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ABSTRACT
AI applications find widespread use in a variety of domains. For

further acceptance, mostly when multiple agents interact with the

system, we must aim to preserve the privacy of participants infor-

mation in such applications. Towards this, the Yao’s Millionaires’

problem (YMP), i.e., to determine the richer among twomillionaires’

privately, finds relevance. This work presents a novel, practical, and

verifiable solution to YMP, namely, Secure Comparison Protocol

(SCP). We show that SCP achieves this comparison in a constant

number of rounds, without using encryption and not requiring

the participants’ continuous involvement. SCP uses semi-trusted

third parties - which we refer to as privacy accountants - for the

comparison, who do not learn any information about the values.

That is, the probability of information leak is negligible in the

problem size. In SCP, we also leverage the Ethereum network for

pseudo-anonymous communication, unlike computationally expen-

sive secure channels such as Tor. We present a Secure Truthful

cOmbinatorial aUction Protocol (STOUP) for single-minded bidders

to demonstrate SCP’s significance. We show that STOUP, unlike

previous works, preserves the privacies relevant to an auction even

from the auctioneer. We demonstrate the practicality of STOUP

through simulations.
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1 INTRODUCTION
Multi-agent based AI applications such as distributed constraint
optimization, e-commerce and e-voting mechanisms have grown in

popularity. Consequently, the need for privacy of the information
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exchange within these platforms has become imperative and is an

area of active research [16, 20, 29, 38–40]. The participants (e.g., bid-

ders), being strategic agents, prefer the preservation of their private
information (e.g., bids) as well as (often) their public identities from

other competitive agents. Such anonymity of information may also

increase participation.

With blockchain gaining momentum, AI applications are now

being conducted through computational logic over distributed plat-

forms such as the Ethereum blockchain network [44]. Specifically,

Ethereum allows for smart contracts, which are computer protocols

intended to digitally facilitate, verify, or enforce the negotiation or

performance of a contract [43]. Since these are on a publicly dis-

tributed ledger, they are open to any interested agent while making

sensitive information (e.g., bids) and the execution of payments

publicly verifiable, transparent, and pseudo-anonymous. Conse-

quently, an agent’s private information is publicly available for

anyone to see and use. This further necessitates the need for secure

(privacy-preserving) AI applications over a blockchain.

At the heart of several AI applications mentioned above is the

comparison of two numeric values [9]. Therefore, to build a proto-

col that preserves each agent’s private information, we require a

method for comparing these values while preserving their privacy.

In the literature, this challenge is referred to as Yao’s Millionaires’
Problem (YMP) [45] of securely determining the richer between two

different agents and has been extensively studied.

YMP is as follows: Two agents (millionaires),Alice and Bob are in-
terested in determining the richer among them – without revealing

their actual wealth. Motivated by this, in this paper, we introduce

a novel method for comparing two integers 𝑥,𝑦 ∈ Z securely, i.e.,

a practical solution to YMP designed for secure multi-agent ap-

plications. We refer to our method as Secure Comparison Protocol
(SCP). In SCP, we assume that there are approved cryptographic
accountants in the system, which assist the central server (CS) in
determining whether 𝑥 ≥ 𝑦 or not. We show that the probability

with which CS (or any other party) learns any information regard-

ing 𝑥 or 𝑦, in SCP, is negligible. Further, we show that the integer

comparison in SCP is verifiable, by leveraging zero-knowledge proof
(ZKP) techniques.

To securely deploy these AI applications over blockchain, we

present SCP over the Ethereum network
1
. To the best of our knowl-

edge, we are the first to introduce a dedicated and verifiable solution,

in constant rounds, for YMP over the blockchain. We demonstrate

1
SCP may also be deployed using computationally expensive secure channels like

Tor [10]. By coupling blockchain with an asymmetric encryption scheme, we ensure

efficient pseudo-anonymous communication.

https://doi.org/10.1145/3486622.3493937
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Homomorphic Garbled Continuous User Dependent

Encryption Circuit Involvement on Input size

[7, 11, 13, 18, 24] ✓ ✗ ✓ ✓
[1] ✗ ✗ ✗ ✗
[27] ✗ ✓ ✗ ✓
[2, 6] ✗ ✓ ✓ ✓
[5] ✓ ✗ ✗ ✓
[46] ✓ ✗ ✗ ✓
SCP ✗ ✗ ✗ ✗

Table 1: Comparing existing YMP protocols with SCP. “✗" is
desirable.

the significance of SCP by presenting a Secure, Truthful cOmbina-

torial aUction Protocol (STOUP) for single-minded bidders.

With STOUP, we show how to sort and compare the bidding

information of agents without revealing them, with the help of

accountants. The accountants do not learn of any bidding infor-
mation, i.e., bid values and the items which are bid for. Towards

this, we assume that each agent’s bundle size is ≥ 2. Otherwise, the

items in a bidder’s bundle may get revealed to the auctioneer in

our protocol. Note that in STOUP, the accountant’s role is only to

assist the auctioneer in determining winners and their payments

when the bid values and items are hidden.

Adversary Model. As standard in solutions for Yao’s Millionaires’

Problem (eg., [3, 14, 23, 24]), in this paper, we assume that CS is semi-
honest or honest-but-curious. This implies that while CS can observe

and cipher any information, it will not deviate from the defined

protocol. However, unlike much of the previous works, we assume

that all other agents, i.e., Alice, Bob, accountants, bidders, etc., are
strategic-but-curious. That is, these agents do not deviate from the

protocol but may potentially submit/send incorrect information to

gain advantage or to increase their utility. Additionally, we also

assume that agents do not collude. This assumption is standard in

the literature for existing secure AI applications [16, 20, 38].

2 RELATED LITERATURE
Yao’sMillionaires’ Problem. Yao [45] introduces YMP alongwith

its first solution. However, the presented solution is exponential

in time and space. Thereafter, several protocols improve over the

seminal solution [2, 6, 15].

The authors in [17] present a two-round protocol which is poly-

nomial while [3, 23] provide a single-round solution which is linear

in the order of the length of the integers to be compared. For their

solutions, [17] uses complex bitwise operators while [3, 23] use

Paillier homomorphic encryption and zero-knowledge proof. The

computational cost per comparison in [3] is (4𝑏 + 1)(log 𝑝) + 6𝑏
and in [23] is 5𝑏(log 𝑝) + 4𝑏 − 6, where 𝑏 is the bit number and 𝑝

modulus of the Paillier scheme. Recently, [24] proposes a single-

round solution using Paillier encryption and vectorization method.

