. In contrast, incentive schemes need to
reward reports that correct the model while agreeing
with other reports taken at the same time, which is
often the opposite objective. Very little work on such
incentive schemes has been reported so far; we are only
aware of [9] for monitoring quality of service and [22]
for sensors that sense the same value.

Incentive schemes can be understood as replacing
centralized control: rather than force agents to provide
accurate measurements, we make it in their own interest
to do so, and thus make them participate in the job.
They also provides an elegant solution to scalability, as
we do not need a large organization that supervises and
maintains sensors, but instead we can count on the eyes
of individual sensor operators to detect and fix problems
with the sensors, and keep up with the best maintenance.

Beyond simple compensation, an important issue is
how to deal with malicious agents that intentionally
provide false information. For example, a large polluter
might want to feed many false measurements to hide
its emissions, and the external benefits far outweigh
any difference in compensation. In cases where such
misbehaving sensors are not already detected by sensor
fusion and selection schemes, operators can also be
disincentivized from malicious behavior by using the
reward schemes to influence their reputation and cause
them to be excluded from consideration. This again re-
quires incentives that are maximal when a sensor makes
the biggest contribution to the system.

This paper is structured as follows. First, we define
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Fig. 2. Scenario considered in this paper. A center maintains a
public pollution map RU' that gives a probability distribution
of the pollution level for each location | and time t. Agents
have access to this model to influence their prior beliefs Pr'
about the same levels. Upon receiving an observation o, an
agent updates its belief distribution about the pollution levels
to Prf;t, and makes a report that is used to construct the next
pollution map RV,

the setting and the relevant assumptions behind com-
munity sensing. Following a review of existing game-
theoretic mechanisms for incentivizing the truthful rev-
elation of private information, we define a novel mecha-
nism, named Peer Truth Serum, for community sensing,
and discuss its properties. We consider how different
schemes can be used to motivate agents to place their
sensors at the most useful locations, and follow with an
example. Finally, we evaluate the incentive schemes in a
realistic testbed of simulating a network of air pollution
sensors in the city of Strasbourg, France, and close with
some concluding remarks.

2 THE SETTING

In our setting, an open group of agents make mea-
surements of a continuous space-time process, such as
sensors recording air pollution readings in a city over the
course of a day. While in practice each sensor measures
several different quantities, such as NO,, CO,CO;,O;
and fine particle concentrations, temperature, humidity
and many others, in this paper we assume that a single
quantity called pollution is measured. We discretize pol-
lution quantity to N different discrete levels, so the set of
possible levels at any place and time is V' = {vy,...,vn}.

After making an observation o, an agent sends a report
s to a center that it trusts. The center then integrates the
reported data with the known emission and dispersion
characteristics in a model and produces a pollution map.
In such a statistical model, the space is partitioned into
regions. The model has a prior expectation of pollution
levels for each region that is given by known emission
and meteorological information, such as nearby chim-
neys, traffic volumes and current wind field. It combines
this expectation with reports for the region to produce a
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Fig. 3. An agent’s prior and posterior beliefs.

maximum-likelihood estimate, which also takes into ac-
count statistical correlations between the regions. While
the details of such a complex environmental model
is beyond the scope of this paper (see [19] for more
discussions), we only need to know that the output of the
model at any time ¢ is a pollution map representing a full
probability distribution over the possible pollution levels
at every location I. We let R"(v) denote the probability
that the pollution at location [ and time ¢ is of level v;
Rb(v) > 0 for all v € V. Figure 2 illustrates the scenario.

An initial map can be obtained from existing environ-
mental simulation models, taking into account known
emissions data. The center updates the map periodically
using the measurement reports it received during the last
time interval. Depending on the frequency of reports,
updates may happen as frequently as every hour or as
infrequently as once a week. Each agent has private prior
beliefs Pr't(v) about the pollution levels that the model
will report at the next update, R"**!. Before measure-
ment, these private beliefs will generally be close to the
current map R"!, but they can diverge significantly after
the agent makes a measurement. We let Pr'*(v) be the
belief before measurement that the model will report
RLIFL =y after the next update, and Prl! be the belief
after measuring value o. In the following, we will always
consider a single location and time point only, and thus
drop the [, ¢ superscripts.

Figure 3 shows an observation influences an agent’s
beliefs. The solid line labelled Pr(z) shows the prior
probability distribution that the agent has about the
value of variable x before measuring it. It shows that
b is believed to be the most likely value. Once the agent
measures the actual value of the variable to be a or ¢,
its belief changes to the distribution Pr,(z) or Pr.(z),
respectively. Note the influence of the prior belief: when
the agent has measured ¢, the most likely value may not
be c itself, but a value between ¢ and b.

As agents in the same area and time will have similar
information about the true state of the world, we can
expect their prior expectations Pr’t to be quite homo-
geneous and quite similar to the public distribution R.
However, they are likely to differ significantly in the
way they update their beliefs. An agent who strongly
believes in the accuracy of its own measurement is likely
to change its beliefs more dramatically compared to

another agent with weaker confidence in its readings.
Thus, they are likely to obtain very different posterior
distributions after observing the same measurements.

However, it is reasonable to assume that agents believe
in their own measurements: for an agent that measured
a value o, the maximum-likelihood estimate of the pol-
lution value should be equal to this value:

Smi = argmaz, Pr(o) 1;1;0((;)) =0

As Pr(o) is constant for all z, we can drop it and formally
define this restriction on the belief updates as the rational
update property:

Definition 1: An agent’s belief update from prior Pr
to posterior Pr, after measuring « satisfies the rational
update property if and only if:

Pry(z) _ Pry(y)
Pr(x) Pr(y)

If this assumption cannot be made, the agent is mea-
suring something different from the quantity of interest.
It would make no sense to compare and aggregate its
data with that of other agents. Thus the rational update
property is an important assumption that we make in
the rest of the paper.

