Limonene: cheap chiral starting material found in the oil of citrus peels


(-)-4-epi-EnglerinA
suggest disconnections
and strategy
a few steps

$$
\Longrightarrow
$$



5 steps

$(R)-(+)$-limonene

$(R)-(+)$-limonene


(+)-pseudopteroxazole


## Solutions

Limonene: cheap chiral starting material found in the oil of citrus peels
epoxide opening


Sharpless dihydoxilation
(-)-4-epi-EnglerinA
Eur. J. Org. Chem. 2021, 22, 3190-3196

(+)-indicanone
Org. Biomol. Chem.
2012, 10, 4747-475
suggest disconnection and strategy
a few steps


1) $\mathrm{DDQ}, \mathrm{DCM} / \mathrm{H}_{2} \mathrm{O}$, rt
2) $\mathrm{ClCO}_{2} \mathrm{Me}$
pyridine, DCM,
3) $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$
$25 \mathrm{~mol} \% \mathrm{PPh}_{3}, \mathrm{MeOH}$,
$10 \mathrm{~atm} \mathrm{CO}, 40^{\circ} \mathrm{C}$
4) DIBAL-H
toluene, $-78^{\circ} \mathrm{C}$
5) TBSCI, DMAP, $E t_{3} N$, DCM
$0^{\circ} \mathrm{C}$ to rt
6) $5 \mathrm{~mol} \%\left[\mathrm{RhCl}(\mathrm{CO}) \mathrm{dpppp}_{2}\right.$
toluene, 1 atm CO , reflux then $10 \% \mathrm{HCl}$ aq., MeOH , rt

what type of cyclisation is it?
(Pauson-Khand)


7) $\mathrm{O}_{3} / \mathrm{O}_{2}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(5: 1),-70^{\circ} \mathrm{C}$;
$\mathrm{Me}_{2} \mathrm{~S}$, rt, 5 h ;
8) piperidine, AcOH ,
$\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, 1 h ;
9) $\mathrm{Li}, \mathrm{Br}$
10) $I B X, D M S O$
11) $\mathrm{Ti}(\mathrm{OiPr})_{4}$,

Grubbs' catalyst (II)


5 steps

(R)-(+)-limonene

1) $\mathrm{O}_{3}, \mathrm{MeOH}$
then $\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CS} / \mathrm{MeOH}$
2) $\mathrm{HC}\left(\mathrm{OCH}_{3}\right)_{3}$,
$\mathrm{CeCl}_{3} 6 \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$
3) LDA, THF

4) sBuLi
$(\mathrm{HCHO})_{n}$
THF, $-78^{\circ} \mathrm{C}$ to r
5) $\mathrm{NaH}, \mathrm{PMBCI}, \mathrm{DMF}$
$0^{\circ} \mathrm{C}$ to rt
then $35 \% \mathrm{HCl}$ aq. acetone
6) Ohira-Bestmann
reagent, $\mathrm{K}_{2} \mathrm{CO}_{3}$
$\mathrm{MeOH}, \mathrm{rt}$
7) LHMDS, Mel, $-78^{\circ} \mathrm{C}$

J. Org. Chem.

2005, 70,
3618-3632

(+)-pseudopteroxazole
J. Am. Chem. Soc

2003, 125, 13486-13489

1) $\mathrm{SOCl}_{2}$, pyr, $\mathrm{DCM}, 0^{\circ} \mathrm{C}$
2) $\mathrm{mCPBA}, \mathrm{EtOAc},-40^{\circ} \mathrm{C}$ Pummerer rearrangement

2,6-Iutidine, DCM, $-35^{\circ} \mathrm{C}$
4) morpholine, $\mathrm{MeOH},-10$ to $0^{\circ} \mathrm{C}$ then diastereomer separation

hen pyr.
7) $R$-CBS cat.

BH $\mathrm{H}_{3}$. THF, THF, $-55^{\circ} \mathrm{C}$
$\rightarrow$

then aq. $\mathrm{NaHCO}_{3}$

5) $\mathrm{MsOH}, \mathrm{AcOH}, 18{ }^{\circ} \mathrm{C}$

(S)-(-)-limonene 2 steps

1) AcCl ,
toluene, $80^{\circ} \mathrm{C}$
2) $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$
$\xrightarrow{\mathrm{H}_{2}, \mathrm{EtOH}}$


3) $\mathrm{OBn}, \mathrm{SnCl}_{4}$ DCM, $-78{ }^{\circ} \mathrm{C}$
4) $\mathrm{KOH}, \mathrm{EtOH},-10^{\circ} \mathrm{C}$

5 steps
3) $\mathrm{SOCl}_{2}$, pyr
4) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$
5) PivCl, pyr

1) thexylborane then $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}$
(S)-(-)-limonene

2) NaOCl
3) OAc Amano
4) TBDPSCI
imidazole, DMF
5) LDA then TMSCI
