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Abstract. We consider federated learning settings with independent,
self-interested participants. As all contributions are made privately, partic-
ipants may be tempted to free-ride and provide redundant or low-quality
data while still enjoying the benefits of the FL model. In Federated
Learning, this is especially harmful as low-quality data can degrade the
quality of the FL model.
Free-riding can be countered by giving incentives to participants to pro-
vide truthful data. While there are game-theoretic schemes for rewarding
truthful data, they do not take into account redundancy of data with
previous contributions. This creates arbitrage opportunities where partic-
ipants can gain rewards for redundant data, and the federation may be
forced to pay out more incentives than justified by the value of the FL
model.
We show how a scheme based on influence can both guarantee that
the incentive budget is bounded in proportion to the value of the FL
model, and that truthfully reporting data is the dominant strategy of the
participants. We show that under reasonable conditions, this result holds
even when the testing data is provided by participants.
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1 Incentives in Federated Learning

Federated Learning [1] allows a set of participants to jointly learn a predictive
model without revealing their data to each other. In this chapter, we assume that
a coordinator communicates with the participants and distributes the Federated
Learning (FL) model equally to all of them. Participants can contribute actual
data or changes that improve the current FL model based on the data, which
may be more compact.

There is then clearly an incentive to free-ride: a participant can benefit from the
joint model without contributing any novel data, for example by fabricating data
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that fits the current model, or using random noise. We call such strategies that
are not based on actual data heuristic strategies. A participant may also wrongly
report its data, for example by obfuscating it to achieve differential privacy [10].
There is no way for the coordinator to tell if data has been manipulated, and
given that it can strongly degrade the FL model, it is important to protect the
process against it. Even worse, a malicious participant could intentionally insert
wrong data and poison the FL model; we do not consider malicious behavior in
this chapter and assume that participants have no interest in manipulating the
FL model.

Free-riding can avoided by incentives that compensate for the effort of a con-
tributing participant. For federated learning, an incentive scheme will distribute
rewards to participants in return for providing model updates, data, or other
contributions to the learning protocol. Incentives should influence two behavior
choices faced by participants:

– observation strategy: make the necessary effort to obtain truthful data and
compute the best possible model update, rather than use a heuristic strategy
to make up data with no effort, and

– reporting strategy: report the data truthfully to the coordinator, rather than
perturb or obfuscate it.

We call participant behavior that is truthful in both regards truthful behavior.
We observe that both properties can be satisfied if contributions are rewarded
according to their influence [9] on the FL model. Influence is defined formally as
the effect of the contribution on the loss function of the FL model:

– if the contribution is a model update, the improvement in the loss function
through applying the update;

– if the contribution is data, the improvement in the loss function after adding
the data to the training set.

For simplicity, we will refer to both cases as the contribution of a data point,
even if data is often supplied in batches or in the form of a model update. The
incentives for a batch of data is given as the sum of the incentives for the data
points contained in it.

Clearly, influence is a good measure from the point of view of the coordinator,
since it rewards contributions that make the FL model converge as fast as possible.
The total expense is bounded by a function of the total reduction in the loss
function, and so the coordinator can obtain the necessary budget for the rewards.
It also allows participants to decide on their level of privacy protection and accept
the corresponding reduction in their reward.

On the other hand, it is less clear what behavior such incentives induce in
the participants. In this chapter, we answer the following questions:

– We show that when the coordinator evaluates contributions on truthful test
data, the dominant strategy for participants is to invest effort in obtaining true
data and to report it accurately. Thus, it avoids both aspects of free-riding.
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– We show that participants will provide their data as soon as possible, so that
there is no risk of participants holding back data hoping that it will gain
higher rewards later.

– We show that when some or all of the testing data is supplied by particpants,
truthful behavior is a Bayes-Nash equilibrium of the induced game. Further-
more, if a minimum fraction of the testing data is known to be truthful,
truthful reporting is the dominant strategy for participants.

2 Related work

The topic of learning a model when the input data points are provided by strategic
sources has been the focus of a growing literature at the intersection of machine
learning and game theory. A related line of work has been devoted to the setting
in which participants are interested in the outcome of the estimation process
itself, e.g., when they are trying to sway the learned model closer to their own
data points [6,8]. Our setting is concerned with the fundamental question of
eliciting accurate data when data acquisition is costly for the participants, or
when they are not willing to share their data without some form of monetary
compensation.