Yy # x )

3 INCENTIVE SCHEMES
TRUTHFUL REPORTS

In this section, we review earlier work studied in game
theory on rewarding agents to truthfully reveal their
private information. All such schemes are based on the
fact that the agent’s posterior belief changes according to
her observation, such as the examples shown in Figure 3.
As agents will compute their expected rewards from a
report using this belief distribution, the incentives are
scaled so that reporting the true observation gives the
highest expected rewards given the posterior belief.

There are different schemes that may be used, depend-
ing on whether the goal is to get the agents to truthfully
report their posterior probability distributions, or the
values they have actually observed. We will first review
the case where the mechanism requires agents to submit
full posterior distributions, then the case where agents
are required to submit only the measured value.

FOR OBTAINING

3.1

For problems such as weather prediction, where the true
value eventually becomes known, such incentives can
be provided by proper scoring rules [17], [27]. They allow
agents to submit a probability distribution p(x) for the
measurement values, and score these on a ground truth
of the actually observed value Z to compute a reward.
Examples of proper scoring rules are:

Mechanisms for reporting distributions

o the logarithmic scoring rule:

pay(z,p) = a+b-logp() (2)
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o the quadratic scoring rule:
pay(z,p) = a+b <2p(af) - Zp(v)2> ©)

where a,b > 0 are constants chosen to scale the pay-
ments.

For incentives with proper scoring rules, reporting
the posterior as accurately as possible maximizes the
payment the agent expects to get. It is also possible
to use scoring rules to elicit averages, maxima and
other functions of a set of measurements, see [17] for
a complete characterization of the possibilities offered
by scoring rules. We now illustrate the scoring rule
approach with the following brief example:

Example 1: Suppose that at the peak traffic hour, the
pollution level on a minor arterial road of a city is
characterized by three levels (I, m, h) with the following
public prior distribution: Pr = [l = 0.1,m = 0.5,h = 0.4].
An agent made a measurement and recorded that the
reading was m, and updates its beliefs to the a posterior
belief Pr,, = [l = 0.1,m = 0.8, h = 0.1].

Assume that it truthfully reports this probability distri-
bution to the center, and that the center rewards it using
a quadratic scoring rule. Then the expected payment to
the agent is:

pay(Prm) = Zprm(v)pay(v>Prm)

= 2 Pra) (ZPM@) - Zf’fm(w)?)

= 01-02+408-1.6+0.1-0.2
—(0.12 4+ 0.8% +0.1?)
= 0.66

If the agent non-truthfully reports Pr’ = [l = 0.1,m =
0.3, h = 0.6], it would have a lower expected payment of

Z Pr,(v)pay(v, Pr')

= > Pru(v) <2PT'(U) - ZPT’(w)2>
= 01-02+08-06+0.1-1.2

—(0.12 4+ 0.3% + 0.6%)
= 0.15

pay(Pr') =

since misreporting the observation still does not affect
the private belief that the agent has about the ground
truth that will be used to evaluate its report.

The main problem of applying the proper scoring
rules approach in our setting is that in sensing, it is
generally not possible to ever know the ground truth
as required by the scoring rules. Peer prediction [21] is a
technique for this setting. The principle is to consider the
reports of other agents that observed the same variable,
or at least a stochastically relevant variable, as the missing

ground truth. A proper scoring rule is then used for the
incentives. Provided that other agents truthfully report
an unbiased observation of the variable, such a reward
scheme makes it a best response to provide truthful
and unbiased reports of the observations, and truthful
reporting thus becomes a Nash equilibrium. [21] describe
such a mechanism and several variants, and [11] discuss
further optimizations and variants.

Work by Papakonstantinou, Rogers, Gerding and Jen-
nings investigated a multi-agent scenario where the cen-
ter specifies the data wanted, and then incentivizes the
agents to provide that data [22]. The approach combines
a first stage where the center selects the agent that can
provide the measurement in the most cost-effective way
with a second stage where either the observation is
scored against a true value that becomes known later,
or against another report using the peer prediction prin-
ciple. The approach assumes a pull approach where the
center decides what measurements are important and
specifically asks agents to report these.

Another important issue with implementing peer pre-
diction mechanisms is that agents should report both
the value they observed and the posterior probability
distribution that resulted: the value is needed in order
to be able to score other reports, while the distribution is
needed to determine a payment to the agent itself. In the
approach originally proposed by [21], the agents report a
value and the center replaces this by an assumed posterior
distribution for agents that have observed this value. The
limitation of this approach is the need to know agents
posterior beliefs. The Bayesian Truth Serum [23] is a
mechanism that elicits both the prior beliefs and the ob-
servation, but only applies when these are not revealed
to other agents, which is not the case in community
sensing.

To overcome this limitation, in [34] the authors pro-
vide a mechanism where agents report both their prior
and posterior beliefs about the observed value. Not-
ing that Bayesian updating implies that the ratio of
posterior/prior is the highest for the actually observed
value (the rational update assumption), the two reports
together also determine the true value. However, it is
difficult to apply this technique to community sensing
since we cannot enforce reporting the prior beliefs before
an observation.

Applying the peer prediction approach to our setting
has the challenge that sensors are taking measurements
at different locations, i.e. we do not have another sensor
reading of exactly the same value. However, the peer
prediction method as defined by [21] only requires a
stochastically relevant signal. Similar to [33], we can
obtain such a stochastically relevant signal by using a
pollution model applied to the combined set of mea-
surements reported by other agents.

3.2 Mechanisms for reporting a single value

One of the features of the scoring rules approach is
that agents are required to submit their full posterior
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distribution. This would be problematic if the posterior
distribution cannot be succinctly described, and agents
would need to give their estimated likelihoods for ev-
ery possible value. Furthermore, in community sensing,
reporting entire probability distributions is not desirable
as it greatly increases the load on already limited com-
munication bandwidth. Therefore, it is best to have a
mechanism that requires agents to only transmit a report
of the measured value itself.

