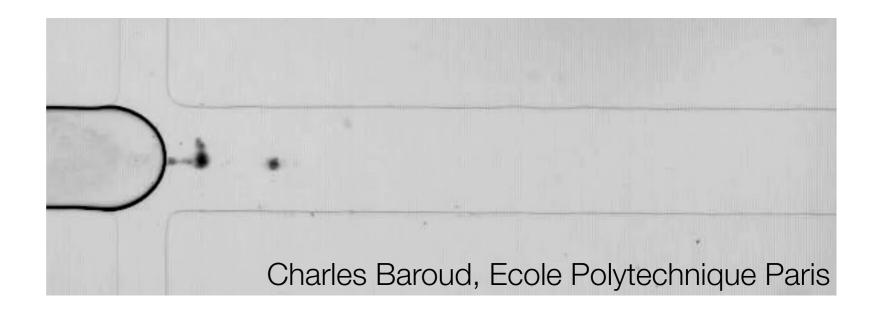


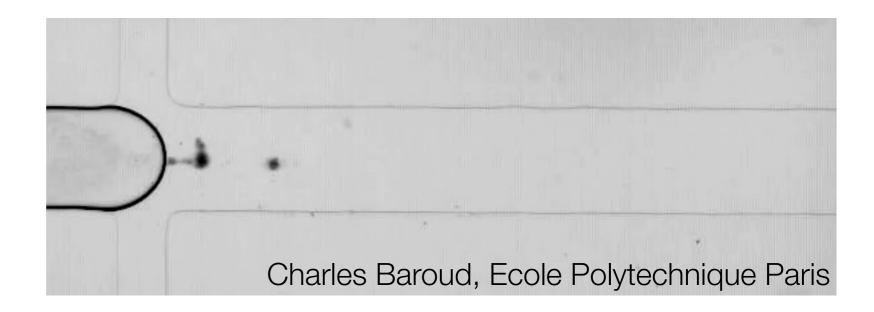
1. Workshop

December 11th 2015 TIPs Lab

Course contents

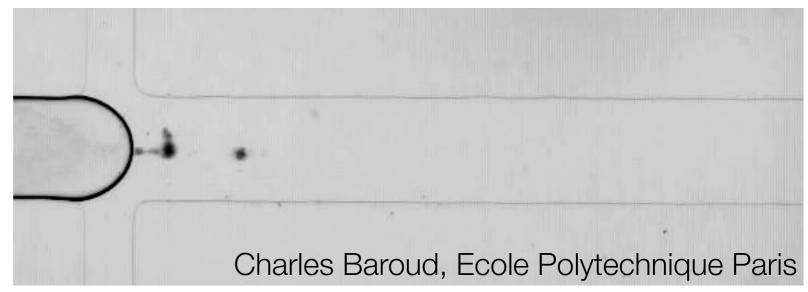
- 1. History and raison d'être
- 2. Get to know each other
- 3. Numerical method
- 4. User control
- 5. Reference information
- 6. Running examples
- 7. Your projects

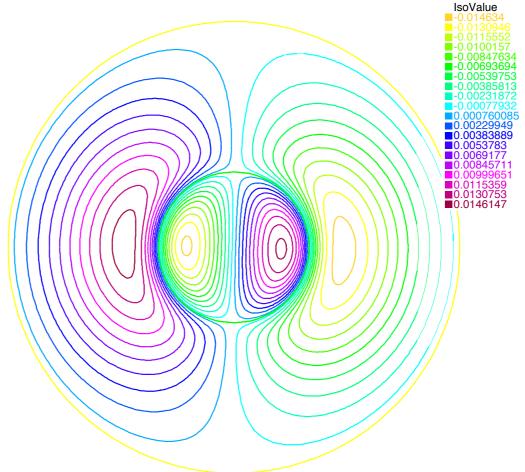




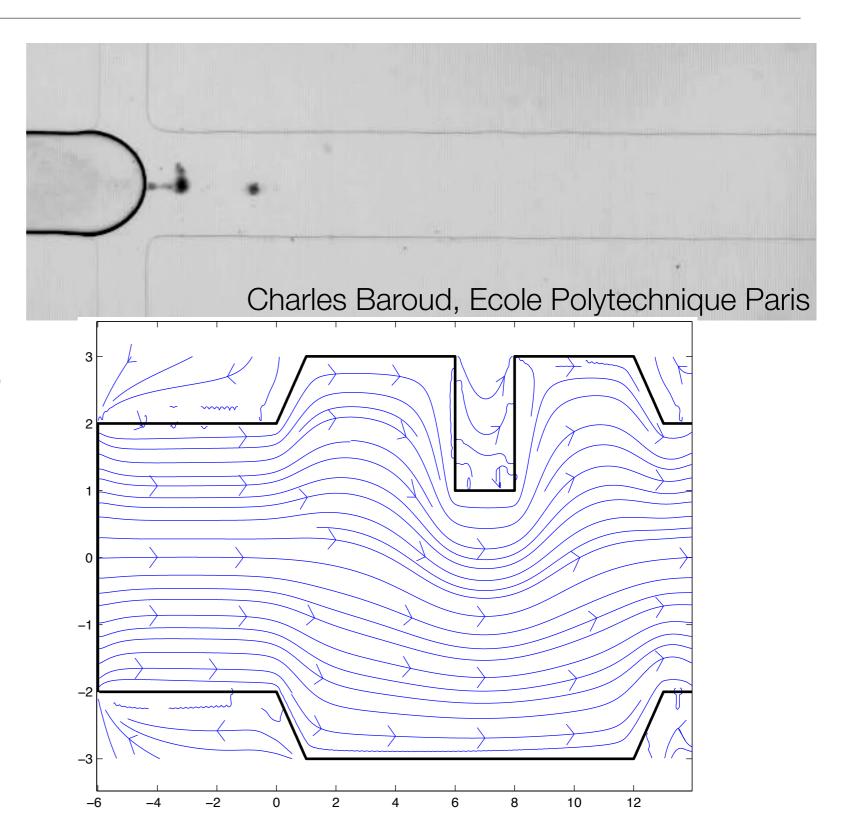
A solution scheme for complicated two phase flow?

FreeFem from UPMC

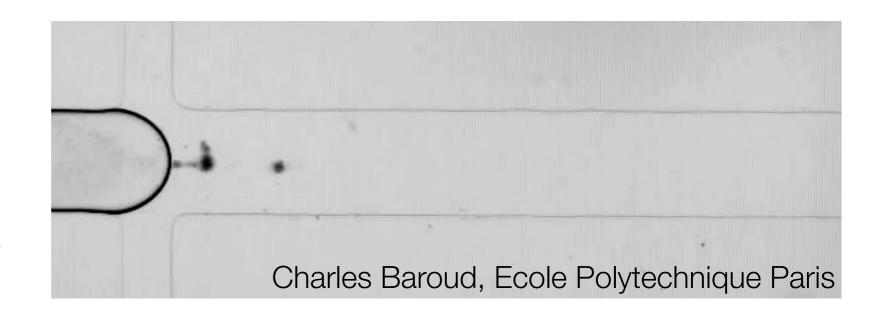




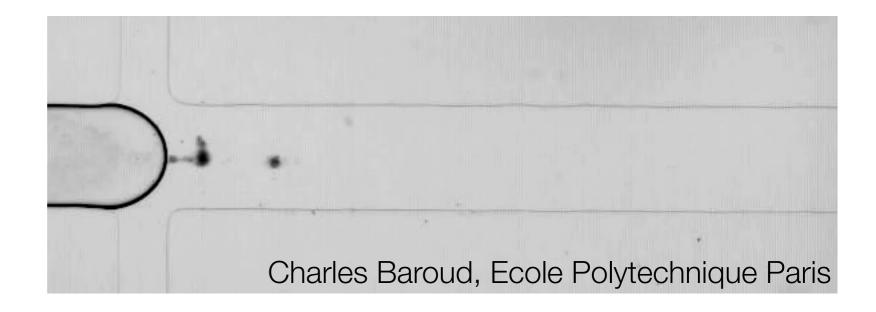
- FreeFem from UPMC
- Fundamental solutions



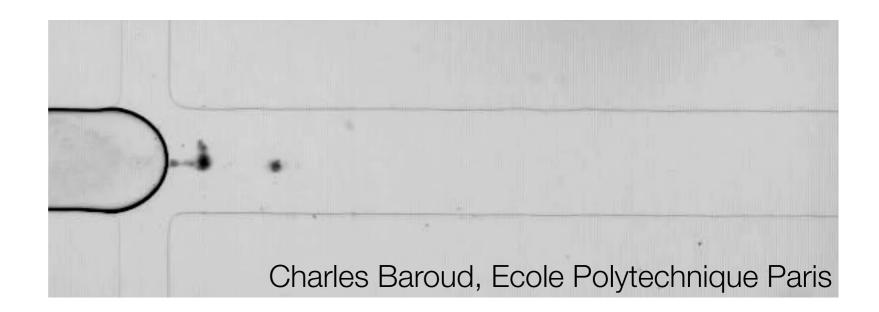
- FreeFem from UPMC
- Fundamental solutions
- USBEC (Matlab)



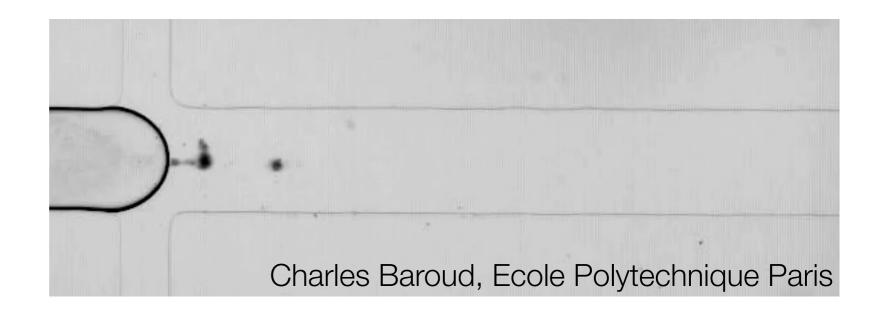
- FreeFem from UPMC
- Fundamental solutions
- USBEC (Matlab)
- ULAMBATOR (C++)



- FreeFem from UPMC
- Fundamental solutions
- USBEC (Matlab)
- ULAMBATOR (C++)



- FreeFem from UPMC
- Fundamental solutions
- USBEC (Matlab)
- ULAMBATOR (C++)
- ULAMBATOR 1.0



Demo

- Write/Modify an Ulambator script
- Launch it from the Terminal
- Analyze the output

Demo

- Write/Modify an Ulambator script
- Launch it from the Terminal
- Analyze the output

Tutorial 1 - Single phase flow in a bend

In this tutorial you will learn how to create fixed boundaries and to solve a single phase flow.

```
/*
Ulambator configuration file
Date: 09.12.2014
Version 0.7
*/
```

File Header

Together with included classes we add Ulambators matblc1.h and bndblock.h, which manage the geometry and generate the matrix that solves the posed problem.

```
#include "../source/matblc1.h"
#include "../source/bndblock.h"
#include <iostream>
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <math.h>
```

The program begins with int main and prints a greeting to the screen.

```
int main (int argc, char * const argv[]) {
    std::cout <<"Welcome to ULAMBATOR++ v.7\n";
    std::cout <<"Unsteady LAminar Microfluidic Boundary element Algorithm To Obtain Results\n";
    char* savedir;</pre>
```

Defining the geometry

The object bem is a boundary block, which works as a container that will manage all boundaries like fixed walls and liquid interfaces. Here we initialize the container to contain only a single boundary.

```
int number_of_boundaries = 1;
BndBlock bem = BndBlock(number_of_boundaries);
```

Two arrays are created. Position data of the boundaries in pos takes up to six values and boundary conditions bes usually take two values.

Tutorial 1 - Single phase flow in a bend

Demo

- Write/Modify an Ulambator script
- Launch it from the Terminal
- Analyze the output

In this tutorial you will learn how to create fixed boundaries and to solve a single phase flow.

```
Ulambator configuration file
 Date: 09.12.2014
 Version 0.7
                              ulambator - bash - 80×24
mn:ulambator nagel$ ./tutorial1.o
Welcome to ULAMBATOR++ v.7
                                                                                      try and
 Block 0 Panel 1 of 6 initialized.
 Block 0 Panel 2 of 6 initialized.
 Block 0 Panel 3 of 6 initialized.
 Block 0 Panel 4 of 6 initialized.
 Block 0 Panel 5 of 6 initialized.
 Block 0 Panel 6 of 6 initialized.
Check boundary 6 of 6
Matrix Block initiated with 1440 unknowns.
Problem parameters, Ca:1 lambda:0 R/H:8
Position 0 written for 0 object at time 0
VisMatlab Data written,
VTK Data written, VTK Geometry written.
Finished and Exiting
                                                                                      ults\n";
mn:ulambator nagel$
                                                                                      walls and
     int number of boundaries
     BndBlock bem = BndBlock(number_of_boundaries);
```

Two arrays are created. Position data of the boundaries in pos takes up to six values and boundary conditions bes usually take two values.

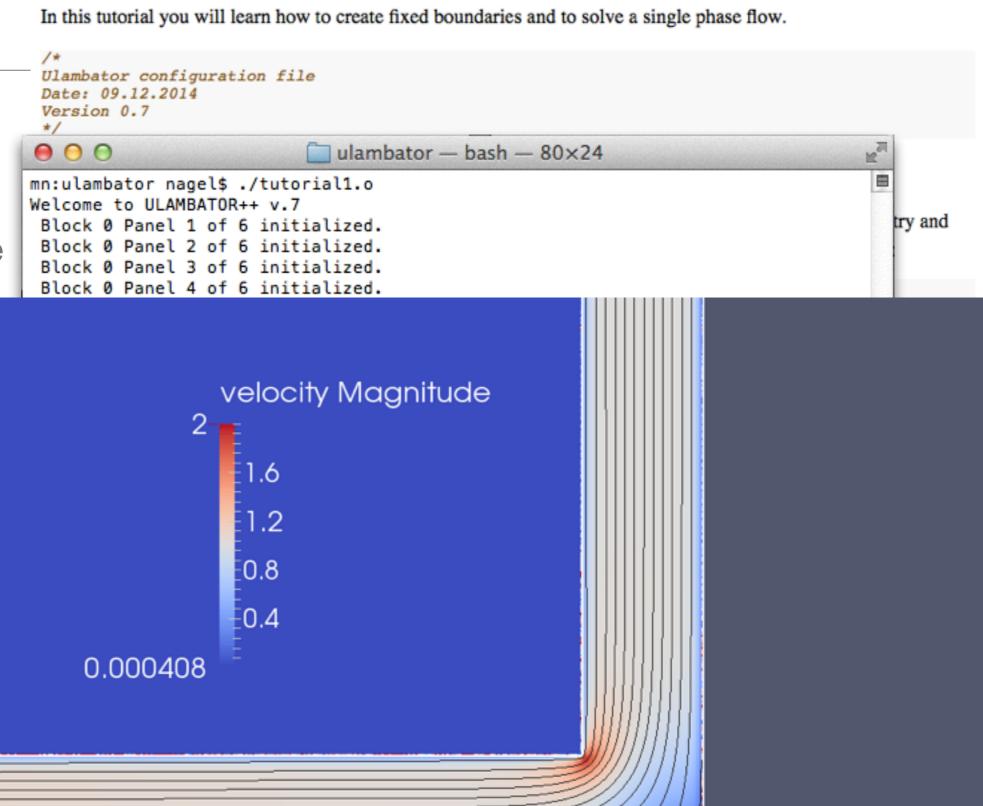
Tutorial 1 - Single phase flow in a bend

Demo

 Write/Modify an Ulambator script

 Launch it from the Terminal

 Analyze the output



Mutual expectations

Mutual expectations

This is the first workshop
 It's experimental in style and contents.