A similar question to the one in our chapter was considered by [5] , where
the authors design strategy-proof mechanisms for eliciting data and achieving a
desired trade-off between the accuracy of the model and the payments issued.
The guarantees provided, while desirable, require the adoption of certain strong
assumptions. The authors assume that each participant chooses an effort level,
and the variance of the accuracy of their reports is a strictly decreasing convex
function of that effort. Furthermore, these functions need to be known to the
coordinator. In this chapter, we only require that the cost of effort is bounded by
a known quantity. Furthermore, our strategy space is more expressive in the sense
that, as in real-life scenarios, data providers can choose which data to provide
and not just which effort level to exert.

Our ideas are closely related to the literature of Peer Consistency mechanisms
[11] such as the Bayesian Truth Serum or the Correlated Agreement mechanism,
or the Peer Truth Serum for Crowdsourcing [16]. The idea behind this literature
is to extract high-quality information from individuals by comparing their reports
against those of randomly chosen peers. This approach has been largely successful
in the theory of eliciting truthful information. The main problem with using such
mechanisms for federated learning is that they also pay for redundant data that
does not improve the model. If multiple participants submit exactly the same
data, the coordinator would still have to pay the full reward to each of them.
Thus, it is not possible to bound the budget of the coordinator.

Recently, Liu and Wei [2] proposed an incentive scheme for federated learning
based on the correlated agreement mechanism [17]. However, it also does not
satisfy budget-balance and allows arbitrage where participants gain rewards by
replicating the existing FL model.

More generally, the issue of economics of federated learning and the important
of budget-balance has recently been discussed in [3], where particular attention is
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paid to keep participants from dropping out of the federation due to insufficient
rewards.

Finally, [13] recently considered a setting where the value of the provided data
is determined via the Shapley value. Their approach does not support rewarding
data incrementally, as is required for federated learning, but computes rewards
only when all data has been received. However, it is worth noting that they
consider the influence approximation of [14] for approximating the Shapley value.

3 Incentives based on Influence

In our setting, there is a coordinator that wants to learn a model parametrized
by θ, with a non-negative loss function L(z, θ) on a sample z = (x, y). The
samples are supplied by a set A of participants, with participant i providing point
zi = (xi, yi). To simplify the exposition, we consider the contribution of a single
data point as the most general case, but the results in this chapter also apply to
batches of data points or model updates based on batches of data points, as is
common in federated learning.

We will denote by A−i the set of participants excluding participant i. Given
a set of test data Z = {zi}ni=1, the empirical risk is R(Z, θ) = 1

n

∑
i L(zi, θ). The

coordinator uses a scoring function s(z) to determine the reward it pays for the
data z.

3.1 Computing Influence

Fig. 1. The setting in this chapter: self-interested strategic participants observe data,
translate it into model updates, and report to a coordinator. The coordinator maintains
and broadcasts a joint FL model. To evaluate the quality of the contributions, the
coordinator constructs an independent test set via other participants, a database, or
other forms of prior knowledge. The coordinator scores model updates and rewards
participants according to their influence on this test set.

The influence [9] of a data point is defined as the difference in loss function
between the model trained with and without the data point. We generalize the
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notion to data sets and model updates as the analogous difference between loss
functions. We consider payments to participant i that are proportional to the
influence I(D) of its contribution D: payi(D) = αI(D), where α is the same for
all participants.

Computing loss functions requires access to a set of test data. In many
federated learning settings, the coordinator actually never has access to data,
but only model updates. In this case, it needs to ask participants to perform this
evaluation. Figure 1 illustrates the process.

We distinguish two cases: the easier case where the center has access to
independent and trusted test data, where we show that truthful behavior is
a dominant strategy, and the more complex case where the center needs the
cooperation of the strategic participants to perform this evaluation, and truthful
behavior is a game-theoretic equilibrium.