The most straightforward way is to let the center
substitute a standardized posterior distribution for each
reported value, and let the agent select the right dis-
tribution by reporting one of the values. This was
the approach originally adopted in the peer prediction
method [21]. In [11], the peer prediction principle is
implemented without using scoring rules. Instead, for
each combination of report and reference report, minimal
truthful payments are computed directly using linear
programming. It is shown that these payments can often
be much more efficient than those obtained by assum-
ing posterior distributions and applying proper scoring
rules, and satisfy other properties such as resistance
against collusion. Zohar and Rosenschein [38] investi-
gated mechanisms that are robust to variations of these
beliefs, and show that this is only possible in very limited
ways and leads to large increases in payments. However,
these incentive schemes still require strong assumptions
about the posterior beliefs of the agents.

Jurca and Faltings [10] proposed a mechanism for
truthful opinion polls with two possible values that
requires no assumptions about posterior distributions.
While the mechanism is not always truthful, it is helpful
in the sense that non-truthful reports only help to make
the public poll outcome converge to the true distribution
more rapidly. Thus, the mechanism is shown to be asymp-
totically truthful in the sense that it converges to the true
distribution. [12] shows how to extend this mechanism to
settings with more than two values. The setting assumed
in their mechanism is very close to the pollution sensing
problem: the publicly available prior corresponds exactly
to the pollution map. We will therefore adopt a very
similar mechanism for our problem.

4 THE PEER TRUTH SERUM

We propose a new mechanism designed for incentivizing
truthful measurement reporting, which we call the Peer
Truth Serum:

Definition 2: The Peer Truth Serum is a payment func-
tion that rewards an agent for reporting a value s of a
variable that is compared against a reference estimate
q for the same variable, given a publicly available prior
probability distribution R for the variable. It rewards the
agent according to the payment function a+b-7(s,q, R):

e 7(s,q,R) = % if s=g¢q

o 7(5,q,R) = 0 otherwise.
where a and b > 0 are constants chosen depending on
the requirements of the application.

In our scenario, agent ¢ measures the pollution level at
location [ and time ¢, and reports the value s = sit
The report is evaluated against a reference value ¢ =
mb+L from the model, based on an update using other
reports received in the same time interval. The reward
is computed using the known public prior R = R"t.

As an example, consider a range of three values for
the pollution level: I(low), m(medium) and h(high), and
let the public prior for some fixed position and time be:

1 ‘m‘h
R(x) ‘ 0.2 ‘ 0.6 ‘ 0.2

Assume that the agent measures m, and truthfully re-
ports this value. The center obtains a reference report
g = m and finds that it matches the report of the agent.
Letting a = 0 and b = 1, the agent would be rewarded
7(s,q,R) = 5/3. The agent might also report [, but it
is less likely that I would match the value reported by
the model. However, if it does, the agent would get
the much higher reward of 5. Thus, we can see that
the payment scheme balances out the risk inherent in
reporting unlikely values.

In practice, an issue that might arise is that for very
small R, the payment can become unboundedly large. It
will often be desirable to impose a budget limit so that
the payment cannot exceed this limit.

While the likelihood of matching the reference report,
and thus obtaining a reward at all, is highest for re-
porting a very common value, the amount of reward
is highest for uncommon values. Together these two
influences make it optimal for an agent to report its true
measurement, as we will now show. We first consider
the general setting where all agents adopt the publicly
available map R as their prior distribution. We then
consider the case with more informed agents who may
have a different private prior to that of the public prior.

4.1 Agents adopt the public prior distribution

In the case where the agents do not have much more
information than the center, it is natural to assume that
they would rely on the center’s previously collected data
and adopt the center’s prior as their own private prior.
In this section we consider such a setting, where we
show that given that the agent adopts the public prior
within some margin of error ¢, the Peer Truth Serum
incentivizes truthful reporting.

Proposition 1: There exists a threshold ¢ > 0 such that
when an agent’s prior distribution Pr(-) for a variable is
within e of the publicly available distribution R:

Pr(v) 4+ e> R(v) > Pr(v) —e 4)

the Peer Truth Serum incentivizes truthful reporting.
Proof: We observe that an agent who observes o and
reports s expects a reward:

pay(o,s) = a+ bz Pro(z)7(s,z,R) = a4+ bPry(s) st)
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In order for the mechanism to be truthful, we require
that for v # o, pay(o,0) > pay(o,v), i.e.:
Pr,(v) < Pry(o) R(v) R(0)
R(v) R(o) Pry(v) = Pry(o)
Given the assumption of equation 4, this holds under
the condition that:

Pr(v) —e S Pr(o) +¢
Pry(v) Pr,(o)
Pr,(o Pry(v
As PT((O)) > Pr((,u)) Vo, v, let
P P
d(o,v) = r(v) r(o) >0

" Pro(v)  Pro(o)
then the truthfulness condition holds for any e such that:

€

(Vo.0)0(0-0) = 5057+ Prow)

As 6(o,v) > 0, such an e always exists and can be
calculated as:

Pr(v)Pry(o) — Pr(o)Pr,(v)
Pry(v) + Pro(o)

©)

L

Thus, if agents adopt the public prior within some tol-

erance ¢, the mechanism incentivizes truthful reporting.

For the example given earlier, assume that an agent’s
prior and posterior beliefs are as follows:

€ = MiNy,ov40

X
I | m| h
Pri(x) | 06 | 0.3 | 0.1
Prp(z) | 01|08 | 0.1
Pry(z) | 0.1 | 0.3 | 0.6
Pr(z) | 02 | 06 | 0.2

Now we can compute e according to Equation 5 as
min(1/3,1/7,1/9) = 1/9. Thus, for example, if the public
distribution R is within the bound of 1/9 from the agent
prior:

X
1l |[m | h
R(z) | 025 | 0.5 ] 0.25
depending on its observation o, the agent would expect
the following payments for its reports:

m ‘ h
o=11]241]06]04
o=m | 04|16 |04
o=h |04 06|24

and thus truthful reporting gives the highest payoff.

4.2 Agents do not adopt the public prior

In some cases, agents may be more informed than the
public model. For example, they may observe that there
are traffic jams, fires or other incidents that will cause the
pollution level to be higher than expected by the model.

In this case, their prior belief even before measurement
could be considerably different from the public map R.