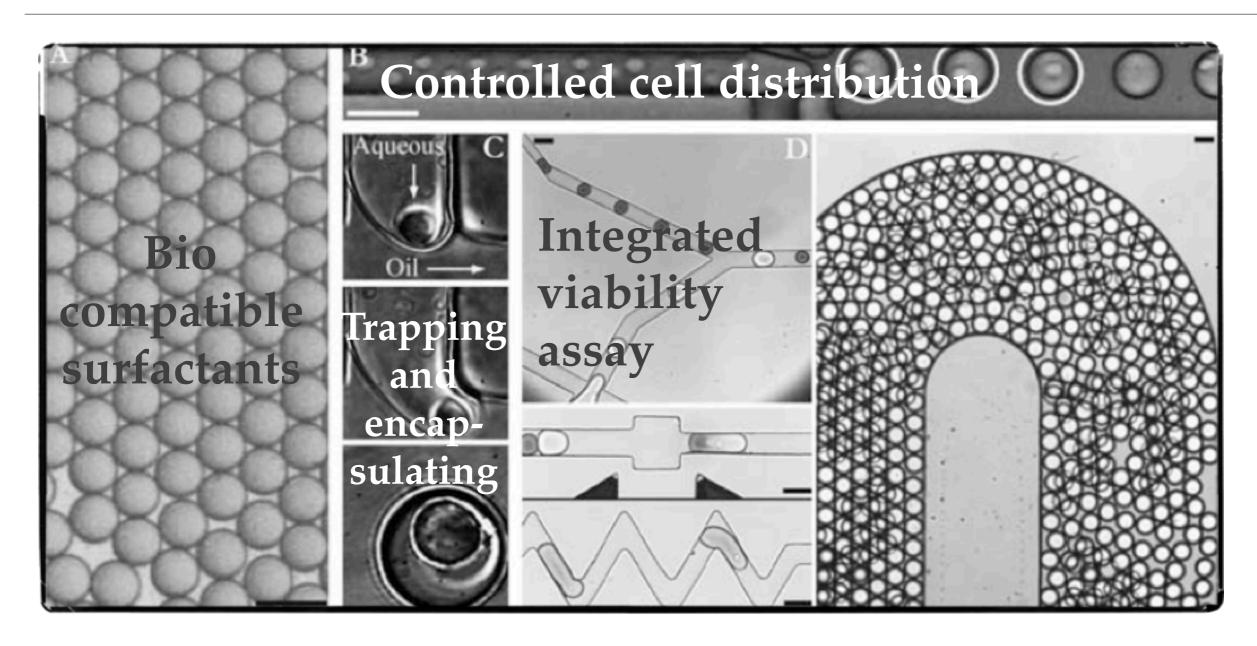
 The open-source tool is based on a personal code.

Mutual expectations

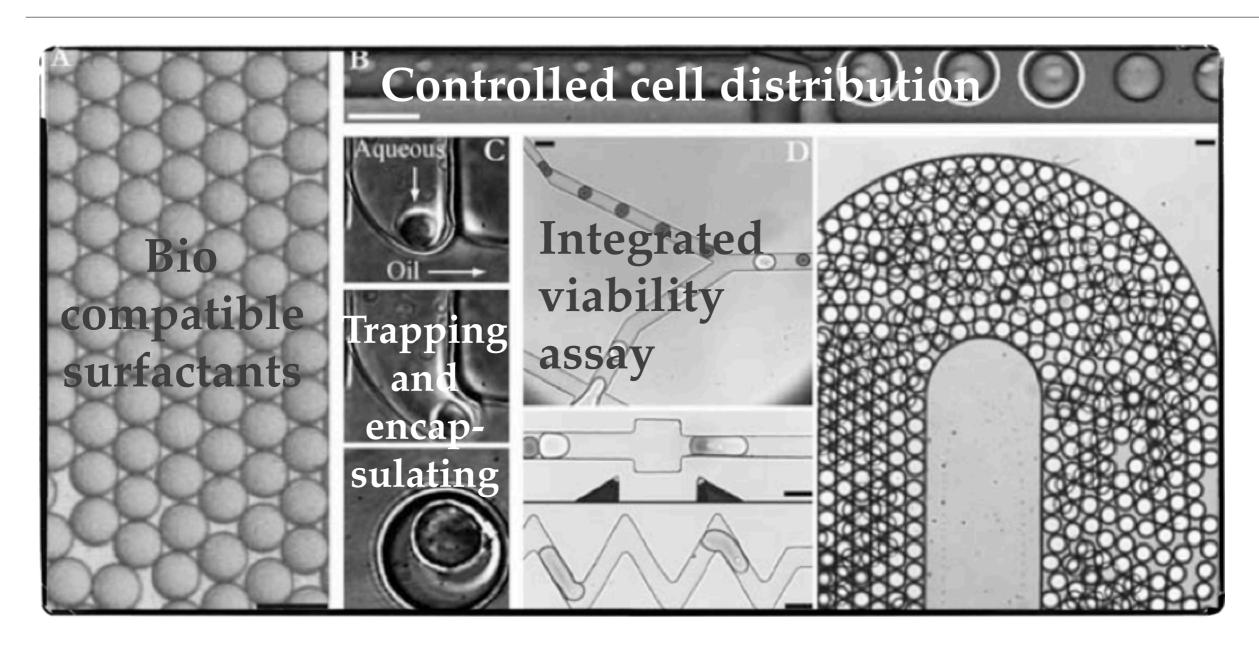
- This is the first workshop
 It's experimental in style and contents.

 The open-source tool is based on a personal code.
- Your feedback Improves the functionalities and usability. Improves the presentation and the didactics.

Getting to know each other



Lindström and Anderssohn-Svahn in Lab on a Chip 10 (2010) Overview of single-cell analyses: microdevices and applications

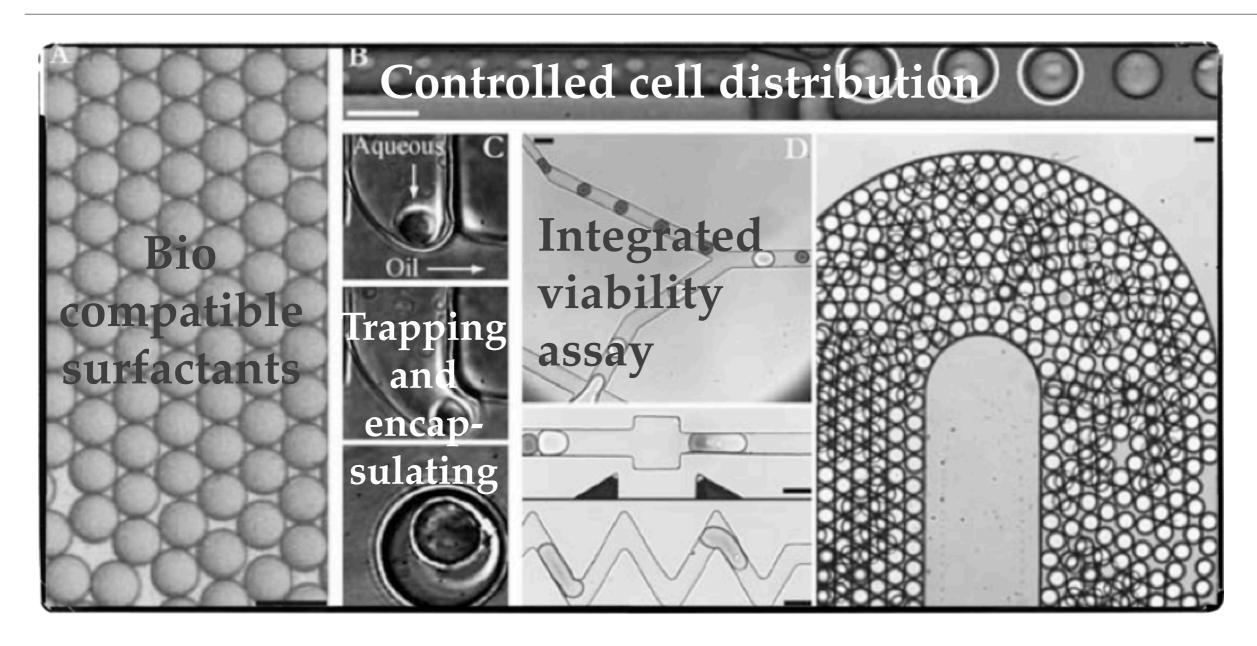


Lindström and Anderssohn-Svahn in Lab on a Chip 10 (2010)
Overview of single-cell analyses: microdevices and applications

$$Ca = rac{\mu U}{\gamma}$$

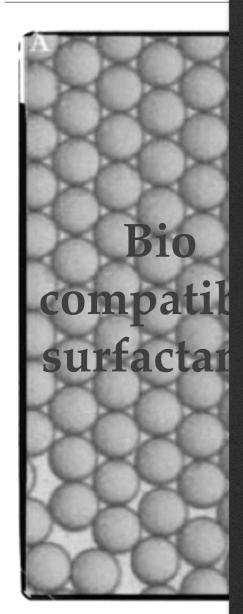
$$Re = rac{
ho UH}{\mu}$$

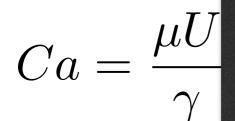
$$Re = rac{\rho UH}{H}$$

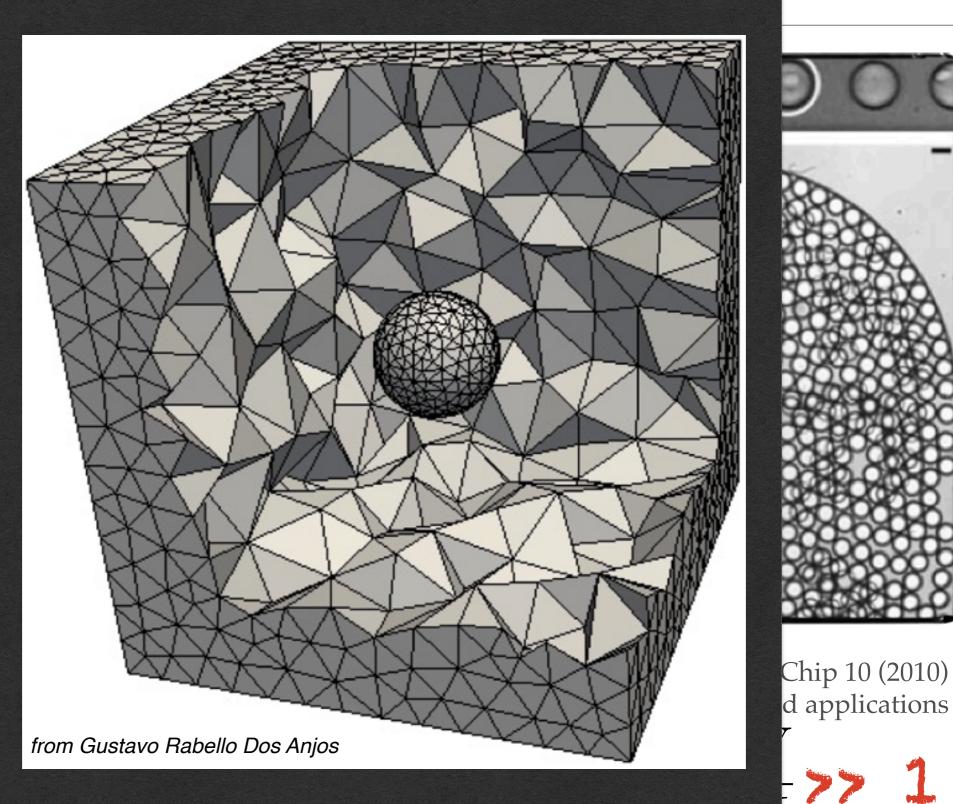


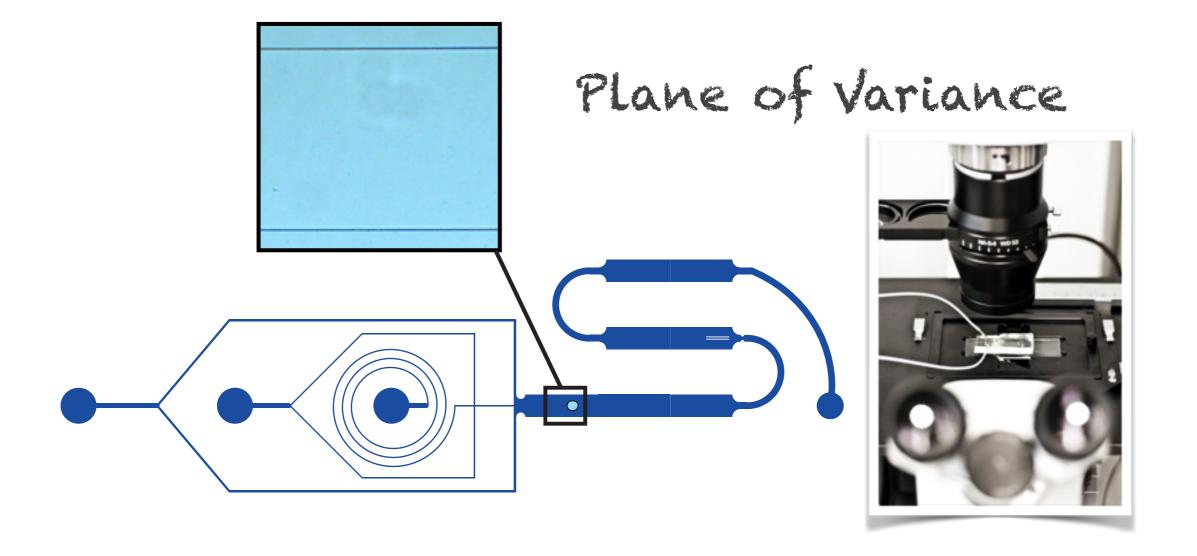
$$Ca = \frac{\mu U}{\gamma} < 1$$

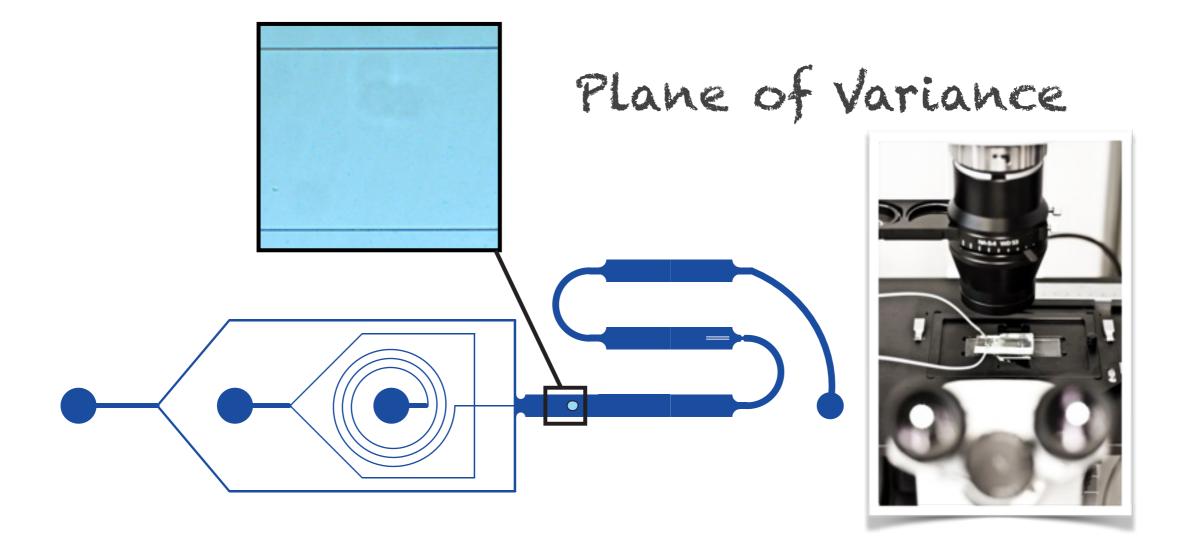
Lindström and Anderssohn-Svahn in Lab on a Chip 10 (2010) Overview of single-cell analyses: microdevices and applications