However, the solution is of the order 2(𝑠 + 2)log 𝑝 , where 𝑠 is the
vector dimension.

Because of space constraint, we place SCP with some of the

plethoras of protocols available for YMP using Table 1. To the best

of our knowledge, the existing protocols comprise one or more of

(i) garbled circuits, (ii) partial-homomorphic encryption, and (iii)

continuous involvement of the parties during execution. Note that,

[1] is limited as it is only applicable for integers in the range of≈ 2
60
;

whereas SCP works for any range. Consequently, these protocols

can not be adapted towards designing lightweight and secure AI

applications. Aggravating this limitation is that the number of

comparisons needed for such AI applications is significant – in the

order of polynomials or more. One can not assign trusted third

parties for the operations as it may reveal the owners’ private

information.

Combinatorial Auctions. A combinatorial auction, where the

parties can bid for combination(s) of items, yields a higher revenue

(lesser costs) than selling (buying) the items individually. E.g., wire-

less spectrum auctions [25] or allocating airport landing take-off

slots [34]. Combinatorial auctions have an exponential number

of possible valuations for each party and are NP-Complete [35].

Hence, we focus on a single-minded case. In this, the parties are

interested in a specific bundle of items and obtain a particular value

if they get the whole bundle (or any super-set) and zero other-

wise. Unfortunately, even single-minded combinatorial auctions,

being NP-Hard [36], are solved approximately. In particular, [22]

proposes a polynomial-time algorithm for single-minded combina-

torial auction, which gives

√
𝑚-approximate winner and payment

determination payment rule, which we refer to as ICA-SM (Incen-

tive Compatible Approximate auctions for Single-minded bidders).

Here,𝑚 denotes the number of items being auctioned.

Secure Auctions. Micali and Rabin [26] solve single-item and

multi-unit auctions while preserving the privacy of the bids us-

ing Pedersen commitment, but reveal the bid information to the

auctioneer after the end of the bidding phase. Similarly, [28, 31]

present single and multi-unit auctions that reveal the bid-topology

to third parties. The authors in [4] give a practical, multi-unit auc-

tion that does not reveal any private information to a third party,

even after the auction closes. Parkes et al. [32] use clock-proxy auc-

tion to solve a privacy-preserving combinatorial auction, revealing

private information to the auctioneer after the end of the clock

phase. The protocol is linear in the size of the original computa-

tional time, from exponential. Suzuki and Yokoo [37] propose a

privacy-preserving, secure combinatorial auction without reveal-

ing any bid information to a third party. The authors use dynamic

programming, and [19] extends the work to add verifiability. The

protocol, however, is exponential in the size of the number of bids.

The protocol is thus impractical even for a small number of bids.

We leverage SCP to present a secure combinatorial auction pro-

tocol, namely STOUP. To the best of our knowledge, ours is the first

work to present an efficient, secure combinatorial auction protocol

that preserves the bidding information’s privacy, even from the

auctioneer. We omit proofs of the results presented because of space

constraints. These are available in our extended version: [8].

3 SECURE COMPARISON PROTOCOL (SCP)
We first summarize the cryptographic background required for SCP.

3.1 Cryptographic Background
We leverage the following known cryptographic techniques to

construct our solution for YMP. Let 𝑝 and 𝑞 denote large primes

such that 𝑞 divides 𝑝 − 1, with 𝐺𝑞 as the unique subgroup of Z∗𝑝 of

order 𝑞, and 𝑔 as a generator of 𝐺𝑞 .
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Pedersen Commitment [33]. Let 𝑔 and ℎ = 𝑔𝑎 (mod 𝑝) be ele-

ments of 𝐺𝑞 such that 𝑙𝑜𝑔𝑔ℎ is intractable, where 𝑎 ∈ Z𝑞 is the

secret key. Then, a Pedersen commitment scheme is the commit-

ment of a message 𝑥 ∈ Z𝑞 , with a random help value 𝑟 ∈ Z𝑞 , as,
𝐶 (𝑥, 𝑟 ) = 𝑔𝑥ℎ𝑟 (mod𝑝).We denote 𝑎𝑖 as a party 𝑖’s secret key, with

ℎ𝑖 = 𝑔𝑎𝑖 (mod 𝑝).
Random Number Representation [26]. A random number rep-
resentation of a number 𝑥 , 𝑅(𝑥), is a representation of 𝑥 as the pair

(𝑢, 𝑣) where 𝑢, 𝑣 ∈ Z𝑞 and 𝑥 = (𝑢 + 𝑣) mod 𝑞 .̧ Note that, to find

𝑅(𝑥) of a number 𝑥 , any party can randomly choose 𝑢 and then

pick 𝑣 = (𝑥 − 𝑢) mod 𝑞.

Value Comparison [26]. For two integers 𝑥,𝑦 < 𝑞/2,

𝑥 − 𝑦 ≤ 𝑞/2 ⇐⇒ 𝑥 ≥ 𝑦 and 𝑥 − 𝑦 > 𝑞/2 ⇐⇒ 𝑥 < 𝑦 (1)

Therefore, to compare 𝑥 and 𝑦, we only need to check whether

𝑥 − 𝑦 ≤ 𝑞/2.
Zero-knowledge Proof [12]. Zero-knowledge proof (ZKP) is a
method by which a party, called a Prover (P), is able to convince

another party, called a Verifier (V), that it knows some information

𝜔 , without revealing 𝜔 (or any other information related to 𝜔).

Formally, P must convinceV that ∃𝜔 : R(𝑙, 𝜔) = 1 for a relation

R, an input 𝑙 (fromV) and a witness𝜔 from P. A ZKP must satisfy:

• Completeness: If ∃𝜔 : R(𝑙, 𝜔) = 1, then an honest P convincesV
except with negligible probability, i.e., with probability at-most

≪ 1/2.
• Soundness: If �𝜔 : R(𝑙, 𝜔) = 1, a dishonest P ′ convincesV with

negligible probability, i.e., with probability at-most≪ 1/2.
• Zero-knowledge. If ∃𝜔 : R(𝑙, 𝜔) = 1, thenV does not learn any

information about 𝜔 except with negligible probability, i.e., with

probability at-most≪ 1/2.
Notations. We utilize the following notations for SCP as well as

throughout the paper.

• 𝐶 (𝑅(𝑥)) represents the Pedersen commitment of 𝑥 as 𝑅(𝑥) =
(𝑢, 𝑣), i.e.,𝐶 (𝑅(𝑥)) denotes the pair of commitments

(
𝐶 (𝑢, 𝑟 ),𝐶 (𝑣, 𝑟 ′)

)
.