If this means that the difference between R and the
private belief Pr is larger than the threshold ¢, the agent
may no longer be incentivized to report truthfully. For
example, given the private beliefs as above, if R were as
follows:

1l |m|h
R(z) | 05| 0.1 | 04

depending on its observation o, the agent would expect
the following payments:

s
I |m ‘ h
o=11]1121] 3 ]025
o=m | 02| 8 | 0.25
o=h |02 3| 15

and thus report m no matter what the actual observation
was.

While the fact that the report is not truthful may be
considered undesirable, note that in this example, report-
ing m actually helps the public report R to converge
more quickly to the agent’s private belief than reporting
truthfully.

This is interesting in particular if the agent’s private
belief is more informed than the public map, i.e. that it
is closer to the true value distribution:

Definition 3: An agent’s prior beliefs Pr[-] about a sig-

nal with true distribution Q[-] are informed with respect
to a public prior R[] if and only if for all v, either
R[v] < Prv] < Q[v] or R[v] > Pr[v] > Qv].
In such a case, it would be most helpful to make the pub-
lic map R converge to the private beliefs as quickly as
possible. We are now going to show that the Peer Truth
Serum incentivizes helpful reports that drive the public
map closer to the true distribution without necessarily
being truthful.

Thus, convergence happens in two steps:

1) first the diverse private prior distributions and
the published pollution map converge to the same
distribution, establishing a common frame of refer-
ence, and

2) once this is established, the incentives are for truth-
ful reporting and both the public map and the
private priors converge asymptotically towards the
true distribution.

Such a two-step process makes a lot of sense in com-
munity sensing, since a sensor is usually present in the
system for an extended period of time and will only have
to pass the initial phase once when joining the network.

We first show the following property of the Peer Truth
Serum:

Proposition 2: Provided the rational update assump-
tion (1) holds and all agents’ prior beliefs are informed,
the Peer Truth Serum admits a Nash equilibrium where
no agent ever reports a non-truthful answer s = y when
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according to its beliefs, the true answer x is more under-
represented in the current public prior R:

Pr(z)/R(x) > Pr(y)/R(y) = s(x) # y;

Proof: For the case where the agent believes the ref-
erence report to be truthful, this follows directly from the
rational update assumption and the payment rule. After
observing z, the expected payments are for reporting x:

Pr,(z) _ Pr,(z) Pr(z)
R(x) Pr(z) R(z)
and for reporting y:

Pro(y) _ Pra(y) Pr(y)
R(y) Pr(y) R(y)

The first term is greater for = than for y by the rational
update assumption, and the second term is greater for
than for y by the condition of the proposition. Thus, the
agent will not report y instead of x.

For the case where the agent believes that the agent
providing the reference report also misreports using an
informed prior, as it knows that this other agent will not
report y instead of x, misreporting y for « would only
lower the probability of matching reports and thus not
be rational.

Thus, in all equilibria where agents have informed
priors and believe each other to have informed priors,
the proposition holds. O

We now use this result to show the following;:

Proposition 3: In the current distribution R, let A be the
set of underreported values (Vz € A, R(x) < Pr(z)) and
B the set of overreported values (Vy € B, R(y) > Pr(y)).
There will never be a non-truthful report for some
answer y € B instead of another answer z € A. Thus,
provided that the agent’s prior beliefs are informed with
respect to R and the true distribution, the combined
frequency of reports of values y € B is not greater than
the agent’s believed frequency » . Pr(y).

Proof: For all - € A, R(z)/Pr(z) < 1 whereas for all
y € B, R(y)/Pr(y) > 1. By Proposition 2, there are never
any reports of values in B when the true values were in
A. Thus, the combined frequency of all reports of values
in B cannot be larger than the true frequency 3 5 Q(y).
By the assumption that the belief Pr is informed, we

have >0 cpQYy) < 2y epPry) < X,epR(y), and
thus the combined frequency is also not larger than

>en Priy). 0

Now recall that the public statistic R is updated by
averaging the reports obtained from agents. Thus, we
have:

Proposition 4: Within some finite amount of updates,
for all values of y € B, the public statistic R(y) <
Pr(y) + ¢, and consequently for all values of z € A4,
R(z) > Pr(z) —e.

Proof: The frequency of values in B will be not larger
than what is believed by the agent, so R will gradually
be reduced to become arbitrarily close to Pr. Likewise,

the frequency of reports of values in A will be at least as
large as what the agent believes, and thus also become
arbitrarily close to Pr. O

Thus, agents that have prior distributions that diverge
from the public prior in an informed way will provide
helpful reports that drive the public map close to its own
beliefs.

When the private priors are not informed, such con-
vergence may still happen, but cannot be guaranteed.
However, such a case is not realistic: either an agent
has background information not accessible to the center,
and in this case its beliefs should be more informed,
or otherwise it should believe the distribution given by
the center. Another issue is what happens when agents
have informed private prior distributions but they differ
significantly.

Both cases are helped by the fact that rational agents
should gradually adapt their beliefs about the model
output to the published distribution R, and thus even-
tually converge to a single distribution. However, such
convergence may be undesirably slow.

For the case where the private prior Pr is equal to
the true distribution @, helpful reports actually speed
up convergence to the true map. This is because the
untruthful reports are always for values where R/Pr is
lower than for the true value, i.e. values where R should
be increased more strongly to approach Pr. Helpful
reports can thus be more valuable than truthful reports.

5 ENCOURAGING SENSOR SELF-SELECTION

An important issue in any sensing scenario is to place
sensors at locations where they are the most useful.
This problem of sensor placement has been analyzed
for the case where the center has complete information
about the agents and the measurement needs. It has also
found application in other areas such as robotics [7],
tracking [31], wireless sensor networks [37]. The prob-
lem in general is NP-hard [3], [13]. Exact solutions can
be found with standard branch and bound techniques
[18], [32] or other exponential algorithms [5]. However,
in practice approximation techniques by either convex
optimization [8], genetic algorithms [36] or optimization
over submodular functions [16] are preferred for finding
near-optimal solutions in a reasonable time. There are
also models that quantify the loss of privacy such as [14],
and auction schemes for selecting sensors with minimal
cost [22] to best serve the needs expressed by the center.