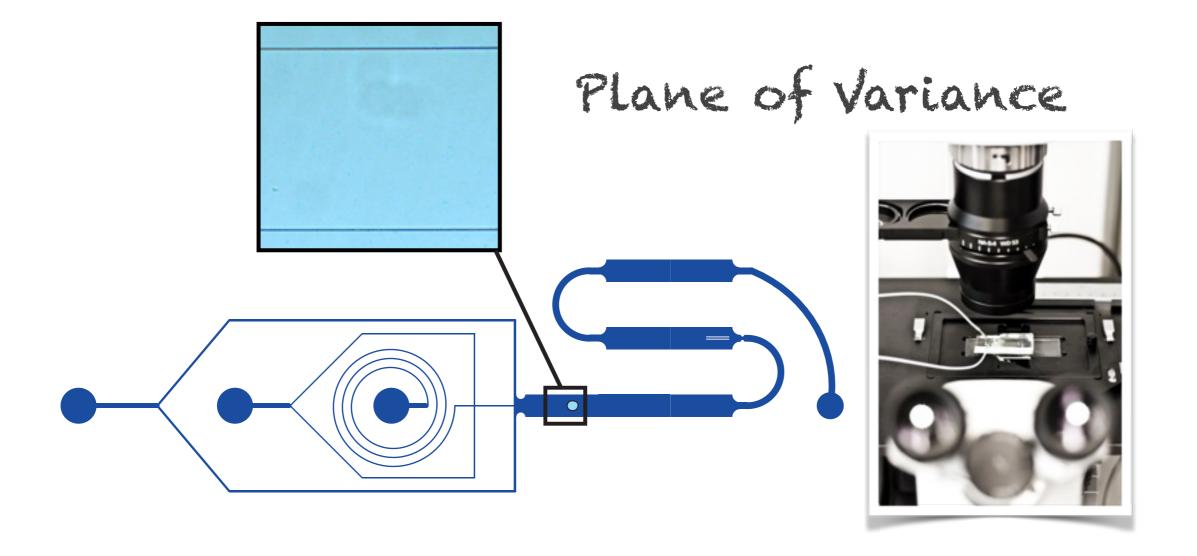


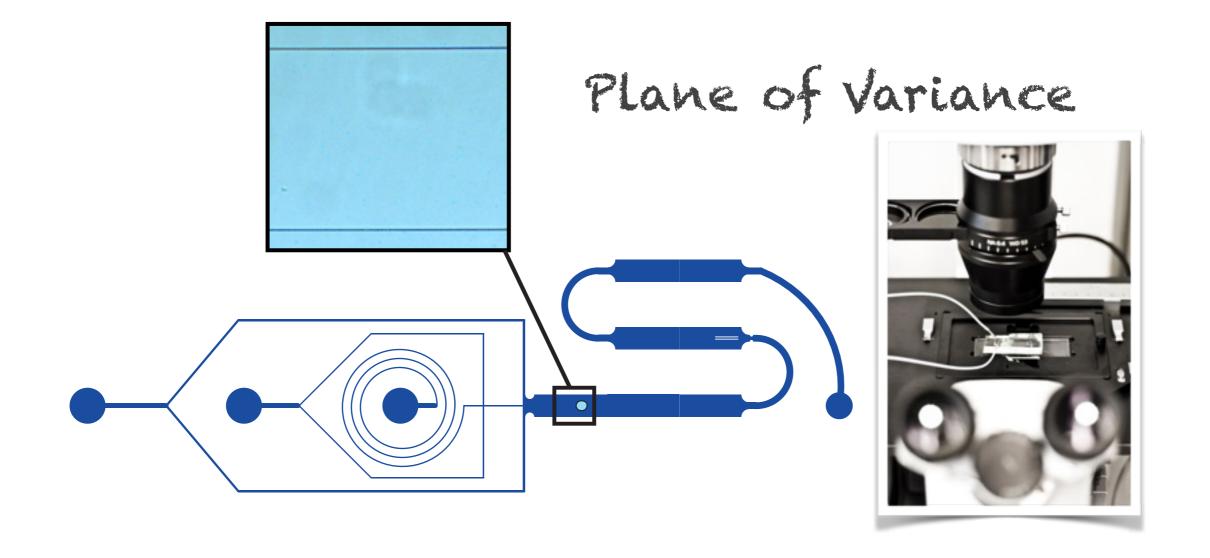


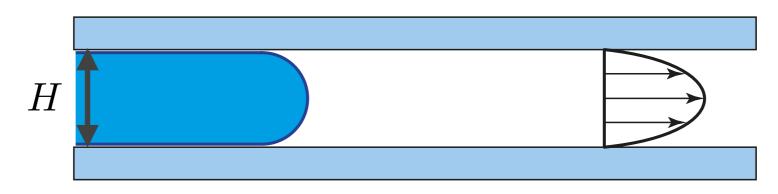








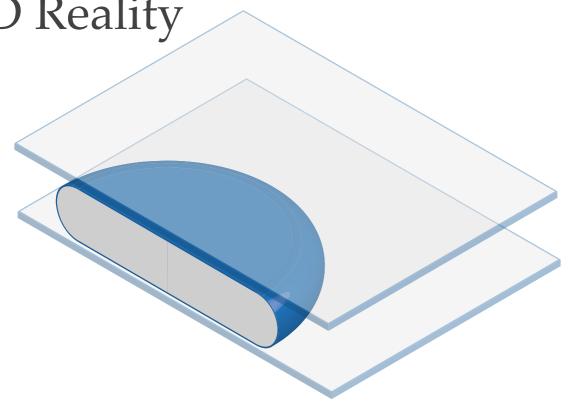




Direction of Dominance

3D Stokes equation

$$\mu \Delta \mathbf{u} - \nabla p = 0$$

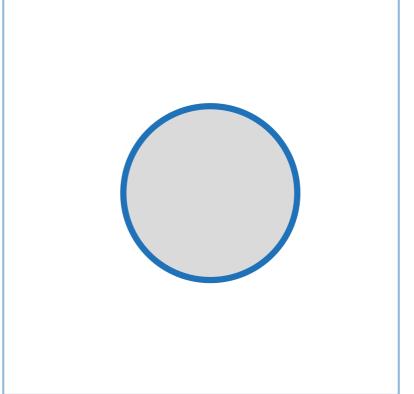


3D Stokes equation

$$\mu \Delta \mathbf{u} - \nabla p = 0$$

2D Brinkman equation

$$\mu \left(\Delta_{\shortparallel} \overline{\mathbf{u}} - \frac{12}{H^2} \overline{\mathbf{u}} \right) - \nabla_{\shortparallel} \overline{p} = 0$$

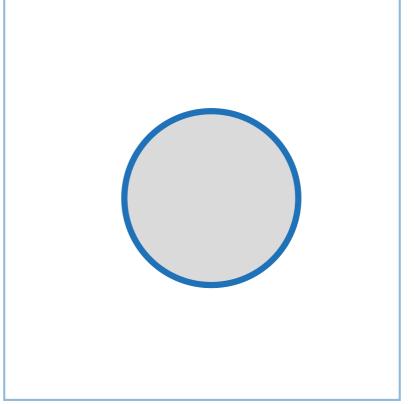


3D Stokes equation

$$\mu \Delta \mathbf{u} - \nabla p = 0$$

2D Brinkman equation

$$\mu\left(\Delta_{\shortparallel}\overline{\mathbf{u}} - \frac{12}{H^2}\overline{\mathbf{u}}\right) - \nabla_{\shortparallel}\overline{p} = 0$$



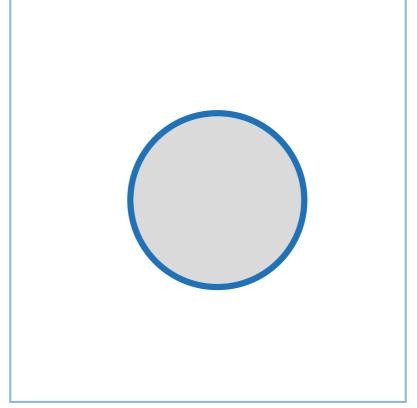
3D Stokes equation

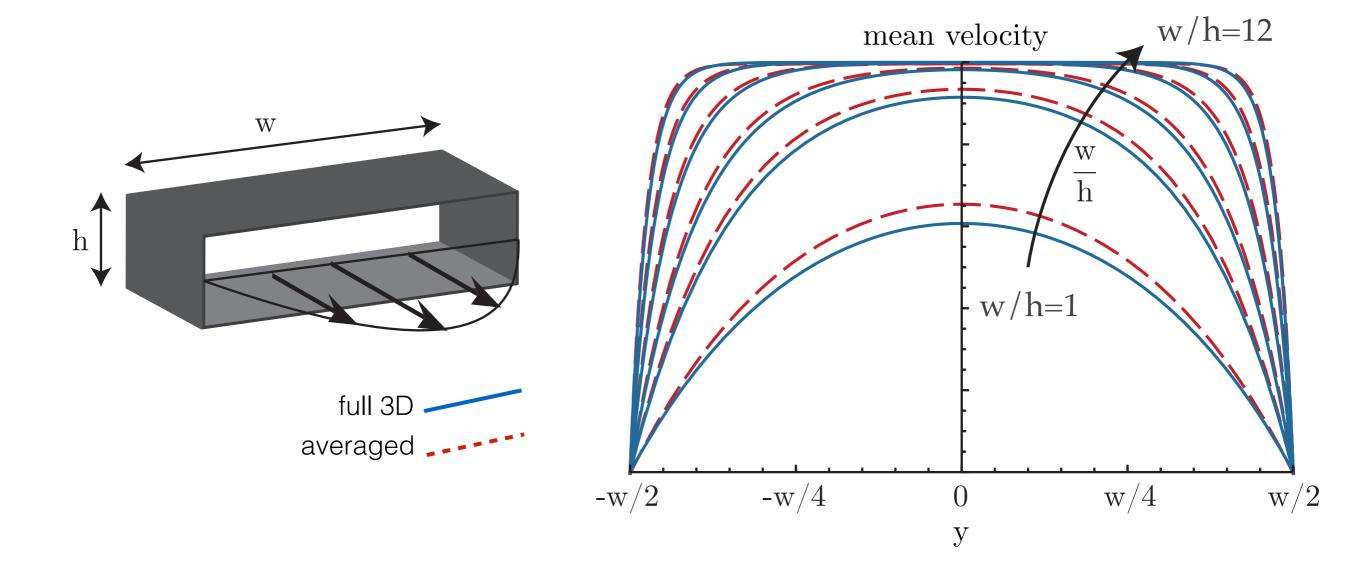
$$\mu \Delta \mathbf{u} - \nabla p = 0$$

2D Brinkman equation

2D Stokes Darcy

$$\mu \left(\Delta_{\shortparallel} \overline{\mathbf{u}} - \frac{12}{H^2} \overline{\mathbf{u}} \right) - \nabla_{\shortparallel} \overline{p} = 0$$

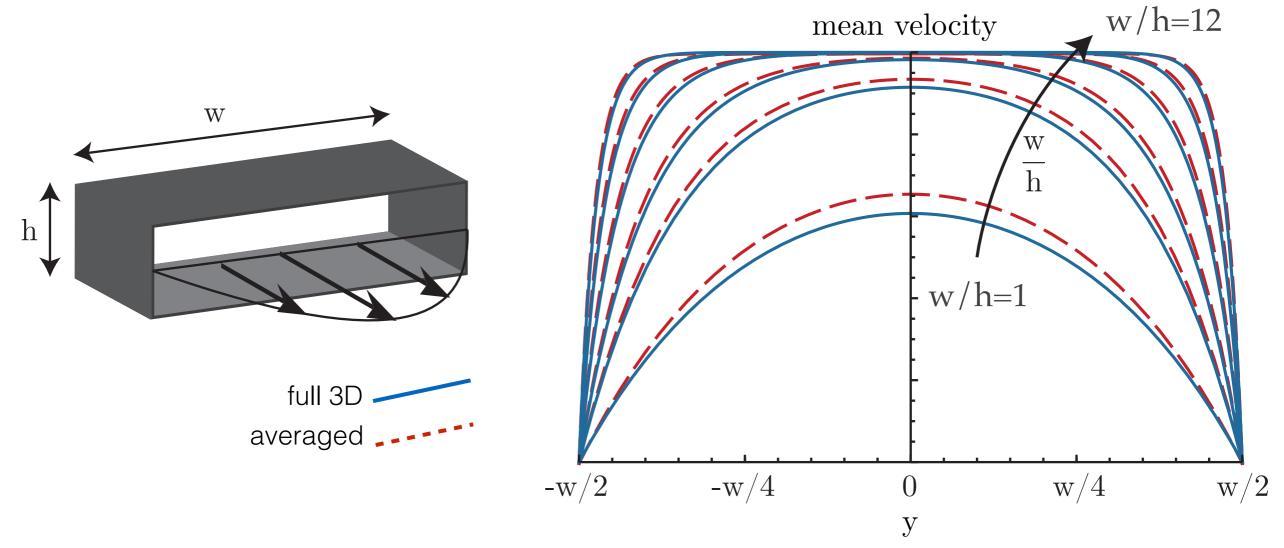




$$\mu \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial v_x}{\partial y^2} - k^2 v_x \right) - \frac{\partial p}{\partial x} = 0$$

$$\mu \left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial v_y}{\partial y^2} - k^2 v_y \right) - \frac{\partial p}{\partial y} = 0$$

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0$$



The solution of the averaged Stokes equation is not the averaged solution of the Stokes equation!

$$\mu \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial v_x}{\partial y^2} - k^2 v_x \right) - \frac{\partial p}{\partial x} = 0$$

$$\mu \left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial v_y}{\partial y^2} - k^2 v_y \right) - \frac{\partial p}{\partial y} = 0$$

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0$$

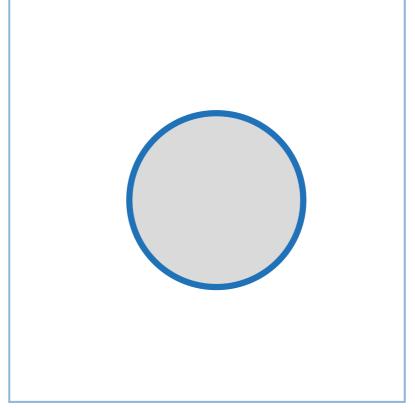
3D Stokes equation

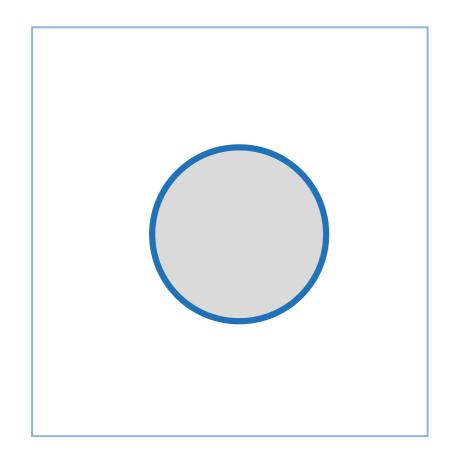
$$\mu \Delta \mathbf{u} - \nabla p = 0$$

2D Brinkman equation

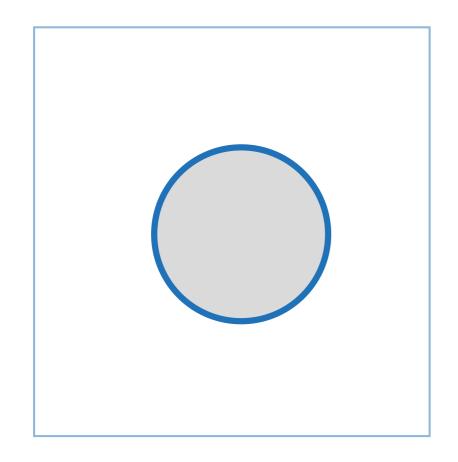
2D Stokes Darcy

$$\mu \left(\Delta_{\shortparallel} \overline{\mathbf{u}} - \frac{12}{H^2} \overline{\mathbf{u}} \right) - \nabla_{\shortparallel} \overline{p} = 0$$

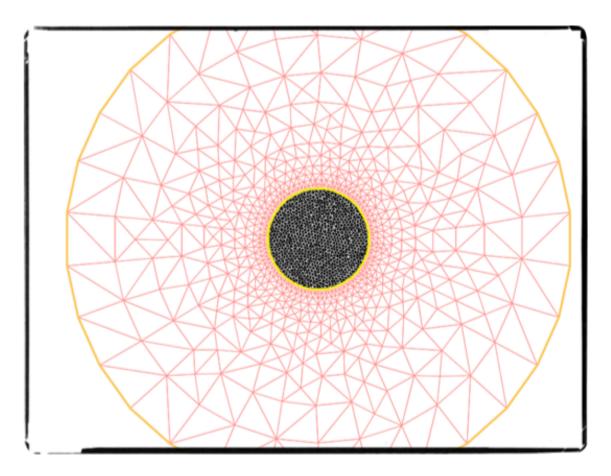




$$\mu \left(\Delta_{\shortparallel} \overline{\mathbf{u}} - \frac{12}{H^2} \overline{\mathbf{u}} \right) - \nabla_{\shortparallel} \overline{p} = 0$$