• 𝐴
𝑥−→ 𝐵 denotes a party𝐴 submitting a value 𝑥 to a smart contract,

such that 𝑥 is encrypted using 𝐵’s public key.

• H(·) denotes a collision-resistant hash function (e.g., [30]).

• 𝐸𝐴 (𝑥) represents the ElGamal encryption [41] of 𝑥 using party

𝐴’s private key.

3.2 SCP: Procedure
We now describe SCP which securely compares two integers 𝑥 and

𝑦 owned by two agents, Alice and Bob. Towards this, let | |𝑥 | | denote
the number of bits required to represent the integer 𝑥 . Now, in SCP,

we assume that there exists a central server (CS) that coordinates
the comparison. Note that, as shown later, the CS only aids the

comparison and only learns additional information about the values

of 𝑥 and𝑦 with negligible probability. We assume that 𝑥,𝑦 <
𝑞

2·𝑑𝑚𝑎𝑥
,

where 𝑑𝑚𝑎𝑥 ∈ (1, 2( | |𝑞 | |−1) ). In SCP, we require Alice and Bob to

privately select an integer 𝑑𝐴𝑙𝑖𝑐𝑒 , 𝑑𝐵𝑜𝑏 ∈ (1, 𝑑𝑚𝑎𝑥 ], respectively.
Let, 𝐷 = (𝑑𝐴𝑙𝑖𝑐𝑒 ⊕ 𝑑𝐵𝑜𝑏 ). Observe that, we have | |𝐷 | | < | |

𝑞
2
| |. For

readability, we also denote | |𝑑𝑚𝑎𝑥 | | as d.
Before describing SCP, we present the following claim. For this,

let𝑅(𝑥) = (𝑢1, 𝑣1), 𝑅(𝑦) = (𝑢2, 𝑣2), 𝑣𝑎𝑙1 = (𝑢1−𝑢2) mod 𝑞, and 𝑣𝑎𝑙2 =

SCP Procedure.
Let, (𝑛1

𝐴𝑙𝑖𝑐𝑒
, 𝑛2

𝐴𝑙𝑖𝑐𝑒
) and (𝑛1

𝐵𝑜𝑏
, 𝑛2

𝐵𝑜𝑏
) be Alice and Bob’s pair of

distinct assigned accountants, respectively.

(1) Alice generates 𝑅(𝑥) = (𝑢1, 𝑣1) and broadcasts 𝐶 (𝑅(𝑥)) while
Bob generates𝑅(𝑦) = (𝑢2, 𝑣2) and broadcasts𝐶 (𝑅(𝑦)); through
SC.

(2)

Alice

𝑢1,𝑟1,𝑑𝐴𝑙𝑖𝑐𝑒−−−−−−−−−→ 𝑛1
𝐴𝑙𝑖𝑐𝑒

and Alice

𝑣1,𝑟
′
1
,𝑑𝐴𝑙𝑖𝑐𝑒−−−−−−−−−→ 𝑛2

𝐴𝑙𝑖𝑐𝑒

Bob

𝑢2,𝑟2,𝑑𝐵𝑜𝑏−−−−−−−−→ 𝑛1
𝐵𝑜𝑏

and Bob

𝑣2,𝑟
′
2
,𝑑𝐵𝑜𝑏−−−−−−−−→ 𝑛2

𝐵𝑜𝑏

(3)

𝑛1
𝐴𝑙𝑖𝑐𝑒

𝑢1−−→ 𝑛1
𝐵𝑜𝑏

and 𝑛2
𝐴𝑙𝑖𝑐𝑒

𝑣1−−→ 𝑛2
𝐵𝑜𝑏

𝑛1
𝐵𝑜𝑏

𝑑𝐵𝑜𝑏−−−−→ 𝑛1
𝐴𝑙𝑖𝑐𝑒

and 𝑛2
𝐵𝑜𝑏

𝑑𝐵𝑜𝑏−−−−→ 𝑛2
𝐴𝑙𝑖𝑐𝑒

(4)

𝑛1
𝐴𝑙𝑖𝑐𝑒

𝐸𝐶𝑆 (𝑑𝐴𝑙𝑖𝑐𝑒 ⊕ 𝑑𝐵𝑜𝑏 )−−−−−−−−−−−−−−−−−→ 𝑛1
𝐵𝑜𝑏

𝑛2
𝐴𝑙𝑖𝑐𝑒

𝐸𝐶𝑆 (𝑑𝐴𝑙𝑖𝑐𝑒 ⊕ 𝑑𝐵𝑜𝑏 )−−−−−−−−−−−−−−−−−→ 𝑛2
𝐵𝑜𝑏

(5)

𝑛1
𝐵𝑜𝑏

𝑋=𝐸𝐶𝑆 (𝑑𝐴𝑙𝑖𝑐𝑒 ⊕ 𝑑𝐵𝑜𝑏 · (𝑢1−𝑢2) mod 𝑞)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝐶𝑆

𝑛2
𝐵𝑜𝑏

𝑌=𝐸𝐶𝑆 (𝑑𝐴𝑙𝑖𝑐𝑒 ⊕ 𝑑𝐵𝑜𝑏 · (𝑣1−𝑣2) mod 𝑞)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝐶𝑆

(6) CS then checks the following,

if (𝑋 + 𝑌 ) mod 𝑞 = 0 return “equal”
if (𝑋 + 𝑌 ) mod 𝑞 < 𝑞/2 return “ > ”

else return “ < ”

Figure 1: SCP Procedure

(𝑣1−𝑣2) mod 𝑞 with 𝑥,𝑦 <
𝑞

2·𝑑𝑚𝑎𝑥
. The claim is a simple rearrange-

ment of the result presented in Eq. 1.

Claim 3.1. (i) 𝐷 · (𝑣𝑎𝑙1 + 𝑣𝑎𝑙2) mod 𝑞 ≤ 𝑞/2 ⇐⇒ 𝑥 ≥ 𝑦; and
(ii) 𝐷 · (𝑣𝑎𝑙1 + 𝑣𝑎𝑙2) mod 𝑞 > 𝑞/2 ⇐⇒ 𝑥 < 𝑦.

3.2.1 Protocol. For SCP, we consider a smart contract SC which

allows agents to post and get relevant information. Fig. 1 presents

the procedure for SCP, while Fig. 2 presents the procedure for

ZKP of SCP. Note that, for the ZKP, CS acts as P. Trivially, SCP is

independent of the length of the binary representation of 𝑥 or 𝑦

and hence is of constant order (𝑂 (1)) of computation rounds. We

illustrate the protocol timeline of SCP with Fig. 3.