However, in community sensing the main difficulty is
that the sensing platform has only limited information
about the agents and their capabilities. Furthermore,
the center does not know how accurate its current in-
formation about a certain measurement is, and thus it
cannot judge where additional measurements would be
required.

Both information is distributed among the agents
themselves, and thus we should incentivize the agents
to make use of their knowledge to best contribute to
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the community sensing effort. In particular, we would
like the incentive scheme to make the agents select
measurement locations that satisfy two criteria:

e accuracy: the sensors work well and produce accu-
rate measurements, and

» novelty: the result contributes as much new infor-
mation as possible to the map maintained by the
center.

While encouraging accuracy and truthfulness is the main
objective of incentive schemes, they should also encour-
age self-selection that performs well according to these
criteria. We are now going to analyze the incentives pro-
vided by both scoring rules and the Peer Truth Serum.

5.1

We first consider scoring rule mechanisms. When using
the quadratic scoring rule:
Z Prg(

where Pr, is the posterior probability assumed by the
peer prediction mechanism when s is reported, we ob-

tain:
=a+b Z Prg(v

which is proportional to Simpson’s diversity index [28]
A(Prs). Note that a higher A implies lower diversity. The
expected payment for measuring at location / and time
t is proportional to the expected diversity index, i.e.

ZPr” —a—l—bZPrlt

The payment is maximized when the agent expects
its posterior distribution to have low diversity, i.e. to
be quite certain about a particular value. Thus, this
scoring rule incentivizes accuracy. However, it does not
incentivize novelty, as the current information about the
location is not part of the scoring rule. Novelty would
have to be encouraged by additional incentives which
could in turn perturb the truthfulness of the scoring rule.
A similar behavior occurs with the logarithmic scoring
rule (Equation 2: pay(s,v) = a + blog Prs(v)), where
Prg is the posterior probability assumed by the peer
prediction mechanism when s is reported. Assuming the
ideal case that Pr,(v) is equal to the private posterior
of the agent when observing s, the expected reward for
measuring a value at location [ and time ¢ is:

Elpay(s)] = a+ Z bPrs(v

where H(Pr;) is Shannon’s uncertainty of the distribu-

tion Pr;.
Z Pr(s

so that the reward is inversely proportional to the
expected uncertainty of the posterior distribution. By

Selection with scoring rule mechanisms

pay(s,v) = a+ b(2Pr(

Elpay(s)

Elpay] = Elpay(s A(Prh?)

)log Pry(v) =a—b- H(Prs)

E[pay] Elpay(s)] = a —b- Ep.)[H(Prs)]

setting @ = bH(R), the center could make the payment
proportional to the information gain H(R)—H (Pr;), and
thus encourage agents to provide reports that improve
the certainty of the map. However, this does not reward
novelty, as the uncertainty of the map does not reflect
its true accuracy.

Thus, while scoring rules reward accuracy, they do
not reward novelty and actually might discourage it. For
example, if an agent observes a large fire that is likely
to have a big impact on the pollution map but would
make its measurement quite uncertain, it would not have
the incentive to provide this measurement. In fact, if the
public map was quite certain before, it might have to
pay a penalty for providing a less certain (but different)
result!

5.2 Selection with the Peer Truth Serum

We now consider the Peer Truth Serum mechanism we
presented in the previous section. The expected reward
for truthfully reporting a value s is (we assume a = 0
and b =1 for simplicity):

ZPTS Ypay(s,v) = Pry(s)

R(s)

Elpay(s)

and thus the expected payment when measuring at
location [ and time ¢ is:

£ et (s)
ZPTZ th (s)

Dropping the [, 1, this can be written as:

Elpay] =

E[pay] Z Pr(s PTS
- > Rf)]ﬁz) (Pr(s) - R(s))?
+2R(s)Pr(s) — R(s)?] | (
Pry(s)(Pr(s) — R(s))
zs: Prq(s) + Zs: Pr(s)
Prs(s) (Pr(s) — R(s))?

Pr(s) R(s)

The first term: ) _ Prg(s) is the expected value of
Pry(s)/Pr(s), which expresses the confidence of the
agent in its measurement. This part of the reward en-
courages accuracy, as in the scoring rule mechanisms.

Note that when the agent expects no novelty, i.e. its
prior belief is equal to the public map Pr(s) = R(s),
the second and third terms vanish and thus do not
contribute to the reward.

To see how the expected novelty affects the expected
reward, consider that the agent expects a constant accu-
racy for all values, i.e. Pry(s)/Pr(s) = c. In this case, the
second term becomes:

Pry(s)(Pr(s) —
Z Pr(s)

R(s))

S
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Fig. 4. An example with four regions and five sensors.

= CZPT(S) —CZR(S) =

as both Pr and R are probability distributions that sum
to 1. The third term becomes:

Pry(s) (Pr(s) — R(s))?
Pr(s) R(s)
r(s) — R(s))?
oy P SO ey

where x?(Pr, R) is Pearson’s y? distance between the
distributions Pr and R. Thus, the reward is maximized
when Pr and R are as different as possible, i.e. at
locations where the agent believes that R is the most
inaccurate.

When Pr;(s)/Pr(s) is not constant, the sum will un-
dergo some variation, but we can see that the Peer Truth
Serum clearly encourages reporting at locations where
the agent expects to correct the public map R.

6 EXAMPLE

We consider the setting shown in Figure 4 where five
agents {S1,...,55} are making air-quality measure-
ments in different locations. The center divides the area
into four regions: the side street on the east (R1), the
main road on the south (R2), the library, which is the
region north of the main street and east of the side
street (R3) and the region south of the main street
(R4), and wuses three possible pollution levels V =
{low, medium, high}.