Influence can be approximated [14] quite accurately (see the example in
Figure 2) and this can greatly speed up computation and allows to protect
privacy using multiparty computation [4]. Good approximations exist for linear
and logistic regression models, and to some extent also for complex models such
as neural networks. This approximation is based on taking the Taylor expansion
of the loss function and down-weighting a training point to remove it from the
dataset in a smooth manner. We find that taking only the first term of the
expansion is not sufficient because then the expected influence of a point over
the whole training set will be 0. Taking up to the second term of the expansion
is sufficient for accuracy, speed, and good theoretical properties. Figure 2 shows
that this second-order approximation for a linear regression example tracks the
true influence extremely closely.

3.2 Budget Properties of Influence

In general, the share of an additional data point in a model based on n− 1 earlier
datapoints is 1/n. Many loss functions, such as the variance or the cross entropy,
decrease as 1/n with the number of samples. The influence is proportional to the
derivative of the loss function and thus decreases as 1/n2.

Figure 2 shows an example of the actual decrease of influence on a regression
model. We can observe two phases: an initial phase, where additional data is
necessary to make the model converge, and a converged phase where the expected
influence is close to zero. We believe that this is because the FL model is never a
perfect fit to the data, but will always leave some remaining variance. Once this
variance is reached, additional data will not help to reduce it, and no further
incentives should be given to provide such data.

Using influence as an incentive has the following properties:

– the expected reward is either close to 0, or it decreases as 1/n2. Therefore, it
is always best for participants to report data as early as possible.

– the expected reward for redundant or random data is zero.
– for the coordinator, the total expense is proportional to the decrease in the

loss function.
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Fig. 2. Empirically observed decrease of influence on a typical regression model as more
and more data is collected. Each batch corresponds to 100 data points. Both the exact
influence and the 2nd order approximation are shown.

The last point has to be put in relation to the value of the model. If the value
f of the model is increasing linearly with its loss R, i.e. f(R) = C−βR, choosing
α = β means that the budget matches the cost exactly.

If the value increases faster, to avoid a loss the coordinator will have to choose
α to be at most the average β over the loss reduction it intends to achieve. This
means that the cost of obtaining the data may exceed its value during the initial
phase, and the coordinator has to take some risk during the initial phase. If, on
the other hand, it increases more slowly, the coordinator runs no risk, but may
stop collecting data before the minimum variance is reached.

3.3 Assumptions

Our approach differs from other chapters on this topic in that we make relatively
few assumptions about participant beliefs and effort models. We consider the
participant and coordinator models as follows:

Participant: In the federated learning model, participants obtain data and
contribute it to the federation, often in the form of a model update. For generality,
we consider that participants contribute data points in some form.

Observation strategy: Each participant i must decide to either exert effort ei(o) to
observe data point o, exert 0 effort and obtain a data point based on some heuristic,
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for example a random or constant point3 When the participant decides to make
an observation, it knows the expected effort δi over the distribution of observable
data points. This value can vary amongst the participants. An observation
oi = g(φi|ψi), where φi is drawn from some shared underlying distribution Φ, ψi
is a hidden latent random variable drawn from a shared distribution Ψ , and g is
a function that applies noise to φi given ψi. The participants believe that their
noise is unbiased, formulated as follows: ∀φ ∈ Φ, ∀i, EΨ [g(φ|ψi)] = φ.
Reporting strategy: Besides the observation, a participant also has to decide on a
reporting strategy r(o) that specifies what data it reports to the coordinator. We
would like the participant to report truthfully, where r is the identity function.
However, a participant may also report differently, for example because it hopes
to obtain a higher reward by a non-truthful report, or because it wants to protect
the privacy of its data by adding noise or otherwise misreporting it.

Finally, we assume that participants are free to opt-out, and not provide any
data nor obtain any reward. This strategy would in particular be adopted when
the rewards are insufficient to cover the cost of effort.

The coordinator will employ a scoring function s(·) to provide rewards to the
participants, dependent on their reports; we postpone details about this scoring
function until the next section. The scoring function is chosen to influence the
strategy choices of participants among different options. Participants are rational,
so they will choose the strategy that maximizes their expected utility.