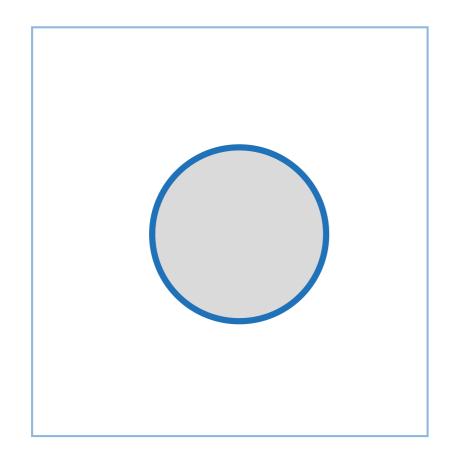


$$\mu \left(\Delta_{\shortparallel} \overline{\mathbf{u}} - \frac{12}{H^2} \overline{\mathbf{u}} \right) - \nabla_{\shortparallel} \overline{p} = 0$$



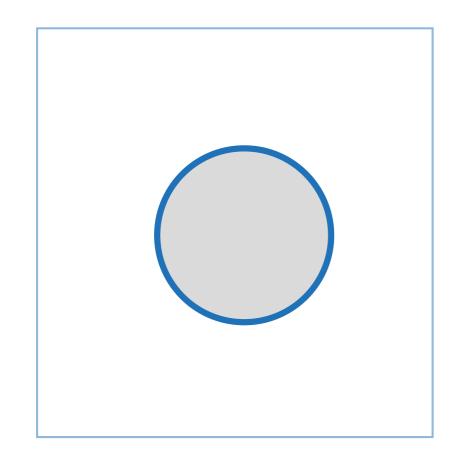
Method

2D Model

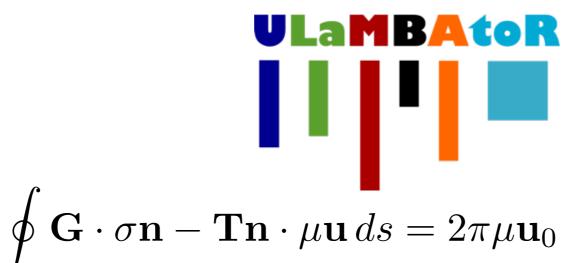


$$\mu \left(\Delta_{\shortparallel} \overline{\mathbf{u}} - \frac{12}{H^2} \overline{\mathbf{u}} \right) - \nabla_{\shortparallel} \overline{p} = 0$$

2D Model



$$\mu \left(\Delta_{\shortparallel} \overline{\mathbf{u}} - \frac{12}{H^2} \overline{\mathbf{u}} \right) - \nabla_{\shortparallel} \overline{p} = 0$$



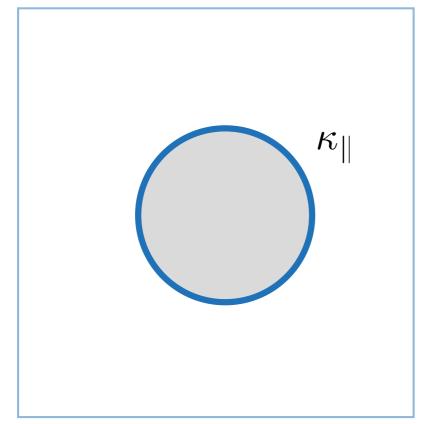
Boundary Element Method

1D Diagnotical

Method

1D Discretization

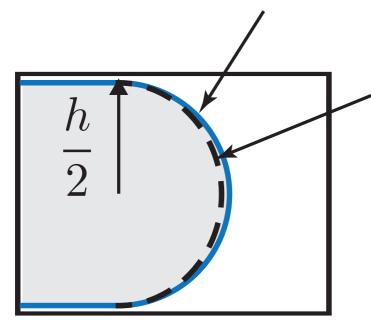
2D Model - Boundary condition



Torus shaped droplets have a curvature of:

$$\kappa = \frac{2}{h} + \frac{\pi}{4} \kappa_{\parallel}$$

ideal torus shape



correct shape, since the in-plane curvature is not constant over h.

Method

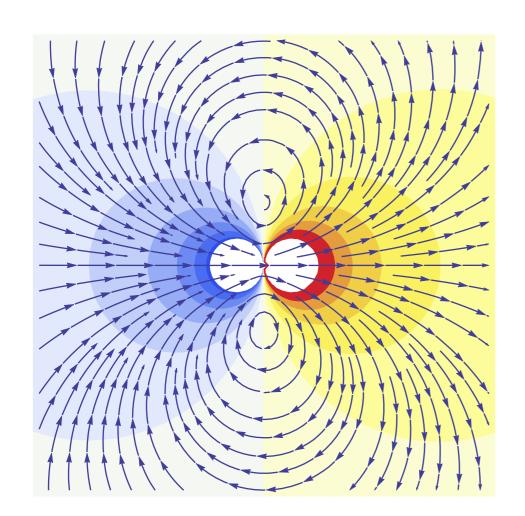
The π/4 correction for toroidal droplets is an asymptotic result by Park and Homsy JFM vol.139 (1984)

Two routes to understand the BEM ...

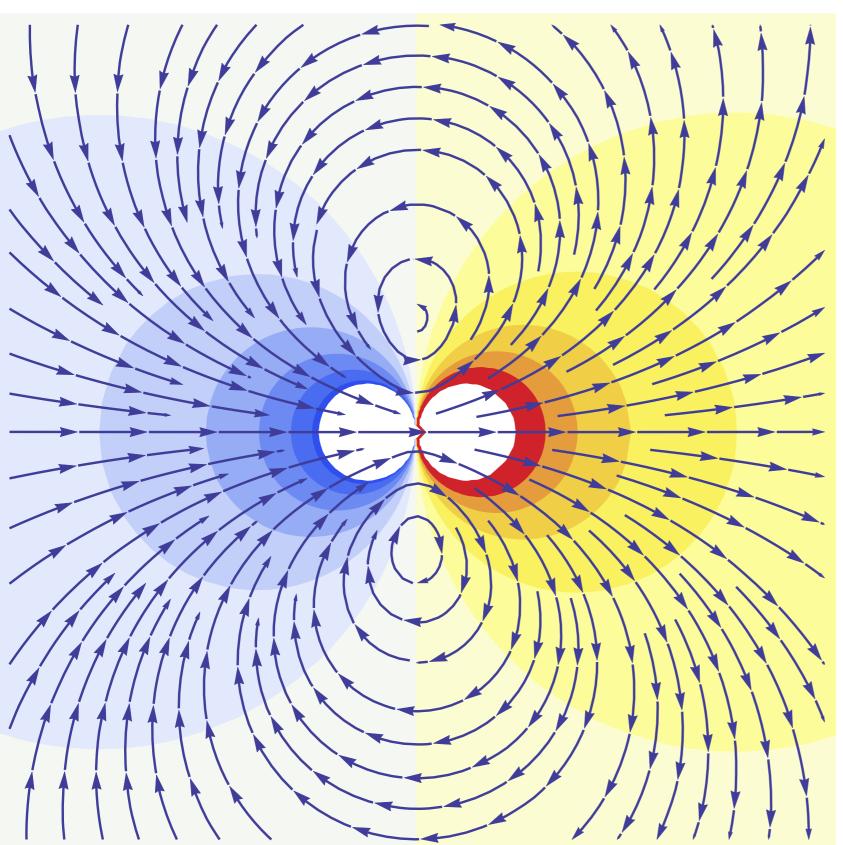
- · as a continuous distribution of fundamental solutions.
- as a finite element scheme with particular test functions.

Two routes to understand the BEM ...

- · as a continuous distribution of fundamental solutions.
- as a finite element scheme with particular test functions.



Fundamental solution



The fundamental solution solves a Brinkman equation which is forced by a Dirac distribution at x₀

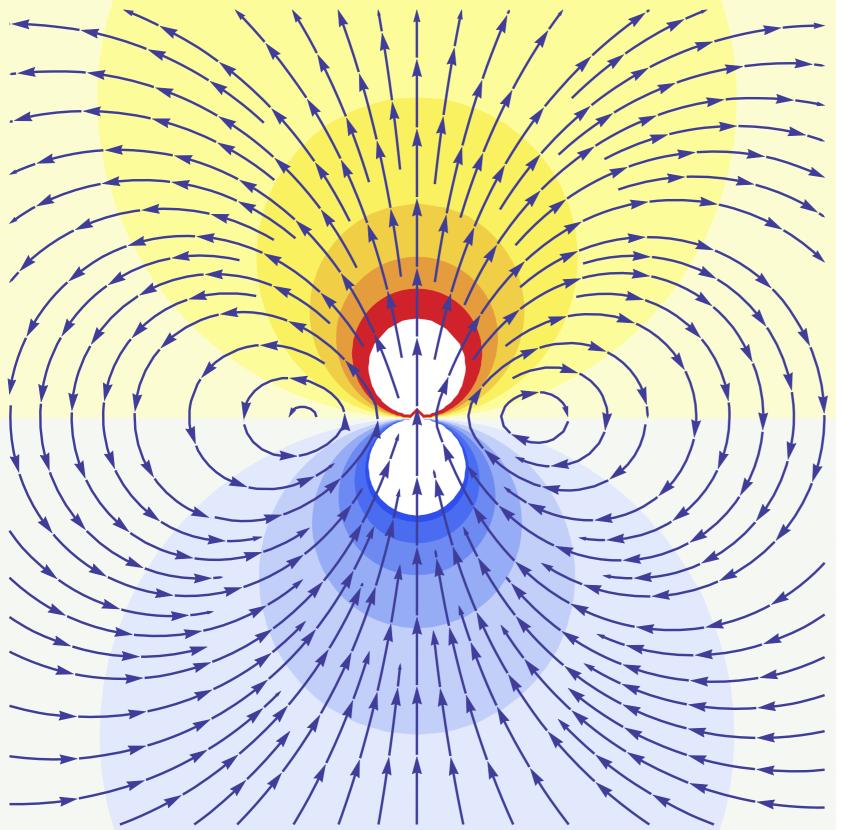
$$\eta(\nabla^2 \mathbf{u} - k^2 \mathbf{u}) - \nabla p =$$

$$\nabla \cdot \bar{\sigma} - \eta k^2 \mathbf{u} = \begin{pmatrix} \delta(\mathbf{x}_0) \\ 0 \end{pmatrix}$$

$$\bar{\bar{\sigma}} = \mathbf{T}_1(k, \mathbf{x}_0)$$
$$\mathbf{u} = \frac{1}{\eta} \mathbf{g}_1(k, \mathbf{x}_0)$$

Nagel and Gallaire, Computers and Fluids (2015)

Fundamental solution



The fundamental solution solves a Brinkman equation which is forced by a Dirac distribution at x₀

$$\eta(\nabla^2 \mathbf{u} - k^2 \mathbf{u}) - \nabla p =$$

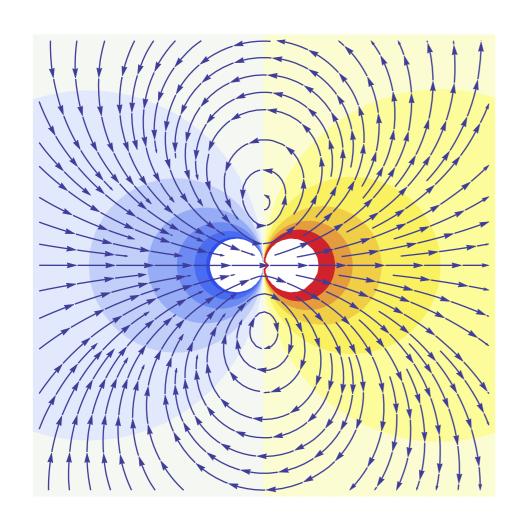
$$\nabla \cdot \bar{\sigma} - \eta k^2 \mathbf{u} = \begin{pmatrix} 0 \\ \delta(\mathbf{x}_0) \end{pmatrix}$$

$$\bar{\bar{\sigma}} = \mathbf{T}_2(k, \mathbf{x}_0)$$
 $\mathbf{u} = \frac{1}{\eta} \mathbf{g_2}(k, \mathbf{x_0})$

Nagel and Gallaire, Computers and Fluids (2015)

Two routes to understand the BEM ...

- as a continuous distribution of fundamental solutions.
- as a finite element scheme with particular test functions.



Sketch

$$\nabla \cdot \bar{\bar{\sigma}} - \eta k^2 \mathbf{u} = \mathbf{0} \qquad \int_{\Omega} (\nabla \cdot \bar{\bar{\sigma}} - \eta k^2 \mathbf{u}) \cdot \mathbf{g}_i \, dA = 0$$

Brinkman equation is integrated over test functions:

$$\nabla \cdot \bar{\bar{\sigma}} - \eta k^2 \mathbf{u} = \mathbf{0} \qquad \int_{\Omega} (\nabla \cdot \bar{\bar{\sigma}} - \eta k^2 \mathbf{u}) \cdot \mathbf{g}_i \, dA = 0$$

Brinkman equation is integrated over test functions:

$$\nabla \cdot \bar{\bar{\sigma}} - \eta k^2 \mathbf{u} = \mathbf{0} \qquad \int_{\Omega} (\nabla \cdot \bar{\bar{\sigma}} - \eta k^2 \mathbf{u}) \cdot \mathbf{g}_i \, dA = 0$$

· Like-wise for a Brinkman equation with test variables:

$$\nabla \cdot \mathbf{T_i} - \eta k^2 \mathbf{g_i} = \bar{\delta}(\mathbf{x_0}) \qquad \int_{\Omega} \left(\nabla \cdot \mathbf{T}_i - \eta k^2 \mathbf{g}_i \right) \cdot \mathbf{u} \, dA = 2\pi u_i(\mathbf{x_0})$$

Brinkman equation is integrated over test functions:

$$\nabla \cdot \bar{\bar{\sigma}} - \eta k^2 \mathbf{u} = \mathbf{0} \qquad \int_{\Omega} (\nabla \cdot \bar{\bar{\sigma}} - \eta k^2 \mathbf{u}) \cdot \mathbf{g}_i \, dA = 0$$

Like-wise for a Brinkman equation with test variables :

$$\nabla \cdot \mathbf{T_i} - \eta k^2 \mathbf{g_i} = \bar{\delta}(\mathbf{x_0}) \qquad \int_{\Omega} \left(\nabla \cdot \mathbf{T}_i - \eta k^2 \mathbf{g}_i \right) \cdot \mathbf{u} \, dA = 2\pi u_i(\mathbf{x_0})$$

Then one applies integration by parts

$$0 = \int_{\Omega} (\nabla \cdot \bar{\bar{\sigma}} - \eta k^2 \mathbf{u}) \cdot \mathbf{g}_i \, dA = \oint_{\omega} \bar{\bar{\sigma}} \mathbf{n} ds$$

$$-\int_{\Omega} (\eta \nabla \mathbf{u} : \nabla \mathbf{g}_i - p \nabla \cdot \mathbf{g}_i + \eta k^2 \mathbf{u} \cdot \mathbf{g}_i) dA$$

$$\int_{x_0}^{x_1} u'v \, dx = uv \Big|_{x_0}^{x_1} - \int_{x_0}^{x_1} uv' dx$$

$$0 = \int_{\Omega} (\nabla \cdot \bar{\bar{\sigma}} - \eta k^{2} \mathbf{u}) \cdot \mathbf{g}_{i} dA = \oint_{\omega} \bar{\bar{\sigma}} \mathbf{n} ds$$
$$- \int_{\Omega} (\eta \nabla \mathbf{u} : \nabla \mathbf{g}_{i} - p \nabla \cdot \mathbf{g}_{i} + \eta k^{2} \mathbf{u} \cdot \mathbf{g}_{i}) dA$$

$$\int_{\Omega} (\nabla \cdot \mathbf{T}_{i} - \eta k^{2} \mathbf{g}_{i}) \cdot \mathbf{u} \, dA = 2\pi u_{i}(\mathbf{x}_{0})$$

$$2\pi \eta u_{i}(\mathbf{x}_{0}) = \eta \int_{\Omega} (\nabla \cdot \mathbf{T}_{i} - k^{2} \mathbf{g}_{i}) \cdot \mathbf{u} \, dA = \oint_{\omega} \eta \mathbf{T}_{i} \mathbf{n} \cdot \mathbf{u} \, ds$$

$$- \int_{\Omega} (\eta \nabla \mathbf{u} : \nabla \mathbf{g}_{i} - \eta \, q \nabla \cdot \mathbf{u} + \eta k^{2} \mathbf{u} \cdot \mathbf{g}_{i}) \, dA$$

$$0 = \int_{\Omega} (\nabla \cdot \bar{\bar{\sigma}} - \eta k^{2} \mathbf{u}) \cdot \mathbf{g}_{i} dA = \oint_{\omega} \bar{\bar{\sigma}} \mathbf{n} ds$$
$$- \int_{\Omega} (\eta \nabla \mathbf{u} : \nabla \mathbf{g}_{i} - p \nabla \cdot \mathbf{g}_{i} + \eta k^{2} \mathbf{u} \cdot \mathbf{g}_{i}) dA$$

$$2\pi \eta u_i(\mathbf{x}_0) = \eta \int_{\Omega} (\nabla \cdot \mathbf{T}_i - k^2 \mathbf{g}_i) \cdot \mathbf{u} \, dA = \oint_{\omega} \eta \mathbf{T}_i \mathbf{n} \cdot \mathbf{u} \, ds$$
$$- \int_{\Omega} (\eta \nabla \mathbf{u} : \nabla \mathbf{g}_i - \eta \, q \nabla \cdot \mathbf{u} + \eta k^2 \mathbf{u} \cdot \mathbf{g}_i) \, dA$$