We compare two different incentive schemes: peer
prediction as described in [21], [22] using the quadratic

scoring rule:
)= 2 p)”

and the Peer Truth Serum mechanism we propose in
this paper. In the peer prediction mechanism, the center
is assumed to define a posterior distribution for each
possible value that an agent might report. We assume
the following probability distribution:

pay(z,p) = 2p(x

assumed distribution
report | 1 m h
1 0.8 0.15 0.05
m 01 0.8 0.1
h 0.05 0.15 0.8

To determine the payment for a report, we use as p the
assumed distribution corresponding to the report, and as
Z the maximum likelihood estimation that results from
the model and other reports. This results in the following
payment matrix:

T
report 1 m h
1 1535 0235 0.035
m 014 154 014
h 0.035 0.235 1.535

We now illustrate the two incentive schemes on two
example measurements, one where both encourage a
truthful report and one where the peer truth serum
encourages a non-truthful, but helpful report. The incen-
tives that are computed can become a payment to reward
the agent for its effort, or reputation that accumulates
and determines an agent’s influence on the public map.

6.1 Example of Truthful Reports

First, we look at the peak hour of t1 = 18:00 where the
public prior for the pollution level at the library (R3)
is published. At the same time, agent S3 has a private
prior distribution Prf3:t! that is influenced by observing
the current weather and traffic conditions, and therefore
somewhat different from the current map value.

| low | medium | high
0.1 0.5 0.4
0.15 0.7 0.15

The agent measures that the level is in fact medium,
and u?dates her belief to obtain the posterior belief

RRB,tl

P,{,RS,tl

pritl  as follows:
0 | low | medium | high
pril o1 | 08 | o1

During the same time interval, the center also receives
reports of medium levels from S1 and 5S4, and high
levels from S2 and S5, and thus concluded that the
pollution level at the location of S3 is mf"=medium.
However, the agent does not know anything about these
measurements except that it assumes them to be truthful,
and so its best guess is that m”3!! is drawn from the
same distribution as its own posterior.

6.1.1 Peer prediction with quadratic scoring rule

Given a report of the agent, the center substitutes an
assumed probability distribution as described above and
uses this and the value predicted by the model to com-
pute the reward. Using its true posterior distribution, the
agent can compute the expected reward when reporting
the different values, given by the probability that the
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reported value matches the model times the reward that
would result in that case:

s | Elpay(s)]

low 0.1-1.535+0.8-0.235+0.1-0.035 = 0.345
medium | 0.1-0.144+0.8-1.5440.1-0.14 = 1.288
high 0.1-0.035+0.8-0.235+ 0.1 - 1.535 = 0.502

and so it can expect the highest reward when truthfully
reporting medium.

Even before making any measurement, the agent can
compute the expected payoff for measuring R3 using the
prior beliefs as:

Elpay(R3)] = 0.15-1.265+0.7-1.26+0.15-1.265 = 1.2615

In fact, as long as the agent’s own posterior agree with
the posterior assumed with the center, the expected
payoff for a report is almost identical everywhere (with
just a slight difference for the value medium). Thus,
scoring rules provide no incentives for measuring at
uncertain places. On the contrary, a fairly certain prior
would ensure a more certain posterior and thus a higher
expected return of the scoring rule.

6.1.2 Peer Truth Serum
As above, upon measuring a level of medium the agent
updates its belief and can compute its expected payment
for the different possible reports (assuming a = 0 and
b=1):

s | low

Elpay(medium, s)] | 0.1/0.1
=1

| medium | high
0.8/05 | 0.1/04
=16 =0.25

So the expected payment is highest for truthfully report-
ing the pollution level to be medium.

Even before any measurement, the agent can calculate
the expected payment for making a measurement using
its prior probabilities and the public map R, which is
0.15%/0.1 +0.7%/0.5 + 0.15%/0.4 = 1.26125.

6.2 Example of Non-Truthful/Helpful Reports

We now look at the situation one hour later (¢2=19:00)
and agent S1 is making measurements on the side street
(R1). The current public map of the pollution levels has a
different distribution. At the same time, agent S1 might
know that a moderate traffic jam has just developed on
the main road, and that winds blow the pollution into
the side street. Consequently, her private belief about the
pollution value became skewed to the higher value.

| low | medium | high
0.7 0.1 0.2
0.3 0.35 0.35

RRl,t2

P?‘Rl’tQ

Subsequently, S1 measures the level to be high, and
gets the following posterior:

0 | low | medium | high
Prii®1 01| 04 | 05

6.2.1

Using its true posterior distribution, the agent can com-
pute the expected reward when reporting the different
values, given by the probability that the reported value
matches the model times the reward that would result
in that case:

s | Elpay(s)]

Peer prediction with quadratic scoring rule

low 0.1-1.535+0.4-0.235+ 0.5-0.035 = 0.272
medium | 0.1-0.144+04-1.54+0.5-0.14 =0.7
high 0.1-0.035+0.4-0.235+0.5-1.535 = 0.865

and so truthfully reporting high give the highest payoff.

6.2.2 Peer Truth Serum

In this case, agents S2 and S5 on the nearby main road
R2 would also be submitting measurements. S1 believes
that they would report honestly and also observe much
higher pollution levels. It assumes the reference value
predicted by the model to follow this posterior distribu-
tion. This gives the following expected payments:

s | low | medium | high
Elpay(high,s)] | 0.1/0.7 | 0.4/0.1 | 0.5/0.2
=0.143 =4 =25

So in this case the highest expected payment is for
the agent to report medium. Although this is not the
truthful report, we have shown in section 4.2 that it is
nevertheless a helpful report, which drives the public
map closer to the agent’s private beliefs. When the two
coincide, reporting the truth will become the best policy.

Compared to the previous example, here we have
a greater difference between the public prior and
the agent’s private belief, and the expected payment
for making a measurement is 0.3%/0.7 + 0.352/0.1 +
0.352/0.2 = 1.966, indicating a higher reward for the
unexpected value.

7 EVALUATION ON A REALISTIC TESTBED

To understand the behavior of the scheme in a real
setting, we constructed a testbed modeled on the city
of Strasbourg in France. The testbed takes as ground
truth three full weeks of the hourly output of NO,
concentrations from the physical model ADMS Urban
V2.3 [4] over the city of Strasbourg collected by ASPA [2].
The dataset includes both real measurements made by
air quality stations and estimations made by the physical
model. It is widely regarded as a state of the art pollution
map in the environmental science community. From this
data, we select a smaller region and simulate agents
making measurements and making reports to the center
over the course of one day in each season. Even though
the underlying model accepts continuous values, we
discretize the N O, concentration to {low, medium, high},
separating at 30 ppb between low and medium, and 80
ppb between medium and high.