3.3 SCP: Security and Privacy Analysis
SCP (Fig. 1) preserves privacy of the values 𝑥 and 𝑦 from CS since

CS only knows the values
2 (𝐷 · 𝑣𝑎𝑙1) mod 𝑞 and (𝐷 · 𝑣𝑎𝑙2) mod 𝑞.

It is trivial to see that CS shall not be able to find anything about

the values of (𝑢1, 𝑣1) and (𝑢2, 𝑣2). In addition, every accountant

only has one component of the other party’s (Alice or Bob) value,

2
This follows as the values (𝐷 · 𝑣𝑎𝑙𝑖 ), ∀𝑖 ∈ {1, 2} are reduced over mod 𝑞. For the

modular multiplication of 𝑎 · 𝑏 (mod 𝑞) , where 𝑞 is a prime, and no information of 𝑎

is known, all possible values of 𝑏 are equally likely.
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ZKP for SCP Procedure.
(1) CS acts as P.V submits 𝛽, 𝑔𝛽 (mod 𝑝) through SC, with 𝛽 ∈

Z𝑞 as the random challenge.

(2) The accountants, 𝑛1
𝐴𝑙𝑖𝑐𝑒

and 𝑛2
𝐴𝑙𝑖𝑐𝑒

, send the values

𝐶 (𝑢1, 𝑟1)𝐷 , 𝐶 (𝑢2, 𝑟2)−𝐷 , 𝐶 (𝑣1, 𝑟 ′
1
)𝐷 , and 𝐶 (𝑣2, 𝑟 ′

2
)−𝐷 , using

SC. Note that the exponentiation is modular and over 𝑝 . Here,

𝐷 = 𝑑𝐴𝑙𝑖𝑐𝑒 ⊕ 𝑑𝐵𝑜𝑏 .
(3) P computes, for some private 𝛼 ∈ Z𝑞 :

𝑐1 = 𝐶 (𝑢1, ·)𝐷𝐶 (𝑢2, ·)−𝐷𝐶 (𝑣1, ·)𝐷𝐶 (𝑣2, ·)−𝐷 (mod 𝑝)

𝑐2 = 𝑔 (𝛼+𝛽) mod 𝑞
(mod 𝑝)

𝑐3 = 𝑐1 · 𝑐2 (mod 𝑝)

(4) P submits the following values using SC.

𝑐4 = H(𝑐1, 𝑐2, 𝑐3)
𝑐5 = (𝛼 + 𝛽 + 𝑋 + 𝑌 ) mod 𝑞.

(5) P, similar to 𝑋 and 𝑌 , i.e., Figure 1, gets the values,

𝐻1 mod 𝑞 =
(
𝐷 · (𝑟1 + 𝑟 ′1)

)
mod 𝑞

𝐻2 mod 𝑞 = −
(
𝐷 · (𝑟2 + 𝑟 ′2)

)
mod 𝑞.

(6) V verifies:

𝑐3
?

= 𝑐1 · 𝑐2 (mod 𝑝)

𝑐4
?

= H(𝑐1, 𝑐2, 𝑐3)

𝑐3
?

= 𝑔𝑐5 · ℎ𝐻1 mod 𝑞

𝐴𝑙𝑖𝑐𝑒
· ℎ𝐻2 mod 𝑞

𝐵𝑜𝑏
(mod 𝑝)

}
(2)

(7) V accepts that the comparison was correctly computed only

if Eq. 2 holds.

Figure 2: ZKP for SCP Verification.

which implies that it can not either find out anything about the

other party’s value.

However, as d is publicly known, the value 𝑋 +𝑌 leaks an upper
bound of the value 𝑥 − 𝑦. We now show that the probability of

finding the actual value of 𝑥 − 𝑦 from 𝑋 + 𝑌 is negligible through
the following results.

Theorem 3.1. In SCP, the probability of guessing the actual value
of 𝑥 − 𝑦 is 1

2
d , i.e., negligible in d.

For the proof, observe that in SCP, the value of 𝐷 is never re-

vealed. This implies that the probability of guessing the value of

𝑥 −𝑦 correctly is equal to the probability of guessing 𝐷 ∈ (1, 𝑑𝑚𝑎𝑥 ].
Since 𝑑𝑚𝑎𝑥 requires d bits to represent, the theorem follows. The

following corollary also follows directly from Theorem 3.1.

Corollary 3.1. In SCP, the probability of finding the actual value
of 𝑥 (𝑦) from 𝑋 +𝑌 , with the knowledge of the other value 𝑦 (𝑥) is 1

2
d ,

i.e., negligible in d.

Probability Threshold. Observe that the agents Alice and Bob know

one of the terms in 𝐷 = 𝑑𝐴𝑙𝑖𝑐𝑒 ⊕ 𝑑𝐵𝑜𝑏 , but not the value itself.

These agents also know one of the values, i.e., 𝑥 or 𝑦. This implies,
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Initialization SCP (Figure 1) ZKP for SCP (Figure 2)

Figure 3: Illustration of the timeline in SCP. Here, Al: Alice,
Bo: Bob, and 𝑁 : set of assigned accountants.

from Corollary 3.1, that the probability with which these agents

can guess the value of 𝑥 or 𝑦 from 𝑋 + 𝑌 is
1

2
d . Thus in SCP, the

threshold of the probability with which a party can guess the value

of 𝑥 (𝑦) is 1

2
d , which is negligible in d.

ZKP in SCP.We now show that the ZKP described in Fig. 2 satisfies

the three properties required for a ZKP, i.e.,

• Completeness. It is trivial to see that if Eq. 2 holds, then the com-

parison was correct. That is, a honest P will be able convinceV
that the comparison was correct.

• Soundness. If Eq. 2 does not hold, i.e., Alice and/or Bob misre-

ported their values, then there can not be a case where P can find

other values except for (𝑋 + 𝑌 ) mod 𝑞, (𝐻1) mod 𝑞 and (𝐻2) mod 𝑞

for which Eq. 2 holds, with high probability. This is because Ped-

ersen commitments are computationally binding
3
.

• Zero-knowledge. Observe that, similar to the argument given for

SCP V does not gain any knowledge of the committed values

or the help values through the values (𝑋 + 𝑌 ) mod 𝑞, 𝐻1 mod 𝑞,

and 𝐻2 mod 𝑞. Moreover, the value 𝐶 (·)𝑧 mod 𝑝 does not reveal

any information about the value of 𝑧, at any stage of the proce-

dure, because of the hardness of the discrete-log problem. □

We now use SCP introduced for secure comparison of two inte-

gers to present a novel, secure combinatorial auction for the single-

minded case that preserves the privacy of each agent’s bidding

information even after the bidding phase is over, namely, STOUP.