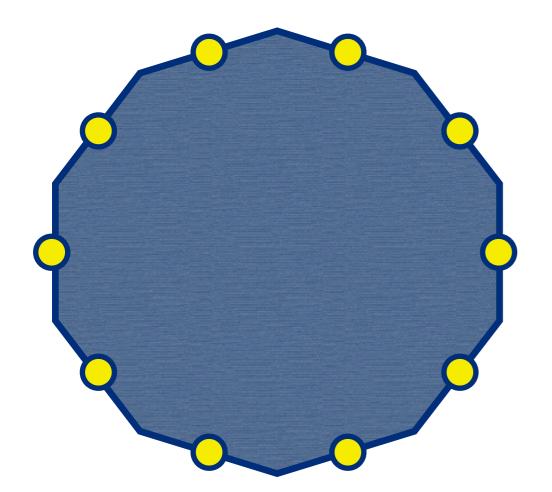
$$2\pi \eta u_i(\mathbf{x_0}) = \oint_{\omega} (\eta \mathbf{T}_i \mathbf{n} \cdot \mathbf{u} - \bar{\bar{\sigma}} \mathbf{n} \cdot \mathbf{g}_i) \, ds$$

N elements:

$$2\pi\eta u_i(\mathbf{x}_0) = \oint_{\omega} (\eta \mathbf{T}_i \mathbf{n} \cdot \mathbf{u} - \bar{\bar{\sigma}} \mathbf{n} \cdot \mathbf{g}_i) \, ds$$

2 x N unknowns

2 x N equations



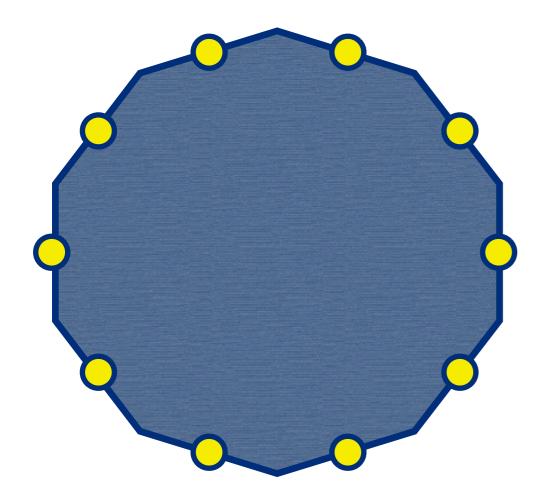
A model boundary element

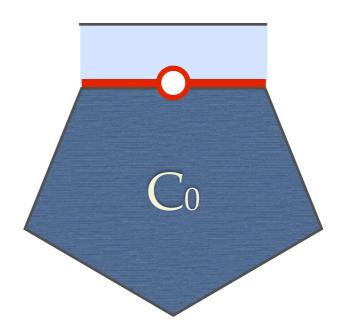
N elements:

$$2\pi\eta u_i(\mathbf{x}_0) = \oint (\eta \mathbf{T}_i \mathbf{n} \cdot \mathbf{u} - \bar{\bar{\sigma}} \mathbf{n} \cdot \mathbf{g}_i) \, ds$$

2 x N unknowns

2 x N equations





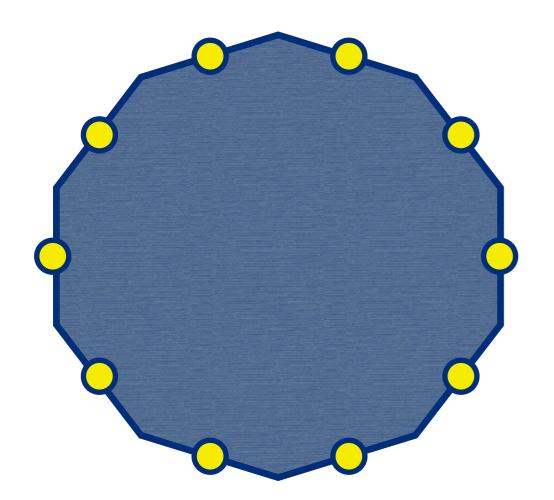
A model boundary element

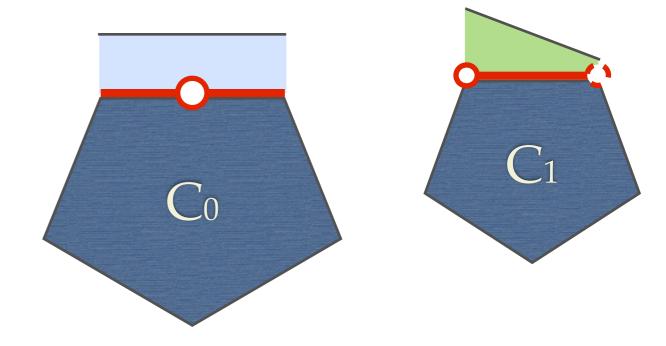
N elements:

$$2\pi\eta u_i(\mathbf{x}_0) = \oint (\eta \mathbf{T}_i \mathbf{n} \cdot \mathbf{u} - \bar{\sigma} \mathbf{n} \cdot \mathbf{g}_i) \, ds$$

2 x N unknowns

2 x N equations



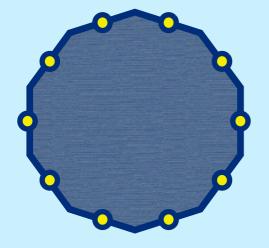


A model boundary element

Combining outer phase integral on the droplet

$$2\pi \eta u_i(\mathbf{x}_0) = \oint_{\omega} (\eta \mathbf{T}_i \mathbf{n} \cdot \mathbf{u} - \bar{\bar{\sigma}} \mathbf{n} \cdot \mathbf{g}_i) \, ds$$

· with the inner phase integral (normal sign flipped).



Combining outer phase integral on the droplet

$$2\pi \eta u_i(\mathbf{x}_0) = \oint_{\omega} (\eta \mathbf{T}_i \mathbf{n} \cdot \mathbf{u} - \bar{\sigma} \mathbf{n} \cdot \mathbf{g}_i) \, ds$$

· with the inner phase integral (normal sign flipped).

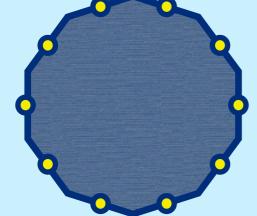
$$2\pi \eta_d u_i(\mathbf{x}_0) = \oint_{\omega} (-\eta_d \mathbf{T}_i \mathbf{n} \cdot \mathbf{u} + \bar{\sigma} \mathbf{n} \cdot \mathbf{g}_i) \, ds$$

Combining outer phase integral on the droplet

$$2\pi \eta u_i(\mathbf{x}_0) = \oint_{\omega} (\eta \mathbf{T}_i \mathbf{n} \cdot \mathbf{u} - \bar{\sigma} \mathbf{n} \cdot \mathbf{g}_i) \, ds$$

· with the inner phase integral (normal sign flipped).

$$2\pi \eta_d u_i(\mathbf{x}_0) = \oint_{\omega} (-\eta_d \mathbf{T}_i \mathbf{n} \cdot \mathbf{u} + \bar{\sigma} \mathbf{n} \cdot \mathbf{g}_i) \, ds$$



$$2\pi(\eta + \eta_d)u_i(\mathbf{x}_0) = \oint \left((\eta - \eta_d)\mathbf{T}_i\mathbf{n} \cdot \mathbf{u} - \llbracket \bar{\sigma}\mathbf{n} \rrbracket \cdot \mathbf{g}_i \right) ds$$

Combining outer phase integral on the droplet

$$2\pi \eta u_i(\mathbf{x}_0) = \oint_{\omega} (\eta \mathbf{T}_i \mathbf{n} \cdot \mathbf{u} - \bar{\sigma} \mathbf{n} \cdot \mathbf{g}_i) \, ds$$

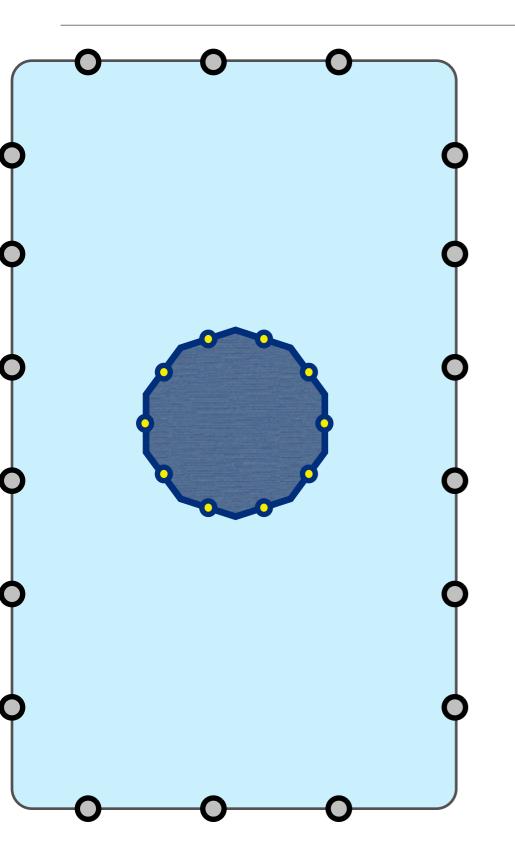
· with the inner phase integral (normal sign flipped).

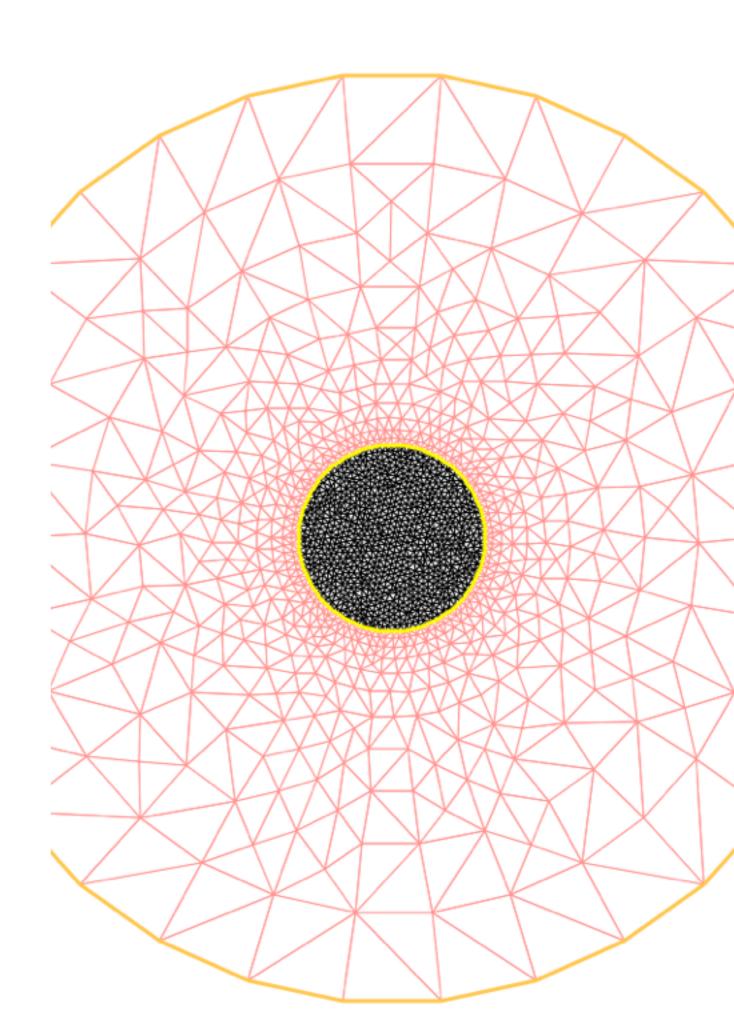
$$2\pi \eta_d u_i(\mathbf{x}_0) = \oint_{\omega} \left(-\eta_d \mathbf{T}_i \mathbf{n} \cdot \mathbf{u} + \bar{\sigma} \mathbf{n} \cdot \mathbf{g}_i\right) ds$$