More specifically, given a week of hourly outputs
from 116 points as reports from sensors, we use the
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Fig. 5. Our simulation of air quality sensors from a suburb
in Strasbourg.

first six days to train an environmental model inter-
polating sensing measurements using Gaussian Process
regression described in [24]. We then use it as our
environmental model for evaluating the report on the
last day. This is done for the first week of January, April,
July and September, reflecting the changes over the four
seasons. Unless otherwise stated, we consider scenarios
with accurate sensors, where the range of = 5 ppb of
the measured value corresponds to the 95% confidence
interval to the ground truth. The simulation was run on
a MacBook Pro with in Intel Core i7 processor running
at 2.66 GHz, and the simulation of the operation of 116
sensors over 24 hours finishes just under 10 minutes.

As we have already proven how the payment schemes
create different expected payments depending on agent
beliefs, the simulation reveals nothing new about this
aspect. We therefore focus the simulation on understand-
ing how well these expectations are matched in reality,
in particular in the presence of noisy measurements and
malicious behaviors.

As payment scheme, we considered the peer truth
serum with parameters ¢ = 0,b = 1, with payments are
restricted to be no larger than 10. In comparison, we also
considered payment according to the quadratic scoring
rule with @ = 0.6,b = 1, as used in the example in the
previous section.

71

We first look at the difference in payment distribution
between peer truth serum and proper scoring rules.
Here, we consider three possible policies that a sensor
may adapt: always reporting the truth, the value that
it observes; always reporting the public prior, which
requires no actual measurement; and always reporting
the lowest level. The report is then evaluated against the
unbiased estimate computed from all the other sensors
whom reported truthfully.

Table 1 shows the distribution of payments received by
an average sensor throughout the simulation, adopting
the three different policies described earlier. It shows
that under the Peer Truth Serum, truthful reporting was

Payment distributions

the best strategy, where an average sensor accumulates
three times more payment by the end of the simulation
compared to the other two strategies. Furthermore, the
distribution shows that there is a significant difference in
the distribution of payment between truthful and non-
truthful reporting, with more than a quarter of the non-
truthful reports receiving zero payments.

By comparison Table 2 shows the distribution of pay-
ments received using proper scoring rules. As expected
truthful reporting remained the best strategy, receiving
the highest average payoff. However, it should be noted
that unlike Peer Truth Serum, the difference of average
payment between the truthful and non-truthful is only
20% of the truthful reporting, and for the majority
of measurements truthful and non-truthful reporting
yielded very similar payments. This is in contrast to
the Peer Truth Serum, where fewer measurements were
rewarded with large payoffs, instead of having the max-
imum payment being near the average payment.

Note that the payments reported here are for an
unscaled version of the payment scheme. They can be
further optimized as described at the end of this section.

7.2

We now show the cause for the different distribution
of payment amounts between the Peer Truth Serum
and the proper scoring rules. Figure 6 shows the av-
erage payment a given sensor received from the Peer
Truth Serum given different degrees of uncertainty of
the pollutant level for the given sensor location. The
uncertainty is presented in the form of the root-mean-
squared deviation between the ground truth and the
most likely value from the public prior at the sensor
location. This graph shows that in general, the Peer
Truth Serum incentivizes reporting at locations of greater

Incentives to measure at uncertain locations

TABLE 1
Payment received by an average sensor using Peer Truth
Serum
‘ onlyTruthful ‘ onlyPrior ‘ onlyLow

Mean 245 0.87 0.79
Max 10.00 2.26 3.01
UppQuartile 2.29 1.25 1.14
Median 1.21 1.04 1.03
LowQuartile 1.04 0 0
Min 0 0 0

TABLE 2

Payment received by an average sensor using Proper
Scoring Rules

| onlyTruthful | onlyPrior | onlyLow

Mean 1.43 1.09 0.87
Max 1.54 1.54 1.54
UppQuartile 1.54 1.54 1.54
Median 1.54 1.54 0.24
LowQuartile 1.54 0.24 0.24
Min 0.14 0.14 0.24
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Fig. 6. Average payment per sensor given uncertainty

=0=alwaysTruth

== alwaysPrior
2
alwaysLow

Average Payment per Measurement

10 20 30 40 s0 0 0 0 20 100
Noise Level

Fig. 7. Average payment per measurement against differ-
ent noise levels

uncertainty, where the public prior differs more from the
actual ground truth observed by the sensor. In contrast,
the proper scoring rules are indifferent to the degree of
imprecision at the location of measurement.

7.3 Noisy Sensors

Next, we look at the case where the sensors are making
measurements with different levels of Gaussian noise.
Figure 7 shows the average payment per measurement
over all sensors throughout the simulation when all the

=0=alwaysTruth =& alwaysPrior

alwaysLow

Average Payment per Measurement

0
0 10 20 30 a0 50 60 70 EY EY 100

Percentage of Other Agents Colluding on the Public Prior

Fig. 8. Payment made to an average sensor for different
levels of collusion reporting the public prior

== alwaysTruth =& alwaysPrior alwaysLow

/

Average Payment per Measurement
¢

0 10 20 30 a0 50 60 70 80 %0 100

Percentage of Other Agents Colluding on the Low Value

Fig. 9. Payment made to an average sensor for different
levels of collusion reporting only low concentration

10
N == alwaysTruth
== alwaysPrior

alwaysLow

= alwaysMostUnlikely

Average Payment per Measurement

o 10 20 30 a0 50 0 i 80 % 100

Percentage of Other Agents Colluding on the Most Unlikely Value

Fig. 10. Payment made to an average sensor for different
levels of collusion reporting the least likely value

sensors pick up signals with different levels of noise.
Here we define the noise level as the 95 percent confi-
dence interval for which the ground truth resides for a
given sensor signal. This shows that in the simulation,
under the Peer Truth Serum truthful reporting remain
the best strategy even when the sensors are affected with
quite significant unbiased Gaussian noise.