4 STOUP
We first summarize our auction setting.

4.1 Auction Background
We are considering a situation where an auctioneer (𝐴𝑈 ), the seller

itself, is interested in selling𝑀 = {1, . . . ,𝑚} indivisible items and

there are 𝐵 = {𝑏1, . . . , 𝑏𝑛̂} (|𝐵 | = 𝑛̂ ≥ 2) interested and strategic

agents via a combinatorial auction. We assume there exists a set

3
This property also makes the comparison robust to any misreporting done by the

accountants. As we assume the accountants to be strategic-but-curious, they may

strategically misreport information. However, Fig. 2 will allow any V to detect the

misreporting. Thus, SCP (Fig.s. 1 and 2) is robust to any misreporting done by the

accountants.
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of privacy accountants 𝑁 , that can assist 𝐴𝑈 in determining the

winners and their payments. We denote the set consisting of every

participating agent in this protocol as 𝐴 i.e., 𝐴 = {{𝐴𝑈 } ∪ 𝐵 ∪ 𝑁 }.
Combinatorial auctions factor in the inter-dependency of the

values to an agent with respect to the different combinations possi-

ble i.e., each agent has a different preference for different subsets.

The valuation function 𝜗𝑏𝑖 describes these preferences ∀𝑏𝑖 ∈ 𝐵. In
absence of payments, the agent 𝑏𝑖 may boast about 𝜗𝑏𝑖 . We denote

its payment as 𝜎𝑏𝑖 . Formally, for each possible subset 𝑆 ∈ 2𝑀 , 𝜗𝑏𝑖 is

a real-valued function such that 𝜗𝑏𝑖 (𝑆) is the value an agent 𝑏𝑖 ob-

tains if he wins the subset 𝑆 . Also, if 𝜎𝑏𝑖 is the price paid by the agent

for the subset, then its utility is given by𝜓𝑏𝑖 (·) = 𝜗𝑏𝑖 (𝑆) − 𝜎𝑏𝑖 (·).

4.1.1 Cryptographic Properties in Auction. We now describe the

required cryptographic properties of an auction protocol.

• Non-repudiation. This deals with the inability of an auctioneer or

an agent to retract from their actions. Auction protocols must be

able to commit an agent to its bid and prove the exclusion of any

bid by the auctioneer.

• Verifiability. The public, including the agents, must be shown con-

clusive proof of the correctness of the auction protocol. The pro-

tocol must enforce correctness; an auctioneer should not present

valid proofs for invalid winners or incorrect payments.

• Privacy. An auction protocol should hide the bidding information

of an agent from the other participating agents. After the auction,

only the information revealed from the winning agents should be

known. The types of privacies relevant for an auction are defined

below. For this, let𝑊 be the set of winning agents.

Definition 4.1 (Agent Privacy). No agent should be able to
discover each others identity i.e., for an agent 𝑎 ∈ 𝐴 during the
auction and for an agent 𝑎 ∈ 𝐴 \𝑊 after the auction, no other
agent 𝑏 ∈ 𝐴 \ {𝑎,𝐴𝑈 } should know about 𝑎’s participation in the
auction.

Definition 4.2 (Bid Privacy). No agent should be able to know
any agent’s bid valuation i.e., the probability with which an agent
𝑎 ∈ 𝐴 \ {𝑏𝑖 } can guess agent 𝑏𝑖 ’s bid valuation 𝜗𝑏𝑖 is≪ 1/𝜗𝑏𝑖 .
Definition 4.3 (Bid-Topology Privacy). No agent should be
able to know any other agent’s bundle of items i.e., the probability
with which an agent 𝑎 ∈ 𝐴 \ {𝑏𝑖 } can guess the item bundle
𝑆𝑏𝑖 of an agent 𝑏𝑖 ∈ 𝐵 \ {𝑎} during the auction and of an agent
𝑏𝑖 ∈ 𝐵 \ {{𝑎} ∪𝑊 } after the auction is negligible in the number of
items being auctioned.

Let us say that the allocation of the items is determined by an

allocation rule k(·), which takes 𝜗 = (𝜗𝑏𝑖 , 𝜗−𝑏𝑖 ) as the input and
outputs who gets which items, where 𝜗−𝑏𝑖 denotes the set of val-
uations of agents not including 𝑏𝑖 . The payment rule is given by

𝜎 = (𝜎𝑏1 (·), 𝜎𝑏2 (·), . . . , 𝜎𝑏𝑛 (·)). Thus, an auction is characterized

by (k, 𝜎), an allocation rule and the payment rule. Given an auction,

we need the following game theoretic properties to be satisfied.

4.1.2 Game Theoretic Properties in Auction. The valuation of each

agent is its private information, i.e., hidden from every other agent

in the auction. This opens the door for any such agent to lie about

their valuations for their benefit. Thus, we look for auctions that

incentivize an agent to bid for its true valuation. In mechanism

design theory, such truthful auctions are called dominant strategy

Algorithm 1: ICA-SM Algorithm

(1) Initialization:
• Sort the agents according to the order :

𝜗∗
𝑏1
/
√
|𝑆∗
𝑏1
| ≥ 𝜗∗

𝑏2
/
√
|𝑆∗
𝑏2
| ≥ · · · ≥ 𝜗∗

𝑏𝑛̂
/
√
|𝑆∗
𝑏𝑛̂
|

• 𝑊 ← ∅
(2) For 𝑖 : 1→ 𝑛̂, if 𝑆∗

𝑏𝑖
∩ (∪𝑏 𝑗 ∈𝑊 𝑆∗

𝑏 𝑗
) = ∅ then𝑊 ←𝑊 ∪ {𝑏𝑖 }

(3) Output:
• Allocation: The set of winners is𝑊 .

• Payments: ∀𝑏𝑖 ∈𝑊,𝜎𝑏𝑖 = 𝜗∗
𝑏 𝑗
/
√
|𝑆∗
𝑏 𝑗
|/ |𝑆∗

𝑏𝑖
| where 𝑗 is the

smallest index such that 𝑆∗
𝑏𝑖
∩ 𝑆∗

𝑏 𝑗
≠ ∅, and for all 𝑘 < 𝑗 , 𝑏𝑘 ≠ 𝑏𝑖 ,

𝑆∗
𝑏𝑘
∩ 𝑆∗

𝑏 𝑗
= ∅. If no such 𝑗 exists then 𝜎𝑏𝑖 = 0.

incentive compatible (DSIC). Further, an auction is ex-post individu-
ally rational (IR) if every agent 𝑏𝑖 always gets non-negative utility,
i.e., the difference in the items it wins with the price it pays for

them is non-negative.