We make one further assumption about participant beliefs. For this we
introduce the notion of risk-monotonicity, which is the notion that a model learner
is monotonic in the true risk over the number of data points in the training set.
While [15] show that not all empirical risk minimizers are risk-monotonic in the
number of training points, their counter-examples are adversarially constructed.
As participants have no prior information about the distributions, we consider it
reasonable to make the following formal assumption:

The participants believe the coordinator’s model is risk-monotonic with
respect to the true distribution Φ, i.e. a participant expects that a point
drawn from Φ will not worsen the model’s expected risk when evaluated
on Φ.

Coordinator: The coordinator wishes to construct a model because they believe
they can extract some profit from this model. We assume the profit is a function
f(R) of the model risk. The expected utility of the coordinator is then the profit
f(R)− c(R), where c(R) is the expected cost of constructing a model with risk
R. We assume that f(R) is monotonically decreasing, as discussed in Section 3.2.

Given a profit function f(R), the utility of the coordinator is at least f(R)−∑
i αcInfl(oi). The coordinator needs to choose αc to ensure that this profit is

positive. At the same time, αc determines the reward paid to participants, and
must at least cover their cost of participation. Otherwise, participants may decide

3 It is straightforward to extend the results in this chapter to a setting where increased
effort results in increased quality, but this would require to characterize the exact
relation which depends on the application.
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to opt out, and there is a risk that the federation could be left with too little
data. Therefore, the coordinator must tune αc to achieve both budget balance
and sufficient participation.

For evaluating the model risk R, we consider two cases: (a) the coordinator
may possess an independent test set, or (b) it may have to acquire a test set from
participants.

4 Game-theoretic Incentives for Participants

As the score of the data provided by a participant depends on the data provided
by others, the choice of participant strategies is a game-theoretic problem.

Following standard game-theoretic terminology, we will say that a participant
supplying point rj is best responding to the set of strategies r−j chosen by the
other participants, if the strategy that it has chosen maximizes the quantity
E[s(rj |r−j)−ei(rj)] over all possible alternative reports r′j , where the expectation
is over the distribution of reports of the other participants. We will say that a
vector of strategies (i.e., a strategy profile) (r1, . . . , rn) is a Bayes-Nash equilibrium
(BNE) if, for each participant j, rj is a best response. If rj is a best response
to any set of strategies of the other players, we will say that rj is a dominant
strategy.

An incentive scheme is a function that maps data points zi to payments
s(zi); intuitively, a good incentive scheme should overcome the cost of effort (as
otherwise participants are not incentivized to submit any observations) but also,
crucially, to reward based on the effect that the data point zi has on improving
the accuracy of the trained model. For this reason, we will design incentive
schemes via the use of influences. Let Z−j = {zi}i 6=j and let

θ̂ = arg min
θ
R(Z, θ) and θ̂−j = arg min

θ
R(Z−j , θ).

We will assume that the coordinator is in possession of an test set T = {zk}.
Then the influence of zj on the test set is defined as

Infl(zj , T, θ) = R(T, θ̂−j) −R(T, θ̂).

We will simply write Infl(zj), when T and θ are clear from the context. Then,
we can design the following incentive scheme:

– Case 1: The coordinator possesses an independent test set: s(ri) = αc ·
Infl(ri)− ε, where ε > 0 is a very small value.

– Case 2: The coordinator draws its test set from the reported data; they are
rewarded in the same way as data used for the FL model, but not used in
learning the model.

4.1 Using independent and truthful test data

For the lemmas and theorems in this section, we make the following assumptions:
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– Observation noise is unbiased and non-trivial, as stated in the previous
section.

– participants have no prior knowledge of the true distribution Φ or the model
of the coordinator.

The proofs of the following statements are omitted due to lack of space, but are
included in the supplement.

Theorem 1. A participant having made no observation of the data believes the
expected influence of any particular report to be 0.