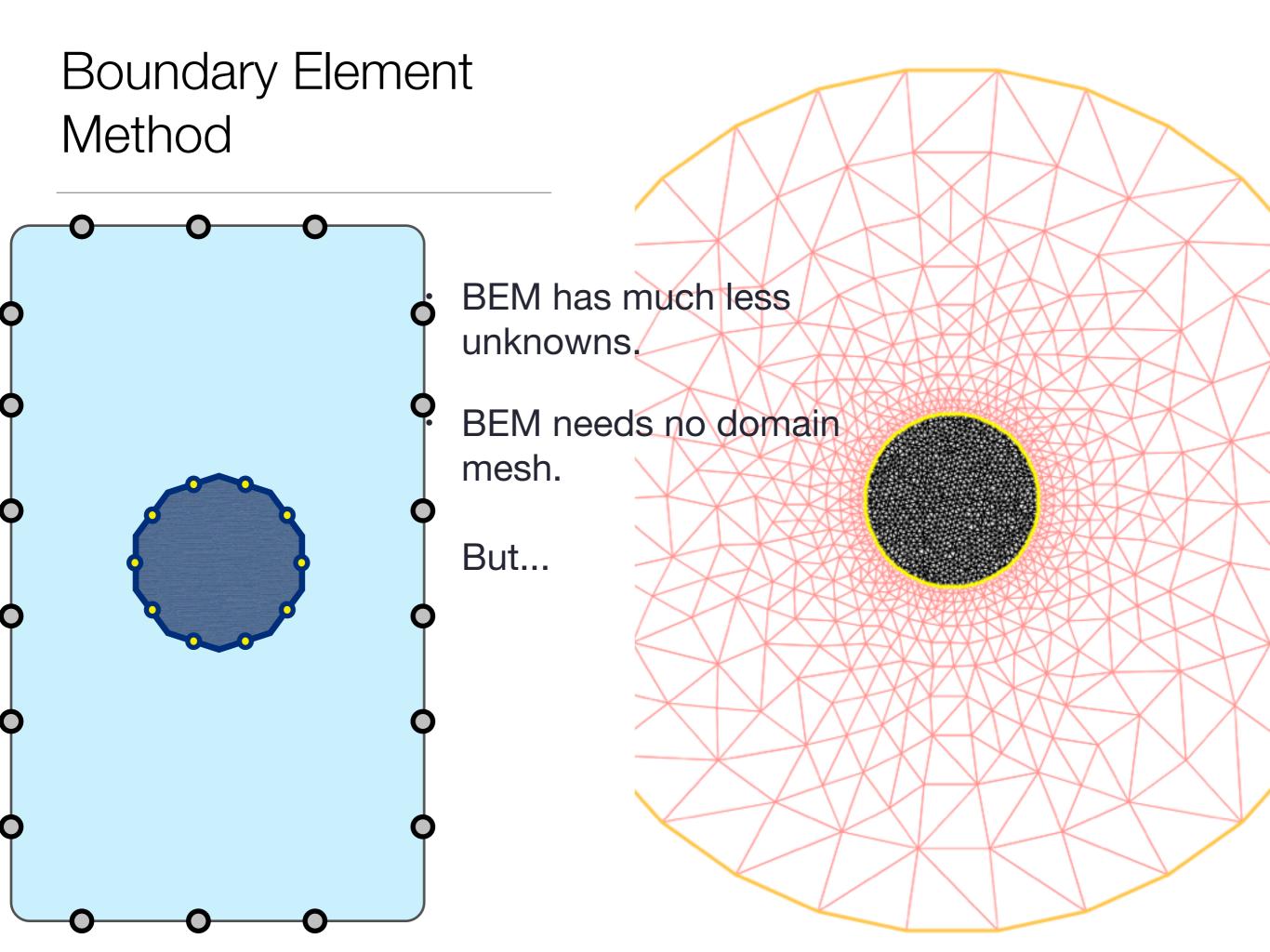
viscosity difference

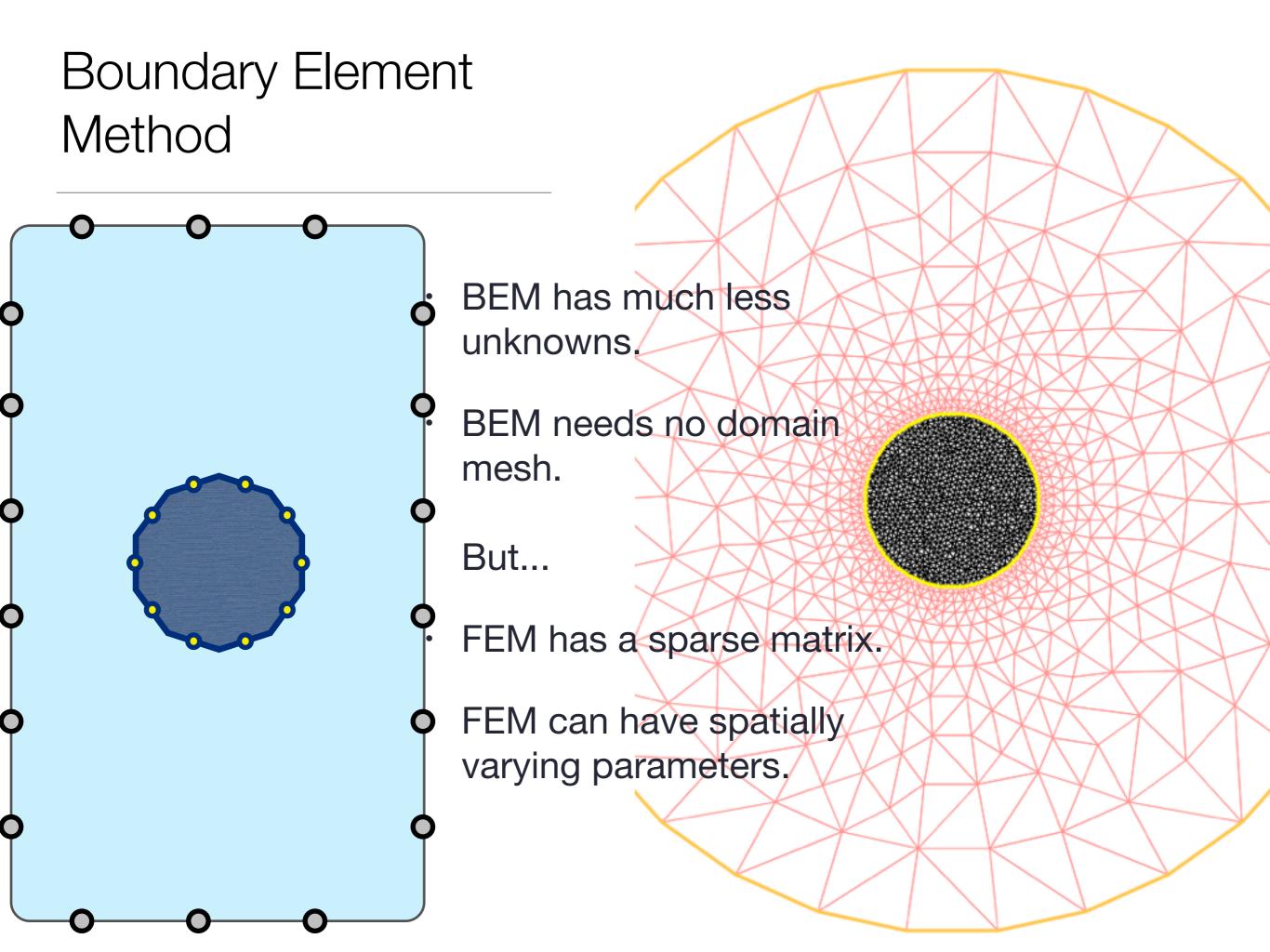
interface stress jump

$$2\pi(\eta + \eta_d)u_i(\mathbf{x}_0) = \oint \left((\eta - \eta_d)\mathbf{T}_i\mathbf{n} \cdot \mathbf{u} - \llbracket \bar{\sigma}\mathbf{n} \rrbracket \cdot \mathbf{g}_i \right) ds$$





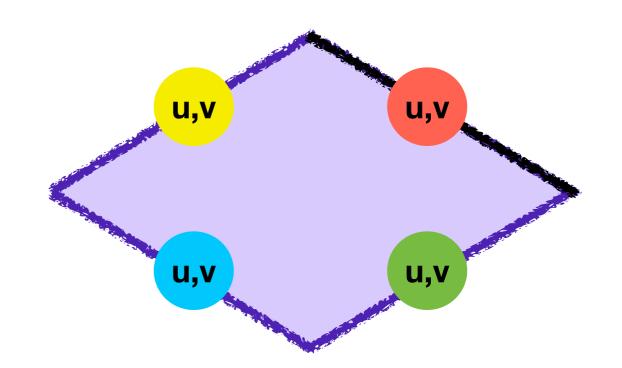




Computing Boundary Elements

$$2\pi\eta u_i(\mathbf{x}_0) = \oint_{\omega} (\eta \mathbf{T} \mathbf{n} \cdot \mathbf{u} - \bar{\sigma} \mathbf{n} \cdot \mathbf{g}) ds$$

- Discretizing the boundary with Ansatz functions
- For each boundary 2 unknowns, but for each test function 2 equations.



 $\phi g_2 \sigma \mathbf{n}$

 $\phi g_3 \sigma \mathbf{n}$

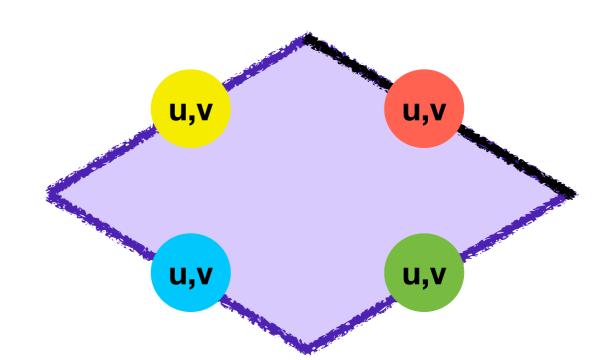
Contribution from black panel

		*						
η		$\oint_1 T_1 \mathbf{n} - 2\pi$	$\oint_2 T_1 \mathbf{n}$	$\oint_3 T_1 \mathbf{n}$	$\oint_4 T_1 \mathbf{n}$	$\left\langle \left(u_{1},v_{1}\right)\right\rangle$		
		$\oint_1 T_2 \mathbf{n}$	$\oint_2 T_2 \mathbf{n} - 2\pi$	$\oint_3 T_2 \mathbf{n}$	$\oint_4 T_2 \mathbf{n}$	u_2, v_2	_	
		$\oint_1 T_3 \mathbf{n}$	$\oint_2 T_3 \mathbf{n}$	$\oint_3 T_3 \mathbf{n} - 2\pi$	$\oint_4 T_3 \mathbf{n}$	u_3, v_3	_	
		$\oint_1 T_4 \mathbf{n}$	$\oint_2 T_4 \mathbf{n}$	$\oint_3 T_4 \mathbf{n}$	$\oint_4 T_4 \mathbf{n} - 2\pi$	$\left(u_{4},v_{4} ight) /$		
			7					

Computing Boundary Elements

$$2\pi\eta u_i(\mathbf{x}_0) = \oint_{\omega} (\eta \mathbf{T} \mathbf{n} \cdot \mathbf{u} - \bar{\sigma} \mathbf{n} \cdot \mathbf{g}) ds$$

- Discretizing the boundary with Ansatz functions
- For each boundary 2 unknowns, but for each test function 2 equations.
- Results in a dense matrix.



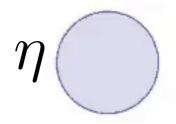
Contribution from black panel

$$\eta \begin{pmatrix} \oint_{1} T_{1} \mathbf{n} - 2\pi & \oint_{2} T_{1} \mathbf{n} & \oint_{3} T_{1} \mathbf{n} & \oint_{4} T_{1} \mathbf{n} \\ \oint_{1} T_{2} \mathbf{n} & \oint_{2} T_{2} \mathbf{n} - 2\pi & \oint_{3} T_{2} \mathbf{n} & \oint_{4} T_{2} \mathbf{n} \\ \oint_{1} T_{3} \mathbf{n} & \oint_{2} T_{3} \mathbf{n} & \oint_{3} T_{3} \mathbf{n} - 2\pi & \oint_{4} T_{3} \mathbf{n} \\ \oint_{1} T_{4} \mathbf{n} & \oint_{2} T_{4} \mathbf{n} & \oint_{3} T_{4} \mathbf{n} & \oint_{4} T_{4} \mathbf{n} - 2\pi \end{pmatrix} \cdot \begin{pmatrix} u_{1}, v_{1} \\ u_{2}, v_{2} \\ u_{3}, v_{3} \\ u_{4}, v_{4} \end{pmatrix} = \begin{pmatrix} u_{1}, v_{1} \\ u_{2}, v_{2} \\ u_{3}, v_{3} \\ u_{4}, v_{4} \end{pmatrix}$$

$$\oint_{\omega} \left(\mathbf{Tn} \cdot \mathbf{v} - \sigma \mathbf{n} \cdot \mathbf{G} \right) ds + \oint_{\eta} \left(\mathbf{Tn} \cdot (\lambda - 1) \mathbf{v} - \llbracket \sigma \mathbf{n} \rrbracket \cdot \mathbf{G} \right) ds = S \mathbf{w} \cdot \mathbf{v}(\mathbf{x}_{0}).$$

 ${f v}$ velocity $\sigma{f n}$ stress

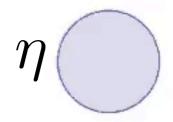
 ω



$$\oint_{\omega} \left(\mathbf{Tn} \cdot \mathbf{v} - \sigma \mathbf{n} \cdot \mathbf{G} \right) ds + \oint_{\eta} \left(\mathbf{Tn} \cdot (\lambda - 1) \mathbf{v} - \llbracket \sigma \mathbf{n} \rrbracket \cdot \mathbf{G} \right) ds = S \mathbf{w} \cdot \mathbf{v}(\mathbf{x}_{0}).$$

 ${f v}$ velocity $\sigma {f n}$ stress

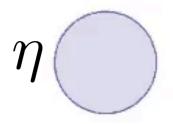
 ω

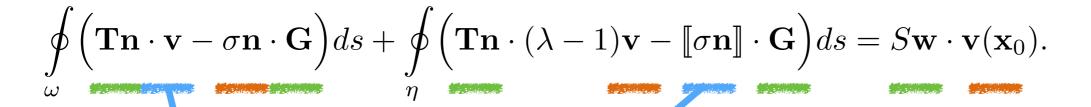


$$\oint_{\omega} \left(\mathbf{Tn} \cdot \mathbf{v} - \sigma \mathbf{n} \cdot \mathbf{G} \right) ds + \oint_{\eta} \left(\mathbf{Tn} \cdot (\lambda - 1) \mathbf{v} - \llbracket \sigma \mathbf{n} \rrbracket \cdot \mathbf{G} \right) ds = S \mathbf{w} \cdot \mathbf{v}(\mathbf{x}_{0}).$$