The allocation problem in this setting is NP-Complete. Also, it is
challenging to represent and communicate the valuation functions

of each agent (since these are exponential in size). Thus, we look

for much simpler cases of auctions, such as the single-minded case.

4.1.3 The Single-Minded Case. These are auctions wherein agents

are interested in a single specific bundle of items and get a scalar

value if they get this whole bundle (or any super-set) and get zero

value for any other bundle. Formally,

Definition 4.4. A single-minded valuation function is a function
in which there exists a bundle of items 𝑆∗ and a value 𝜗∗ such that
𝜗 (𝑆) = 𝜗∗, ∀𝑆 ⊇ 𝑆∗ and 𝜗 (𝑆) = 0 for all other 𝑆 . Here, a single-
minded bid is the pair (𝑆∗, 𝜗∗).

As the allocation problem, in this case, is NP-Hard [22], we look

at algorithms that can solve this approximately.

4.1.4 Incentive Compatible approximation Algorithm (ICA-SM) [22].
Algorithm 1 describes ICA-SM, which is a greedy algorithm that

solves the allocation problem for single-minded case with 𝑛̂ agents,

𝑚 items, 𝜗𝑏𝑖 and 𝑆𝑏𝑖 as agent 𝑏𝑖 ’s bid valuation and preferred bun-

dle of items, with 𝑊 as the set of winners approximately. ICA-

SM is computationally efficient, incentive compatible and is

√
𝑚-

approximate [22].

Definition 4.5 (Trustworthy Implementation). An auction
protocol that provides non-repudiation and verifiability while preserv-
ing agent, bid, and bid-topology privacy and being dominant strategy
incentive compatible and individually rational is a trustworthy im-
plementation of an auction.

4.2 STOUP: Protocol
In STOUP, 𝐴 is a set of agents wherein 𝐴𝑈 is the seller itself. All

arithmetic operations (except the payments) are modulo 𝑝 for the

commitments and modulo 𝑞 for the values to be committed and

the help values. Further, 𝐴𝑈 acts as the CS. As aforementioned, we

assume that𝐴𝑈 is honest-but-curious while the bidders and the set

of accountants strategic-but-curious.

Item Bundle. In STOUP, an agent 𝑏𝑖 submits its item bundle S𝑏𝑖 ,
consisting of commitments of its preferred items at least once as
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Protocol 1: STOUP
procedure Authentication Phase

Each agent 𝑎 ∈ 𝐴 \ {𝐴𝑈 } gives its public id’s to 𝐴𝑈
𝐴𝑈 assigns each agent 𝑎 a secret identifier 𝑖𝑑𝑎

𝐴𝑈 generates a random 𝑖𝑑 for each item

𝐴𝑈 randomly assigns

(
𝑛1
𝑖𝑑𝑏𝑖

, 𝑛2
𝑖𝑑𝑏𝑖

)
∈ 𝑁 to each 𝑖𝑑𝑏𝑖 ∈ 𝐵

end procedure
procedure Bidding Phase

Each bidder 𝑖𝑑𝑏𝑖 ∈ 𝐵 submits BT𝑖𝑑𝑏𝑖 to SC

Each bidder 𝑖𝑑𝑏𝑖 ∈ 𝐵 sends

(
𝑢, 𝑟,𝑑𝑖𝑑𝑏𝑖

)
to 𝑛1

𝑖𝑑𝑏𝑖
and

(
𝑣, 𝑟 ′, 𝑑𝑖𝑑𝑏𝑖

)
to

𝑛2
𝑖𝑑𝑏𝑖

for 𝑤𝑖𝑑𝑏𝑖
and S𝑖𝑑𝑏𝑖

with SC as described in Fig. 1

end procedure
procedure Winner Determination Phase

𝐴𝑈 determines – in co-ordination with the assigned accountants –

the set of the winning bidders𝑊 consisting of each winner’s identifier,

and calculates payments as defined in Algorithm 1

𝐴𝑈 submits𝑊 and the payments with SC
end procedure

well as different commitments of some (or all) of their preferred

items randomly such that |S𝑏𝑖 | =𝑚, ∀𝑏𝑖 ∈ 𝐵.

Definition 4.6 (Item Bundle). An agent 𝑏𝑖 ’s item bundle is
defined as S𝑏𝑖 = {𝐶 ∪ 𝐷} where 𝐶 = {𝐶 (𝑅( 𝑗)) | ∀𝑗 ∈ 𝑆𝑏𝑖 } and
𝐷 = {𝐶 (𝑅(𝑘)) | ∀𝑘 ∈ 𝑆 ′

𝑏𝑖
},

where 𝑆 ′
𝑏𝑖

is the set of non-distinct items randomly chosen from

𝑆𝑏𝑖 such that |𝐶 | + |𝐷 | =𝑚.

Bid Tuple. With Definition 4.6, each bidder 𝑏𝑖 ∈ 𝐵 participates in

STOUP, by submitting the following bid tuple,

BT𝑏𝑖 =
〈
𝐶 (𝜗𝑏𝑖 ),𝐶 ( |𝑆𝑏𝑖 |),𝐶

(
𝑅(𝜗𝑏𝑖 /

√
|𝑆𝑏𝑖 |), S𝑏𝑖

〉
where𝑤𝑏𝑖 = 𝜗𝑏𝑖 /

√
|𝑆𝑏𝑖 |.

4.2.1 STOUP Protocol. For STOUP, similar to SCP, we consider

a smart contract SC which allows agents to post and get relevant

information. Protocol 1 illustrates STOUP with Figure 4 illustrating

the protocol flow. As we use SCP for winner(s) and payment(s)

determination, we require 𝑤𝑏𝑖 <
𝑞

2·𝑑𝑚𝑎𝑥
, ∀𝑏𝑖 . We next describe

how 𝐴𝑈 solves steps (1), (2) and (3) of Algorithm 1 in STOUP.

4.2.2 Bid Initialization. 𝐴𝑈 sorts the bids based on the values𝑤𝑖𝑑𝑏𝑖
∀𝑖𝑑𝑏𝑖 , using any comparison based sorting with the comparison

done through SCP (Fig. 1). For the winner and payment determi-

nation phase, the highest agent’s identifier is denoted as 𝑖𝑑𝑏1 , the

second highest agent’s as 𝑖𝑑𝑏2 , and so on. Let 𝐼 consist of the set

of identifiers {𝑖𝑑𝑏1 , . . . , 𝑖𝑑𝑏𝑛̂ }, S as the set of preferred item bun-

dles of every agent {S𝑖𝑑𝑏
1

, . . . , S𝑖𝑑𝑏𝑛̂
} and𝑊 as the set of winners

initialized to ∅.