Proof. Let D be the domain of all possible sets of reports. The coordinator
defines some non-negative loss function L : D → R+

0 , which serves as a blackbox
that incorporates both training and testing. Given some set of reports {z} ∈ D,
define B(L|{z}) as the random variable that represents the ex-ante belief of
a participant on the value of L({z}). Lack of knowledge about both L and Φ
induces the relation B(L|{z}0) = B(L|{z}1) for all {z}0, {z}1 ∈ D. For some
report r and some set of other reports {z}, the influence score is defined as
infl({z}, r) = L({z})−L({z}∪r). Then a participant believes that its score will be
B(L|{z})−B(L|{z}∪r). In expectation, this score is E[B(L|{z})−B(L|{z}∪r)] =
E[B(L|{z})]− E[B(L|{z} ∪ r)] = 0

Lemma 1. A participant Ai believes that, almost certainly, given a finite number
of reports, EΦ[EΨ [Infl(oi|{oj}j 6=i)]] > 0 when evaluated on {ztest} with ztest in
the distribution of observations.

Proof. Define B0(EΦ[EΨ [L(ztest, z)]]) = EΦ[L(z′test, z)]+a(g, Ψ) as a participant’s
belief about EΦ[EΨ [L(ztest, z)]], where z′test is drawn from Φ, and a is unknown,
but does not depend on L because the participants have no knowledge of L,
and therefore no way of knowing if L introduces some bias given Ψ . It similarly
follows that a participant’s belief B1(EΨ [Infl(oi|{oj}j 6=i)] = Infl(φi|{oj}j 6=i) +
b(g, Ψ). Therefore, it is only necessary to show that EΦ[Infl(φi|{oj}j 6=i)] > 0
when evaluated on z′ ∈ Φ. This follows directly from participant assumptions
about risk-monotonicity.

The following theorem asserts that as long as the test set consists of truthful
information, the dominant strategy for participants is to either be truthful of opt
out. In the case where the coordinator possesses an independent test set, this
condition is satisfied trivially.

Theorem 2. Suppose that (a) the noise is unbiased and non-trivial, (b) the
participants do not have knowledge of the distribution or the model and (c) the
test set consists of truthful information. Then,

– for any αc > 0, for every participant the dominant strategy is either being
truthful or dropping out, and

– there is a large enough αc such that for every participant, almost certainly,
being truthful is the dominant strategy.
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Proof. By Theorem 1, we have that αcInfl(hi) = 0, therefore the expected
utility of heuristic reporting is negative. By Lemma 1, the participant be-
lieves that EΦ[EΨ [Infl(oi|{oj}j 6=i)]] > 0 almost certainly, therefore if αc >

δi
EΦ[EΨ [Infl(oi|{oj}j 6=i)]] , then the participant believes he or she will receive a positive

utility almost certainly. If this inequality is not satisfied, the participant will
receive a negative utility regardless of the choice of strategy and will opt out.
There is always a large enough αc such that the inequality is satisfied and the
participant will be truthful.

We have thus shown that our incentive scheme induces truthful behavior as the
dominant strategy for all participants that do not opt out, and that furthermore
given a large enough payment no participants will opt out.

4.2 Using participant reports as test data

We have shown in Theorem 2 that under some reasonable assumptions, truthful
reporting is a dominant strategy for the participants. However, this requires a
truthful test set, which might not always be at the disposal of the coordinator.
There are also good reasons for the coordinator to collect test data from par-
ticipants: it allows it to cover a broader spectrum of cases, or to accomodate
concept drift. We first observe that, even if we collect the reports as test data,
truthful behavior is a Bayes-Nash Equilibrium:

Theorem 3. Suppose that (a) the noise is unbiased and non-trivial, (b) the
participants do not have knowledge of the distribution or the model and (c) the
test set consists of data provided by participants under the incentive scheme.
Then,

– for any αc > 0, there is a Bayes-Nash Equilibrium where every participant is
either truthful or drops out, and

– there is a large enough αc such that, almost certainly, there is a Bayes-Nash
Equilibrium where all participants are truthful.

Proof. If we assume that all participants that do not drop out are truthful, then
the test set is made up of truthful data. By Theorem 2, truthful behavior is the
best response for all participants, so it forms a Bayes-Nash equilibrium.

An equilibrium is a weaker notion than dominant strategies, so it is interesting
to ask if the coordinator can make truthful behavior the dominant strategy even
when test data has to be obtained from participants. Clearly, if all test data is
supplied by participants, this is not possible: consider the example where all but
one participant i submit test data according to a synthetic model M ′, but only
participant i observes true data according to a different true model M . Then it
will be better for participant i to report incorrectly according to model M ′, so
truthful behavior cannot be a dominant strategy.