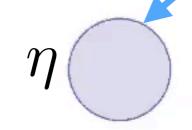
 ${f v}$ velocity $\sigma {f n}$ stress

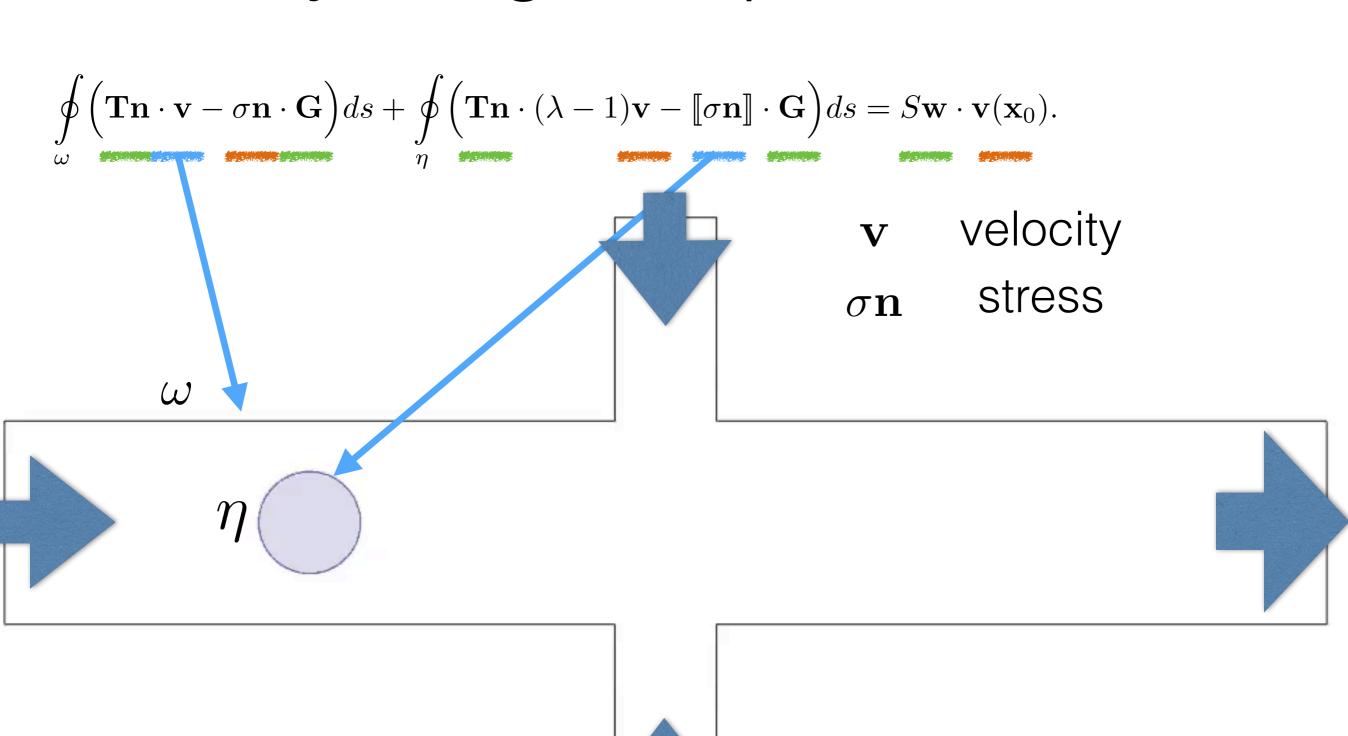
 ω

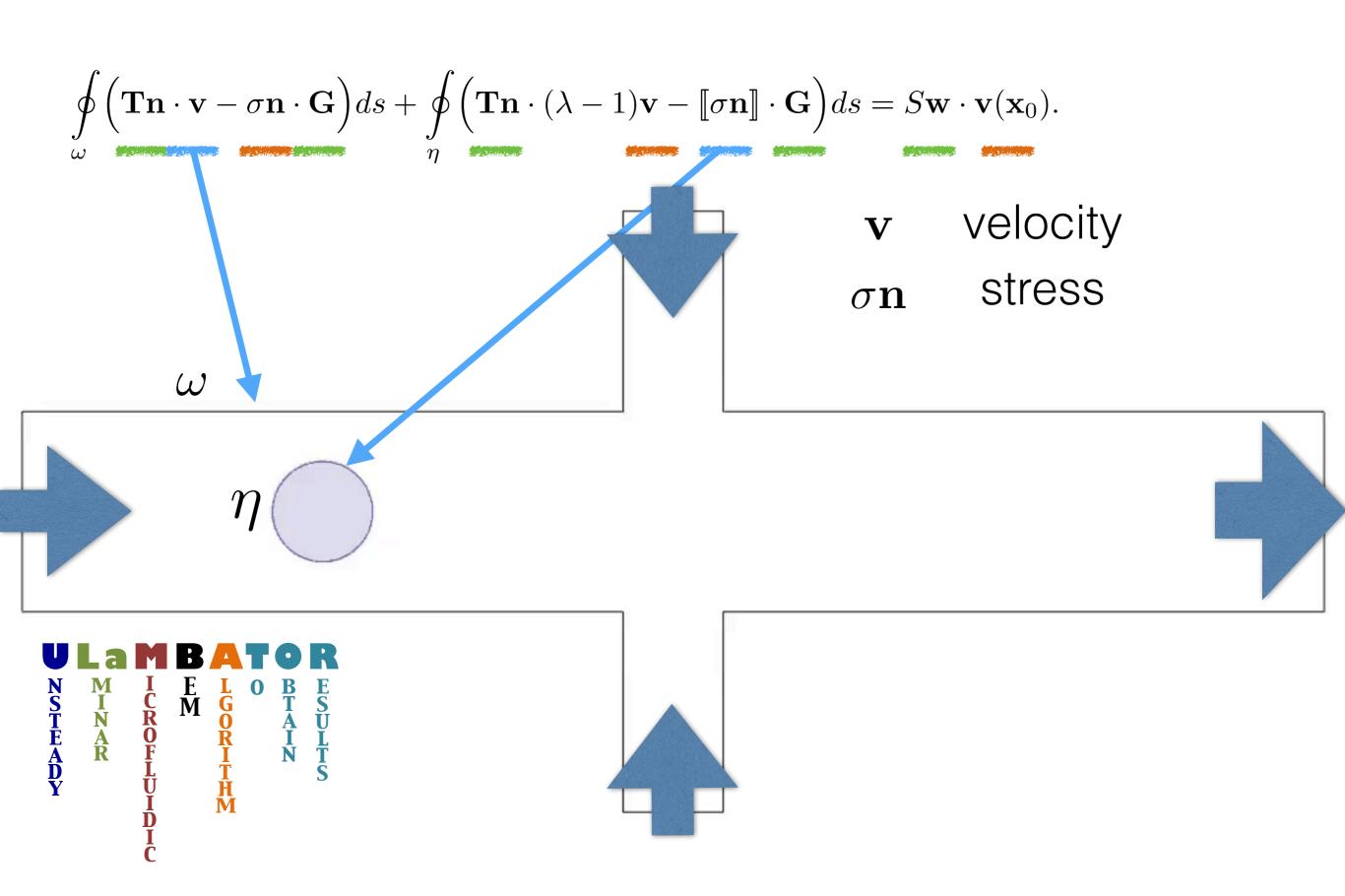




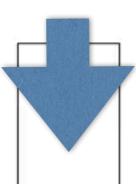
 ${f v}$ velocity $\sigma{f n}$ stress



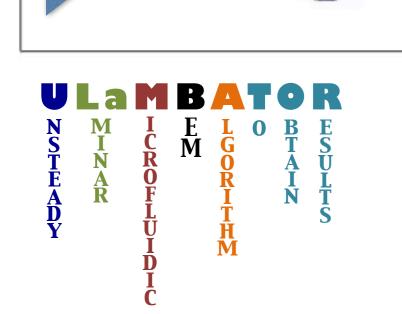


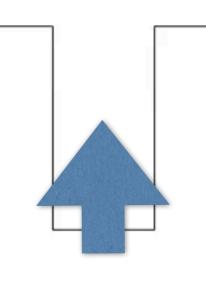


$$\oint_{\omega} \left(\mathbf{Tn} \cdot \mathbf{v} - \sigma \mathbf{n} \cdot \mathbf{G} \right) ds + \oint_{\eta} \left(\mathbf{Tn} \cdot (\lambda - 1) \mathbf{v} - \llbracket \sigma \mathbf{n} \rrbracket \cdot \mathbf{G} \right) ds = S \mathbf{w} \cdot \mathbf{v}(\mathbf{x}_{0}).$$



 ${f v}$ velocity $\sigma{f n}$ stress





Problem preparation

In order calculate the problem needs to be non-dimensional.

The base dimensions are: $\eta, \sigma_{\alpha\beta}$ and \tilde{L}

Problem preparation

In order calculate the problem needs to be non-dimensional.

The base dimensions are: $\eta, \sigma_{\alpha\beta}$ and L

non-dimensional

$$ilde{U} = rac{\sigma_{lphaeta}}{\eta_{
m bulk}} \quad ext{[m/s]}$$

velocity scale

$$\hat{u} = \tilde{U}u$$

dimensional

Problem preparation

In order calculate the problem needs to be non-dimensional.

The base dimensions are: $\eta, \sigma_{\alpha\beta}$ and \tilde{L}

non-dimensional

$$ilde{U} = rac{\sigma_{lphaeta}}{\eta_{
m bulk}} \quad ext{[m/s]}$$

velocity scale

$$\hat{u} = \tilde{U}u$$

dimensional

$$l = \tilde{L}L$$

In order calculate the problem needs to be non-dimensional.

The base dimensions are: $\eta, \sigma_{\alpha\beta}$ and L

non-dimensional

$$ilde{U} = rac{\sigma_{lphaeta}}{\eta_{
m bulk}} \quad ext{[m/s]}$$

velocity scale

$$\hat{u} = \tilde{U}u$$

dimensional

$$l = \tilde{L}L \qquad \eta_d = \eta \lambda$$

In order calculate the problem needs to be non-dimensional.

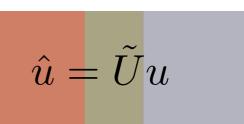
The base dimensions are: $\eta, \sigma_{\alpha\beta}$ and L

$$ilde{U} = rac{\sigma_{lphaeta}}{\eta_{
m bulk}} \quad ext{[m/s]}$$

velocity scale

$$l = \tilde{L}L \qquad \eta_d = \eta \lambda$$

non-dimensional



dimensional

$$l = \tilde{L}L$$
 $\eta_d = \eta\lambda$ $Ca = \frac{\eta \tilde{U}}{\sigma_{\alpha\beta}} = 1$

In order calculate the problem needs to be non-dimensional.

The base dimensions are: $\eta, \sigma_{\alpha\beta}$ and L

non-dimensional

$$ilde{U} = rac{\sigma_{lphaeta}}{\eta_{
m bulk}} \quad ext{[m/s]}$$

 $\hat{u} = \tilde{U}u$

velocity scale

dimensional

$$l = \tilde{L}L \qquad \eta_d = \eta\lambda \qquad Ca = \frac{\eta \hat{u}}{\sigma_{\alpha\beta}}$$

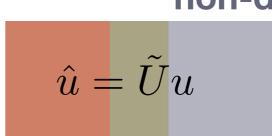
$$Ca = \frac{\eta \hat{u}}{\sigma_{\alpha\beta}}$$

In order calculate the problem needs to be non-dimensional.

The base dimensions are: $\eta, \sigma_{\alpha\beta}$ and L

non-dimensional

$$ilde{U} = rac{\sigma_{lphaeta}}{\eta_{
m bulk}}$$
 [m/s] velocity scale



dimensional

$$l = \tilde{L}L \qquad \eta_d = \eta\lambda \qquad Ca = \frac{\eta \hat{u}}{\sigma_{\alpha\beta}}$$

In order to understand the result, the results need to be dimensional.

$$p = \frac{\sigma_{\alpha\beta}}{\tilde{L}}P \qquad \qquad t = \frac{L\eta}{\sigma_{\alpha\beta}}T$$

So far for the theory

Define the boundaries (geometry and boundary condition)

- Define the boundaries (geometry and boundary condition)
- Define the liquid interface(s)

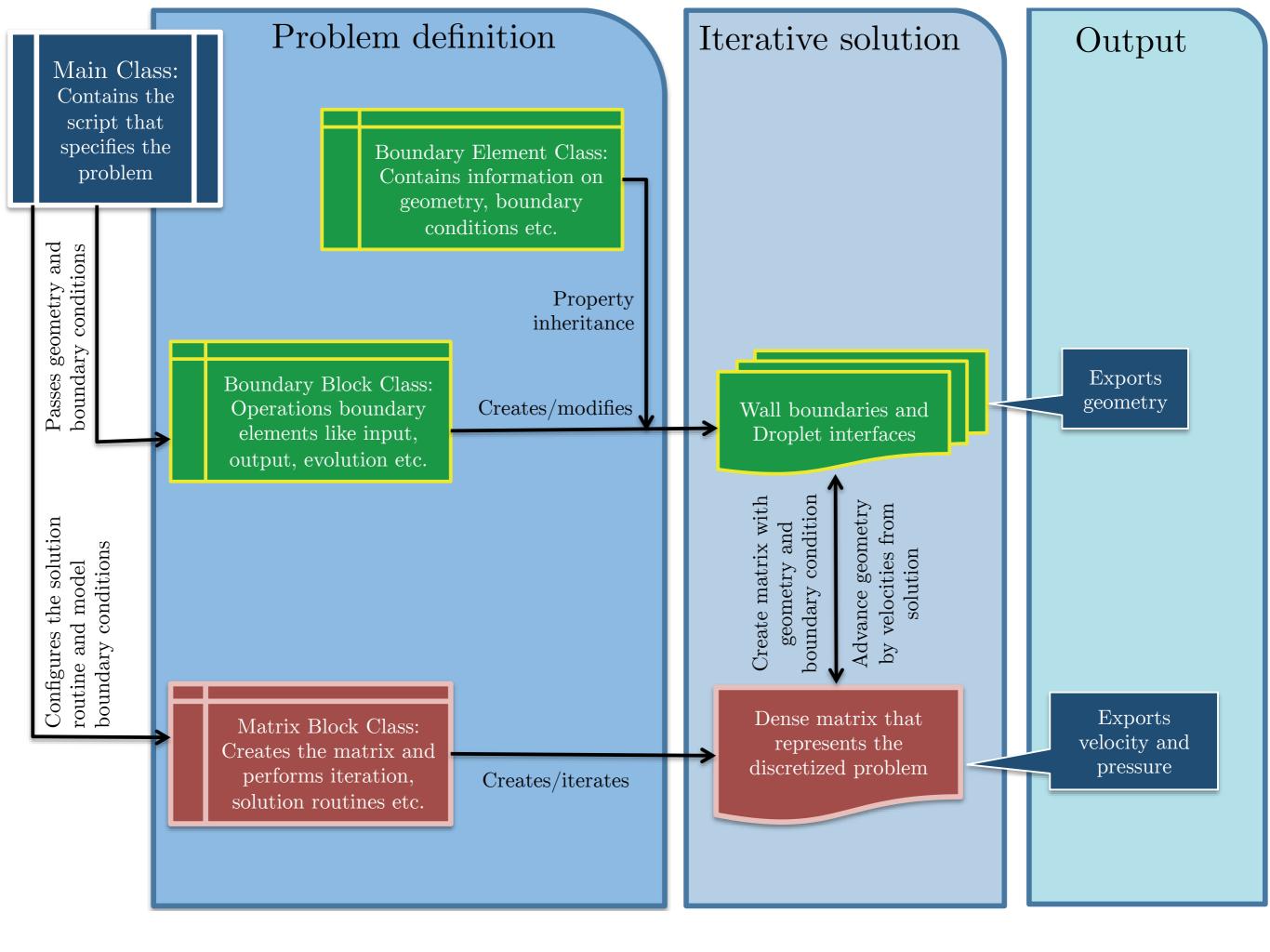
- Define the boundaries (geometry and boundary condition)
- Define the liquid interface(s)
- Specify the problem (material parameters, ...)

- Define the boundaries (geometry and boundary condition)
- Define the liquid interface(s)
- Specify the problem (material parameters, ...)
- Setup an iteration loop (advance and write output)

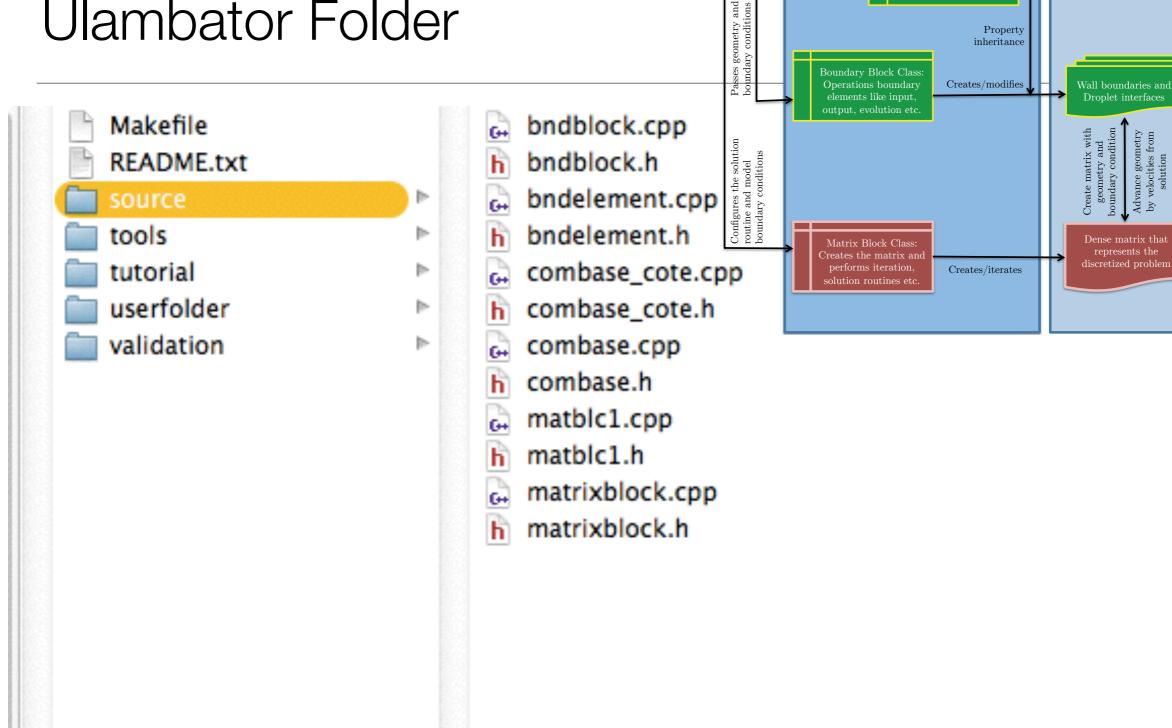
- Define the boundaries (geometry and boundary condition)
- Define the liquid interface(s)
- Specify the problem (material parameters, ...)
- Setup an iteration loop (advance and write output)
- Compile and run the code

- Define the boundaries (geometry and boundary condition)
- Define the liquid interface(s)
- Specify the problem (material parameters, ...)
- Setup an iteration loop (advance and write output)
- Compile and run the code

Ulambator is not run by an interpreter but compiled and runs by itself



Ulambator Folder



Problem definition

Boundary Element Class Contains information on conditions etc.