4.2.3 Winner Determination. 𝐴𝑈 carries out winner determination

(Algorithm 1), in co-ordinationwith accountants. In this, the highest

agent is automatically selected, and its identifier is added to𝑊 . To

determine the other winners, 𝐴𝑈 compares every pair of item,

∀ 𝑖𝑑𝑏 𝑗
∈ 𝐼 \ {𝑖𝑑𝑏1 } with every 𝑖𝑑𝑏𝑘 currently in𝑊 , using Fig. 1.

Figure 4: Overview of STOUP

If 𝐴𝑈 does not find any identical pair of items for an agent 𝑖𝑑𝑏 𝑗

for every 𝑖𝑑𝑏𝑘 currently in𝑊 i.e., S𝑖𝑑𝑏𝑗
∩ (∪𝑘∈𝑊 S𝑖𝑑𝑏𝑘 ) = ∅, it adds

𝑖𝑑𝑏 𝑗
to𝑊 . Otherwise, it discards that agent and continues with the

next highest agent.

Note. As the set of items𝑀 is finite, i.e., there are only

(𝑚
2

)
distinct

combinations possible, 𝐴𝑈 can deterministically get the items, 𝑥

and 𝑦, being compared from the value 𝑥 −𝑦. By using SCP however,

the 𝐴𝑈 will get the value 𝑋 + 𝑌 . With this, if 𝑥 ≠ 𝑦, i.e., 𝑋 + 𝑌 ≠ 0,

all possible

(𝑚
2

)
combinations will be equally likely.

4.2.4 Payment Determination. The payments for every winner

𝑖𝑑𝑏𝑖 ∈ 𝑊 are as described in Algorithm 1. 𝐴𝑈 can find out an

agent 𝑖𝑑𝑏 𝑗
, ∀ 𝑖𝑑𝑏𝑖 ∈ 𝑊 , where 𝑗 is the smallest index such that

S𝑖𝑑𝑏𝑖
∩ S𝑖𝑑𝑏𝑗 ≠ ∅, and an agent 𝑖𝑑𝑏𝑘 for 𝑘 < 𝑗 , 𝑖𝑑𝑏𝑘 ≠ 𝑖𝑑𝑏𝑖 such

that S𝑖𝑑𝑏𝑘
∩ S𝑖𝑑𝑏𝑗 = ∅, similar to the procedure to the winner

determination described in Section 4.2.3. If such 𝑖𝑑𝑏 𝑗
and 𝑖𝑑𝑏𝑘 exists,

then 𝐴𝑈 asks the assigned accountant 𝑛1
𝑖𝑑𝑏𝑗

of 𝑖𝑑𝑏 𝑗
to calculate the

payment 𝜎𝑖𝑑𝑏𝑖
= 𝜗𝑖𝑑𝑏𝑗

/
√
|𝑆𝑖𝑑𝑏𝑗 |/|𝑆𝑖𝑑𝑏𝑖 |. The agent 𝑖𝑑𝑏 𝑗

opens its

commitment 𝐶 (𝑅(𝑤𝑖𝑑𝑏𝑗
)) for 𝑛1

𝑖𝑑𝑏𝑗
, securely. 𝐴𝑈 asks 𝑖𝑑𝑏𝑖 to open

its commitment for 𝐶 ( |𝑆𝑖𝑑𝑏𝑖 |), and sends the value to 𝑛1
𝑖𝑑𝑏𝑗

, which

calculates 𝜎𝑖𝑑𝑏𝑖
and sends it to 𝐴𝑈 . If no such 𝑖𝑑𝑏 𝑗

or 𝑖𝑑𝑏𝑘 exist,

then 𝜎𝑖𝑑𝑏𝑖
= 0.

5 STOUP: SECURITY AND PRIVACY
ANALYSIS

STOUP preserves non-repudiation since all the relevant information

is submitted on the blockchain, an append-only ledger.We now look

at verifiability and the nature of the privacy guarantees as provided

by STOUP. In this section, we denote the identifier 𝑖𝑑𝑏𝑖 ∈ 𝐵 as 𝑏𝑖
for simplicity of notation.

Verifiability. A prover P (𝐴𝑈 ) proves to a verifierV the correctness

of the order 𝑤𝑏1 ≥ · · · ≥ 𝑤𝑏𝑛̂
and the correctness of the compar-

isons for S𝑏𝑖 ∩ S𝑏 𝑗
= ∅, for each 𝑏𝑖 , 𝑏 𝑗 ∈ 𝐵. As all values as well as

item comparisons in STOUP, are done using SCP, the ZKP for the

comparisons follows the same as described in Fig. 2
4
.

4
As Pedersen commitments are computationally binding, V does not require multiple

proofs for different commitments of the same values. This significantly reduces the

computational time as compared to [26, 31].
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Privacy Analysis. STOUP provides the following privacy guarantees.

Proposition 5.1. STOUP preserves agent privacy.

Proposition 5.2. STOUP preserves each agent’s bid privacy.

Proposition 5.3. STOUP preserves bid and bid-topology privacy
from the accountants.

The proofs of the propositions follow simply by observing the

information exchange in STOUP.

Lemma 5.1. In STOUP, the probability with which 𝐴𝑈 can know
at least one item in agent 𝑏 𝑗 ’s bid-topology is 1/𝑠𝑏𝑖 . The probability
with which 𝐴𝑈 can know the complete bid-topology of an agent 𝑏 𝑗 is,

𝑃𝑏 𝑗
(𝑠𝑏𝑖 ) =

1

2
𝑚 − 2𝑚−𝑠𝑏𝑖 (3)

∀𝑏 𝑗 ∈ 𝐵 \𝑊 , such that 𝑏𝑖 ∈𝑊 is that agent for which 𝑆𝑏 𝑗
∩ 𝑆𝑏𝑖 ≠ ∅

in Step 2 of Algorithm 1, 𝑠𝑏𝑖 = |𝑆𝑏𝑖 | and𝑚 is the number of items.

The above lemma follows by observing that 𝐴𝑈 through the

bidding topology of the winners and its knowledge about which

agents have at least one item in common, can infer some informa-

tion about the bid-topology of an agent 𝑏 𝑗 ∈ 𝐵 \𝑊 . We then get

the probability defined in Eq. 3 by eliminating the subsets which

do not comprise the shared item.