7.4 Collusion and malicious behavior

Finally, we look at how different forms of collusion
impact the Peer Truth Serum. Here, we have a subset of
other agents gather together to report a value that may
not necessarily reflect the value that they measured. We
consider three different collusion schemes:
1) reporting the most likely value from the public
prior, as to avoid detection (Fig. 8);

2) reporting a previously agreed static value, i.e. low
(Fig. 9); or

3) reporting the most unlikely value according to
the public prior, in order to obtain the maximum
possible reward from the Peer Truth Serum (Fig. 10,
note the different scale).

Under our simulations, we showed that under all three
cases the Peer Truth Serum is moderately robust, where
untruthful reporting only becomes a good strategy when
more than half of the agents are colluding.
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7.5 Designing practical implementations

Besides the implementation of the pollution model
which is not the focus of this paper, the main design
choices in a practical implementation of the Peer Truth
Serum are the parameters a (the additive constant) and
b (the multiplicative constant) of the payment function.
In the results reported above, we set ¢ = 0 and b = 1,
but the behavior can be further optimized as follows.

Note that the expected payments increase with the
degree to which the prior map differs from the actual
values: the agents get paid for the corrections they
provide to the map. This divergence can be characterized
by the expected payment that is obtained by an agent
that always reports the prior, and can be measured on the
actual system or on a simulation for the initial setting.
Let ag be this value when measured with a = 0,6 = 1.
As an agent that always reports the prior makes no con-
tribution, and in fact would not even need to operate a
sensor, it should receive no payment. Thus, the constant
a could be set € — ag - b, where € is a small positive
constant to incentivize participation. For example, in our
simulation the average payment to an agent that always
reports the prior is 0.87, so we may set a = —0.85.

For setting the multiplicative constant, we should
measure the expected payment of a truthful reporter
when b = 1. In our simulation, this value is 2.45—0.85 =
1.6. This again depends on the local circumstances;
the initial value can be determined from a simulation
model and must be adjusted through observation. The
multiplicative constant b should then be set so that the
expected payment for a truthful report at least covers
the expected cost of correctly operating a sensor. For
example, assuming that the cost of operating a sensor is
1, we could set b = 1/1.6 = 0.625. One can then adjust the
number of sensors that are allowed to participate in the
scheme and the frequency of updating so that the total
expected payment for the required number of reports
does not exceed the budget. Finally, a must be multiplied
by the chosen value for b; in the above example we
would set a = —0.85b0 = —0.53.

With these adjustments, the mean payment to a truth-
ful reporter becomes 1, to an agent always reporting the
prior 0.013 and to an agent always reporting low —0.03,
now achieving a much stronger incentive to report ac-
curate values. As an alternative to demanding payment
from an agent with a consistenly negative payment, one
may just eliminate such agents from the system.

Similar scaling could be applied to the payments
obtained with scoring rules. We would compute b = 3.44
and a = —3.79. This however does not solve the problem
that it does not provide a positive incentive for truthful-
ness for the majority of the agents.

8 CONCLUSIONS

Environmental sensing is a key ingredient of computa-
tional sustainability. Community sensing is a novel ap-
proach that has the promise to obtain detailed, full-scale

maps of environmental phenomena. However, as there
is no central control over sensors and their placement, it
will be necessary to put in place incentive schemes that
encourage the agents operating the sensors to optimize
their placement and operation. We have considered sev-
eral game-theoretic incentive schemes that can serve this
purpose, and pointed out the shortcomings of existing
schemes with regards to the information that needs to
be known by the center and transmit by the sensors.

We proposed the Peer Truth Serum, an incentive
mechanism for a community sensing scenario that re-
wards accurate and truthful measurements as well as
providing information that updates the public model.
It is the first mechanism that does not need to make
strong assumptions about the agents’ prior beliefs or
updating mechanism, and is thus realistic for a practical
setting. After an initial adaptation phase where agents
adjust their private beliefs and the publicly available
map, the incentive scheme motivates agents to contribute
truthful and accurate measurements. It thus provides the
necessary quality control to ensure that the results of
the community sensor network are valid in spite of the
absence of explicit control.

While the mechanism ensures that agent beliefs will
converge to a common value even when they start out
from very different values, in community sensing agents
observe the same local phenomena and should have
similar prior beliefs (even these are unknown to the
center). For example, even though some area experiences
pollution due to fires, this will be apparent to agents
in the area, although it would not be to the center.
We therefore expect that the mechanism will quickly
converge to the truthful reporting regime, while remain
robust to new agents that may not share the prior beliefs.

Other issues that have been of concern in other ap-
plications of truthful elicitation mechanisms are less of
a concern in our setting. In particular, collusion among
agents that measure in related locations is not very
likely, as measurements are not anonymous as in product
rating. Also, strategic timing of reports is unlikely as
pollution values change in ways that are hard to predict.

We did not discuss in detail how the same scheme can
be applied to eliminate the influence of malicious agents,
who have strong outside incentives to insert incorrect
measurements that cannot be compensated by payments.
To a large extent, such malicious behavior will already
be eliminated by sensor selection schemes that detect
their anomalous behavior. However, as these selection
mechanisms may not be known to sensor operators,
additional value can be obtained by giving incentives
in the form of influence on the public map. Resnick and
Sami [26] have shown a way to use truthful information
elicitation based on scoring rules as reputation feedback
that can adjust the influence of raters to their credibility.

An important issue is that besides encouraging agents
to report accurate measurements, we also want them to
provide reports that improve the map as much as possi-
ble. We have shown how the different incentive schemes
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also provide incentives for optimal sensor placement, so
that the community itself optimizes the sensing locations
to maximize the accuracy of the map. The fact that
the same incentive mechanisms that encourage truthful
reporting also provide good incentives for sensor place-
ment is an important feature that allows decentralized
management of large community sensing systems.
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