Main Class: Contains the script that specifies the

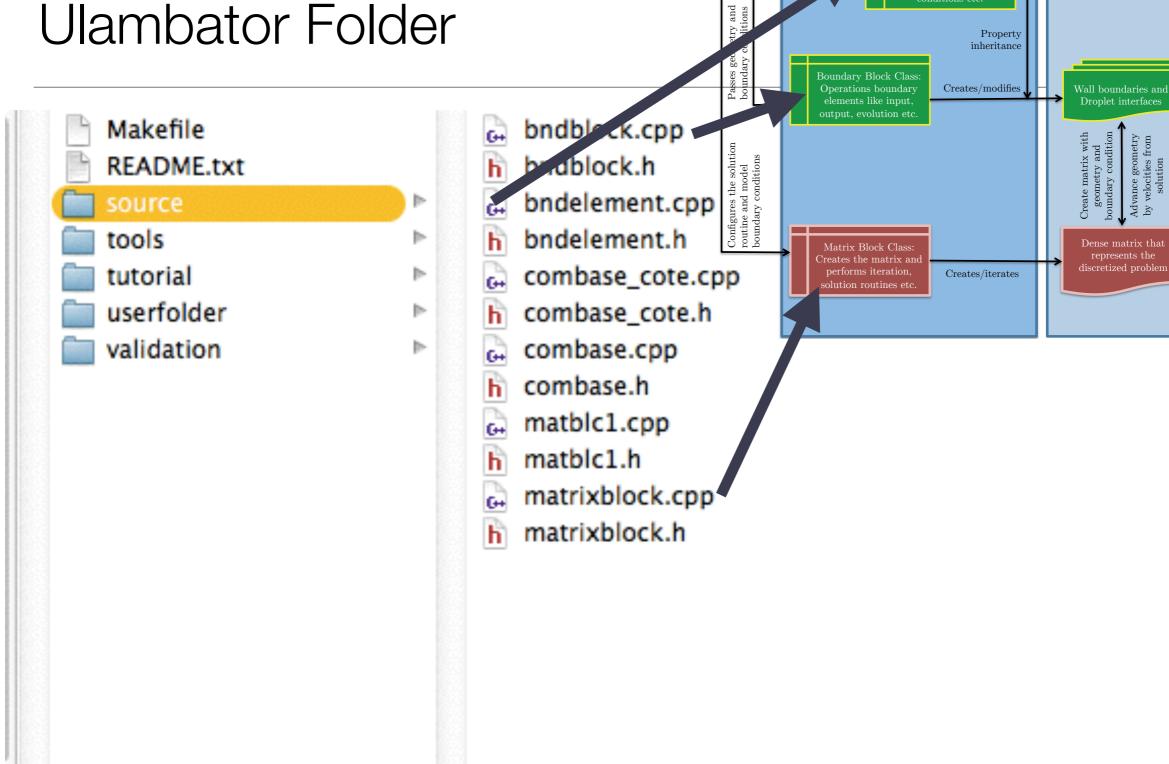
Iterative solution

Output

Exports

velocity and

pressure



Problem definition

Boundary Element Class Contains information on

Main Class: Contains the script that specifies the

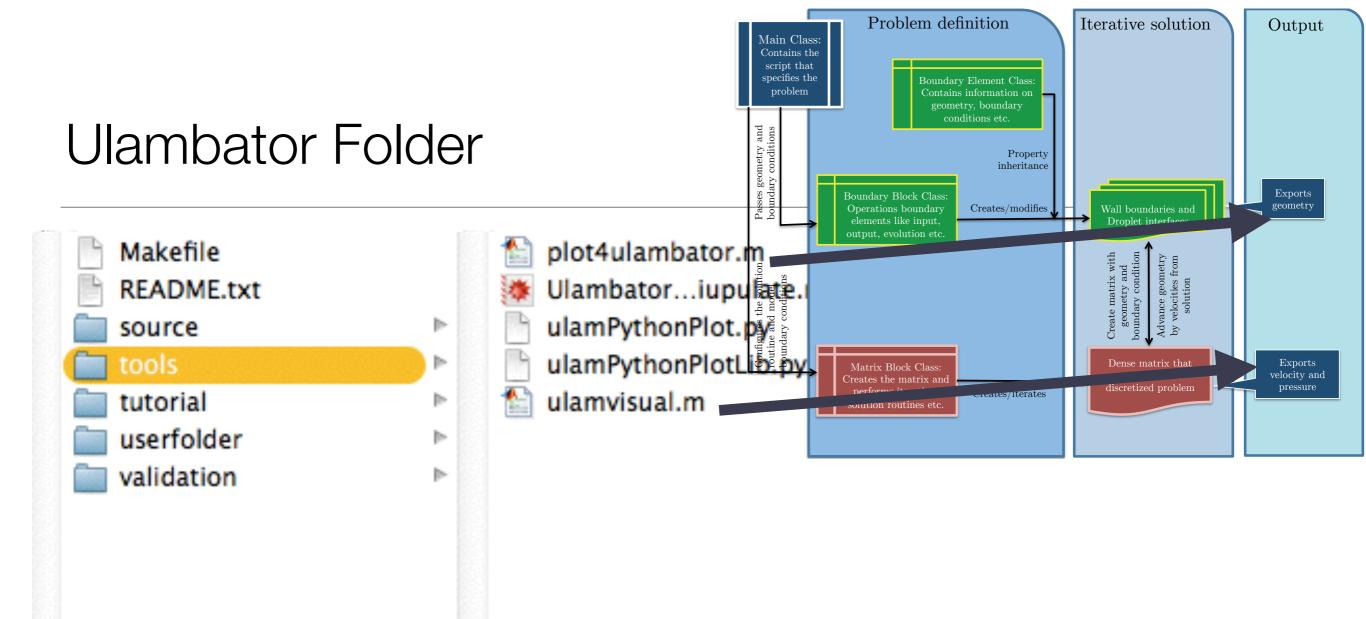
Iterative solution

Output

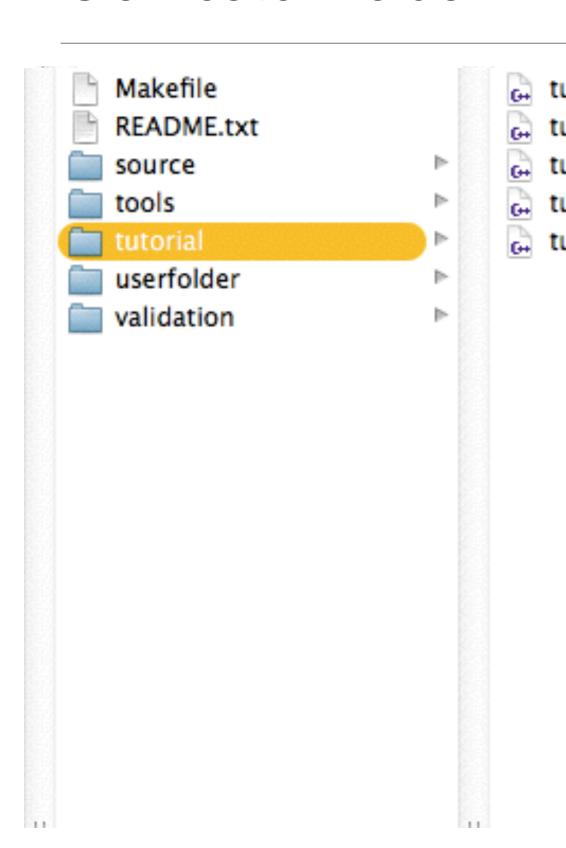
Exports

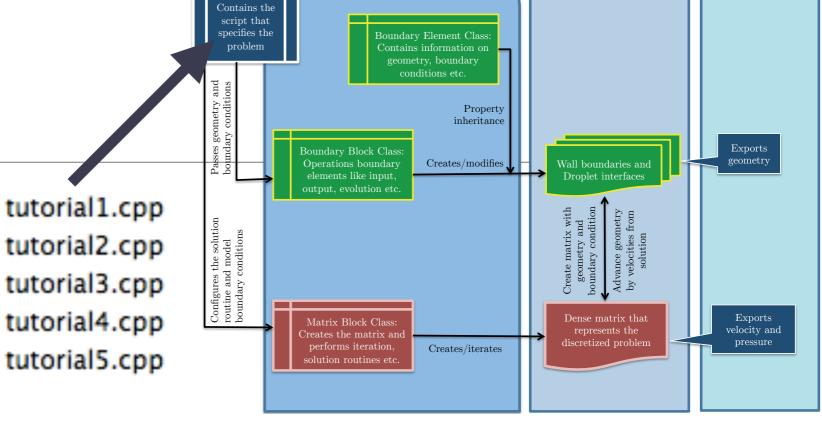
velocity and

pressure



Ulambator Folder





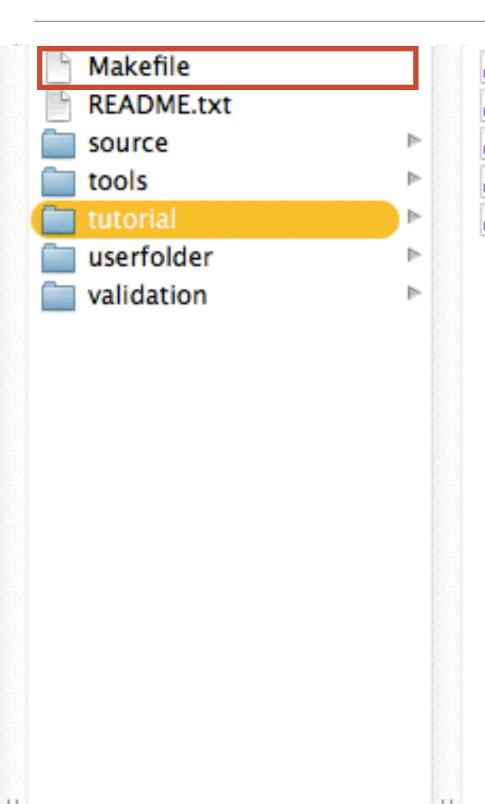
Iterative solution

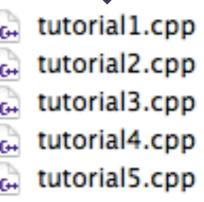
Output

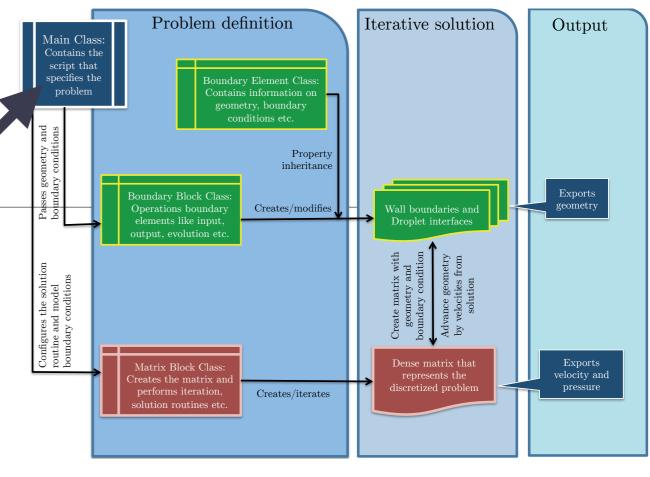
Problem definition

Main Class:

Ulambator Folder







```
# Makefile to compile Ulambator, 01.12.2015
# The sharp (#) symbols indicate comment, which are not executed
# Please adapt the following lines
# compiler of choice: q++, icc, etc.
CPP = q++
# compiler options for g++ with Xcode
OPTS = -lstdc++ -framework Accelerate -03 -lpthread
# compiler options for q++ with Lapack libraries
# OPTS = -fopenmp -lstdc++ -llapack -lblas -lpthread
# compiler options for icc and mkl (Intel)
# OPTS = -lstdc++ -mkl -03 - openmp
# library path for instance for LAPACK, if needed
# LIBS = -L/opt/intel/composer xe 2013.1.119/mkl/lib/
# include path for headers, if needed
# INCS = -I/Developer/SDKs/MacOSX10.7.sdk/usr/lib/gcc/i686-apple-darwin11/4.2.1/include
# That is all, only edit the lines below for new source files
# or to add user defined cases to the compiler (example: user1)
# source files except main classes
SRC = source/combase.cpp source/bndblock.cpp source/matrixblock.cpp source/bndelement.cpp source/matblc1.cpp
# source files for compiler test
TRC = source/combase_cote.cpp source/bndblock.cpp source/matrixblock.cpp source/bndelement.cpp source/matblc1.cpp -w
# Lines hereafter don't need modification unless you want to add your own cases.
all: tutorial1 tutorial2 tutorial3 tutorial4 tutorial5
# A user defined case, if more are needed copy, paste, rename (i.e. userN) and adapt
user1: userfolder/main user1.cpp
      @if [ \$\$? = 0 ]; then \
        echo " Compiling $@ done"; \
        echo " Compiling $@ failed"; \
tutorial1: tutorial/tutorial1.cpp
      $(CPP)
      @if [ \$\$? = 0 ]; then \
       echo " Compiling $@ done"; \
        echo " Compiling $@ failed"; \
```

```
# Makefile to compile Ulambator, 01.12.2015
# The sharp (#) symbols indicate comment, which are not executed
# Please adapt the following lines
# compiler of choice: g++, icc, etc.
CPP = q++
# compiler options for g++ with Xcode
OPTS = -lstdc++ -framework Accelerate -03 -lpthread
# compiler options for g++ with Lapack libraries
# OPTS = -fopenmp -lstdc++ -llapack -lblas -lpthread
# compiler options for icc and mkl (Intel)
# OPTS = -lstdc++ -mkl -03 -openmp
# library path for instance for LAPACK, if needed
# LIBS = -L/opt/intel/composer_xe_2013.1.119/mkl/lib/
# include path for headers, if needed
# INCS = -I/Developer/SDKs/MacOSX10.7.sdk/usr/lib/gcc/i686-apple-darwin11/4.2.1/include
# That is all, only edit the lines below for new source files
# or to add user defined cases to the compiler (example: user1)
# source files except main classes
SRC = source/combase.cpp source/bndblock.cpp source/matrixblock.cpp source/
bndelement.cpp source/matblc1.cpp
# source files for compiler test
TRC = source/combase_cote.cpp source/bndblock.cpp source/matrixblock.cpp source/
bndelement.cpp source/matblc1.cpp -w
# Lines hereafter don't need modification unless you want to add your own cases.
all: tutorial1 tutorial2 tutorial3 tutorial4 tutorial5
# A user defined case, if more are needed copy, paste, rename (i.e. userN) and adapt
user1: userfolder/main_user1.cpp
      $(CPP)
      @if [ \$\$? = 0 ]; then \
       echo " Compiling $@ done"; \
       echo " Compiling $@ failed"; \
```

tutorial1:

@if [\$\$? = 0]; then \

echo " Compiling \$@ done"; \

echo " Compiling \$@ failed"; \

```
# Makefile to compile Ulambator, 01.12.2015
# The sharp (#) symbols indicate comment, which are not executed
# Please adapt the following lines
# compiler of choice: g++, icc, etc.
CPP = q++
# compiler options for q++ with Xcode
OPTS = -lstdc++ -framework Accelerate -03 -lpthread
# compiler options for q++ with Lapack libraries
# OPTS = -fopenmp -lstdc++ -llapack -lblas -lpthread
# compiler options for icc and mkl (Intel)
# OPTS = -lstdc++ -mkl -03 -openmp
# library path for instance for LAPACK, if needed
# LIBS = -L/opt/intel/composer_xe_2013.1.119/mkl/lib/
# include path for headers, if needed
# INCS = -I/Developer/SDKs/MacOSX10.7.sdk/usr/lib/gcc/i686-apple-darwin11/4.2.1/include
# That is all, only edit the lines below for new source files
# or to add user defined cases to the compiler (example: user1)
# source files except main classes
SRC = source/combase.cpp source/bndblock.cpp source/matrixblock.cpp source/bndelement.cpp source/matblc1.cpp
# source files for compiler test
TRC = source/combase_cote.cpp source/bndblock.cpp source/matrixblock.cpp source/bndelement.cpp source/matblc1.cpp -w
# Lines hereafter don't need modification unless you want to add your own cases.
all: tutorial1 tutorial2 tutorial3 tutorial4 tutorial5
 # A user defined case, if more are needed copy, paste, rename (i.e. userN) and adapt
 user1: userfolder/main_user1.cpp
             $(CPP) -o user1.o userfolder/main_user1.cpp $(LIBS) $(INCS) $(SRC) $(OPTS)
             @if [ \$\$? = 0 ]; then \
                echo " Compiling $@ done"; \
             else \
                echo " Compiling $@ failed" ; \
             fi
 tutorial1: tutorial/tutorial1.cpp
             $(CPP) -o tutorial1.o tutorial/tutorial1.cpp $(LIBS) $(INCS) $(SRC) $(OPTS)
             @if [ $\$? = 0 ]: then \
                echo " Compiling $@ done"; \
             else \
                echo " Compiling $@ failed" ; \
             fi
```

Source Code

Commented and formatted code is found online or as a pdf at Ifmi.epfl.ch/ulamsource

▼ Microfluidics

- **▼** Simulation of Complex Microfluidic Circuits
 - ▼ Ulambator source

Tutorial 1

Tutorial 2

Tutorial 3

Tutorial 4

Tutorial 5

Installation under Windows

Setting up an IDE under Linux and OS X

▼ Source Code

Matrixblock

Bndblock

After the break ...

How to:

- ★ Set up a geometry
- ★ Set up a liquid interface
- ★ Define flow rates and material parameters
- ★ Solve the problem