From Eq. 3, STOUP preserves bid-topology privacy with high

probability when 𝑠𝑏𝑖 ≥ 2,∀𝑏𝑖 ∈𝑊 . For the analysis of the result,

observe that Eq. 3 can be written as,

𝑃𝑏 𝑗
(𝑠𝑏𝑖 ) =

1

2
𝑚 − 2𝑚−𝑠𝑏𝑖 =

2
𝑠𝑏𝑖

2
𝑠𝑏𝑖 − 1

(
1

2
𝑚

)
.

Thus, the increase in the probability with which 𝐴𝑈 can determine

the complete bid-topology of an agent with respect to randomly

guessing the complete bid-topology is by a constant factor, i.e., by
2
𝑠𝑏𝑖

2
𝑠𝑏𝑖 −1 . Assuming that each agent’s bundle size is ≥ 2, the worst

case follows when 𝑠𝑏𝑖 = 2. The probability that 𝐴𝑈 can know the

complete bid-topology of an agent 𝑏 𝑗 in this case is, 𝑃𝑏 𝑗
(𝑠𝑏𝑖 ) =

4

3

(
1

2
𝑚

)
, which is an increase by a factor

4

3
or an increase by 33.33%

of 𝑂 ( 1

2
𝑚 ) which is negligible in𝑚.

The probability result follows from the fact that at no point

during the auction or post-auction and ∀𝑏 𝑗 ∈ 𝐵 \𝑊 , the cardinality

of the preferred bundle of items of an agent𝑏 𝑗 , i.e., 𝑠𝑏 𝑗
, is revealed to

𝐴𝑈 in STOUP. Note that Eq. 3 does not hold for an auction protocol

that leaks the cardinality of 𝑆𝑏 𝑗
of an agent 𝑏 𝑗 . For instance, if 𝐴𝑈

knew that for an agent𝑏 𝑗 , 𝑠𝑏 𝑗
=𝑚, the probability with which agent

𝑏 𝑗 ’s bid-topology is leaked to 𝐴𝑈 would be 1. Lastly, combining

these privacy guarantees implies the following theorem.

Theorem 5.1. STOUP is a trustworthy implementation of ICA-SM.

6 STOUP: IMPLEMENTATION
To avoid any floating-point number, 𝐴𝑈 can announce at the start

of the auction, that𝑤𝑏𝑖 for every party 𝑏𝑖 , will have 𝑥-precision i.e.,

each value𝑤𝑏𝑖 will be significant up to 𝑥 decimal places.

SimulationAnalysis.We generate all auction instances as a CATS

file using the SATS command-line tool [42]. We calculate the opti-

mal social welfare by solving the winner determination problem

𝑛̂ 𝑚 Upper Bound

Optimal Welfare

Approximate Welfare
Time Taken (mins)

25 9 3 1.11905993576 2.1826

25 12 3.4641 1.1313692063 5.21355

25 15 3.8729 1.05711039103 11.103467

100 9 3 - 11.59642

100 12 3.4641 - 19.72178

100 15 3.8729 - 54.084380

Table 2: STOUP bound for 25 random auction instances

for the general single-minded case through FRODO 2.0 [21]. For

this calculation, the generated CATS file is parsed through the in-

built FRODO 2.0 parser to convert it to XCSP. The XCSP file is

then solved using optimal algorithms (such as DPOP, P-DPOP, etc.)

provided in FRODO 2.0 (through GUI or command line). Further,

the primes 𝑝 and 𝑞 are of size 1024 bits. We use a quad-core Intel

i5-4210U CPU with a 1.70GHz processor and 8GB RAM for the sim-

ulations. We also assume no latency in inter-party communication.

Consequently, the computational bottleneck of STOUP corresponds

to the verification of every value and item comparison, i.e., Fig. 2.

Table 2 presents the results. Note that, for large 𝑛̂ it is difficult to

calculate the optimal welfare
5
, as the problem is NP-Hard.

As stated, the mean time taken for STOUP in Table 2 includes the

verification of every value and item comparison done throughout

the execution of STOUP. However, the time consumed for verifi-

cation of the value and item comparisons is significantly less than

other secure auction protocols such as [31]. For comparison, a 100

bid single-item auction (i.e., 𝑛̂ = 100 and𝑚 = 1) takes approximately

2.51 hours in [31] (see [31, Table 2]), while a 100 bid single minded
combinatorial auction (i.e., 𝑛̂ = 100) even with𝑚 = 15, only takes

approximately 0.91 hours in STOUP. This decrease in the run-time

shows the practicality of SCP.

Gas Consumption. A smart contract is compiled as bytecode and

executed on the Ethereum Virtual Machine (EVM). EVM charges

a fee per computational step executed in a contract or transaction

to prevent deliberate attacks and abuse on the Ethereum network.

This fee is measured in terms of gas units.
The estimate depends on the post operations described in STOUP.

E.g., each bidder submitting its bid tuple and other required informa-

tion. Then, 𝐴𝑈 and the accountants further exchange information

on-chain. As the EVM uses 256-bit as default, changing 𝑝 does

not affect the estimate. Smaller 𝑝’s will result in greater gas con-

sumption, as the EVM “downscales" the values. Typically, the gas

associated with a post-operation for the uint256 variable in Solidity
is ≈ 62664. With this in STOUP, per comparison, 𝐴𝑈 will consume

313320 while each accountant consumes 501312. Each participating

bidder will at-worst consume (3 +𝑚) · 62664 gas units.

7 CONCLUSION
This paper observed that Yao’s Millionaires’ Problem (YMP) is fun-

damental to designing secure AI applications. Towards this, we

presented a practical, and verifiable solution to YMP, namely, SCP

5
Game-theoretically, for an auction, social welfare is the summation of all the winning

bidders’ valuations.
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(Figures 1 and 2). SCP uses third-party agents to securely compare

two integers that do not learn any information (Theorem 3.1). Sig-

nificantly, SCP achieves the comparison in constant time and one

execution of Figure 1.

To demonstrate the effectiveness of SCP, we use it to design

a Secure, Truthful cOmbinatorial aUction Protocol (STOUP) for

single-minded bidders (Protocol 1). STOUP preserves an agent’s

bid valuation as well as bid-topology at any time during the auc-

tion and post-auction, even to the auctioneer, unlike prior works.

The bid-topology is preserved with high probability when every

agent’s bundle size is ≥ 2, which is a fair assumption in practice for

combinatorial auctions (Lemma 5.1). We further believe that SCP

will find an application for other secure AI applications, including

different auctions, voting, distributed optimization, etc.
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