Enantioselective Synthesis of (-)-10-Hydroxyacutuminine

Enantioselective Synthesis of (-)-10-Hydroxyacutuminine (Solution) EPFL 10.1002/anie.202117480 17.03.2022 MeO MeO first isolated from the Chinese moonseed plant in 1929 OH structure solved by single-crystal X-ray diffraction in 1967 selective T-cell cytotoxicity and anti-amnesic activity densely functionalized [4.3.3]propellane cores MeO MeO OMe Me OMe Me a spirofused cyclopentenone and vicinal quaternary centers (-)-acutuminine (3) (-)-acutumine (1) C1 late-stage oxidation ^tBu OH HO OH Br Br Br PhI(OAc)₂ ^tBu NH_2 Br p-TsOH[·]H₂O PhH, 70 °C MeOH, 0 °C Ti(OEt)₄, THF, 70 °C 77% 67% 86% OMe OMe MeO 8 ,^tBu Structure? Me ,^tBu o=s o=s L-Selectride, -78 °C, NH Me Me 9 then, TBSCI, imidazole Ó TBSO Rr 98% NaHMDS single diastereomer THF, -78 °C 1) LiHMDS 90%, >98:2 dr Mel, -78 °C >20 g scale 2) 5% In(OTf)₃ 10 acetone, rt 11 _tBu O=S ,^tBu o=s 1) l₂, acetone . SnBu₃ Me EtO N-Me 13 2) NaBH₄, AcOH N-Me Me Me TBSO 3) LiOH, H₂O₂, TBSO TBSO 5% Pd₂(dba)₃ MeOH 20% AsPh₃ OEt (53%, 3 steps) 94% 12 0 0 0 7 14 (76%, 2 steps) **Reaction Mechanism?** OMe OTBS OTBS **OTBS** hν LiOH (xs) BF3[·]Et₂O 315-400 nm Me Me Me 0 *m*-CPBA MeOH O PhH/pentane Q, MeO MeO 15 Me Me 16 Me 17 K₂CO₃ MeOH NMe₂ quantitative Θ $SiMe_3F_2$ \mathbf{O} $Me_2N \oplus NMe_2$ HO MeO OTBS **OTBS** OR Me TASF (xs) base Me \cap $H_2O(xs)$ 0: HC × Dieckmann MeO MeO MeO 8 Me 7 Me Me Me 20 18 19

Structure of L-Selectride:

Reasons for using 2 eq BF_3 ·Et₂O:

utilizing two equivalents of $BF_3 \cdot Et_2O$ to mask the basic amine, which is otherwise rapidly oxidized by m-CPBA.

Reaction Mechanism of 16 to 17:

Ref: P. A. Grieco, T. Oguri, Y. Yokoyama, Tetrahedron Lett. 1978, 19, 419-420.

Reaction Mechanism of 4 to 35:

Ref: S. E. Reisman, J. M. Ready, M. M. Weiss, A. Hasuoka, M. Hirata, K. Tamaki, T. V. Ovaska, C. J. Smith, J. L. Wood, *J. Am. Chem. Soc.* **2008**, *130*, 2087–2100.