However, it turns out that if only a fraction of the test data is supplied
by untrusted agents, we can place a bound on this fraction so that truthful
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behavior is still a dominant strategy. To obtain such a result, we need to exclude
consideration of the cost of obtaining data, since we do not know what is the
relative cost of obtaining true vs. heuristic data, and focus on the reporting
strategy only.

Let Φ1 be the distribution of truthful reports and Φ2 be the distribution of
heuristic reports. We assume they describe an input-output relationship such that
Φ(x, y) = q(x)p(y|x), and q1(x) = q2(x). This assumption merely asserts that the
data we are collecting is drawn from the same domain regardless of the distribution
of the output. Distributions Φ1 and Φ2 determine, in expectation, models M1

and M2 respectively. Let us now define Ri,j as the expected risk of model Mi

evaluated on distribution Φj , and let Ii,j be the influence of a datapoint sampled
from distribution Φi on a test point from distribution Φj . Using the standard
mean-squared-error loss function, we have that Ri,j = Rj,j + E[(Mi −Mj)

2]. We
then have the following:

Theorem 4. As long as the test data contains at most a fraction

p <
I2,2/R2,2

I1,1/R1,1 + I2,2/R2,2
+

I1,1 − I2,2
r(I1,1/R1,1 + I2,2/R2,2)

of non-truthful reports, truthful reporting remains the dominant strategy for
participants that do not choose to opt out.

Proof. Now suppose we sample x1 points from Φ1 and x2 points from Φ2 to form
our training set {z}, and call the resulting distribution Φc. Now note that as
R1,2 −R1,1 = r, and influence is proportional to the empirical risk, the influence
of a datapoint following M1 but tested on a sample from Φ2 is decreased as
follows:

I1,2 = I1,1(1− r/R1,1)

and so the expected influence when evaluating on the mixture (x1, x2) is

I1,c = I1,1(1− r/R1,1
x2

n
) = I1,1(1− pr/R1,1)

I2,c = I2,2(1− r/R2,2
x1

n
) = I2,2(1− r(1− p)/R2,2)

To ensure that reporting samples from Φ1 carry a higher expected reward,
we want to satisfy:

I1,c > I2,c

I1,1 − I2,2(1− r/R2,2) > pr(I1,1/R1,1 + I2,2/R2,2)

p <
I1,1 − I2,2(1− r/R2,2)

r(I1,1/R1,1 + I2,2/R2,2)

=
I2,2/R2,2

I1,1/R1,1 + I2,2/R2,2
+

I1,1 − I2,2
r(I1,1/R1,1 + I2,2/R2,2)
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If I2,2/R2,2 = I1,1/R1,1, the first term is = 1/2. The second term is a correction:
if I1,1 > I2,2, more non-truthful reports are tolerated as the influence when
improving the first model is stronger, otherwise it is the other way around.

A coordinator could use this result to decide how much test data to obtain
from participants. As the underlying phenomenon could evolve over time, it is
advantageous for the coordinator to include some contributed data in its test set
so that such evolution can be tracked. To evaluate the bound, the coordinator
could compare the statistics of scores obtained with trusted test data with those
obtained using contributed test data, and thus estimate the parameters I, as
well as the empirical risks of models fitted to the trusted and contributed data
to estimate the parameters R. It could thus obtain a stronger guarantee on the
quality of the test data.

5 Conclusion

When federated learning is extended to allow self-interested participants, free-
riding participants that submit low-quality or redundant data can have significant
negative impact on the result. Thus, it is important to provide incentives that
reward truthful data providers for their effort.

As the economics of a federated learning system can be complex ([3]), it is
important that the incentive scheme works with a bounded budget that is tied
to the quality of the resulting data. We have shown that a scheme based on
influence satisfies this criterion. At the same time, we have shown that it induces
the desired truthful behavior as dominant strategies in participants, and that
this holds even when some of the testing data is obtained from non-truthful
participants.

An important question for future work is how to compute the incentives while
maintaining privacy of the data. In the current scheme, a participant has to
submit its contribution, whether data or a model update, before the influence
can be computed. For limited cases, we have already shown how to compute an
influence approximation privately ([4]), but the general question remains open.
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