Structure and Reactivity

Fall Semester 2008

Summary

Prof. Jérôme Waser BCH 4306 021 693 93 88 jerome.waser@epfl.ch

Assistant:

Davinia Fernandez-Gonzalez BCH 4409 021 693 94 49 davinia.fernandez@epfl.ch

Table of Content

1. Introduction and Literature

2. Conformational Analysis

- 2.1 Alkanes
- 2.2 Alkenes: Allylic Strain
- 2.3 Cyclohexane
- 2.4 Stereoelectronic Effects: HOMO-LUMO interactions

3. Alkenes

3.1 Synthesis of Alkenes

- 3.1.1 Elimination
- 3.1.2 From Acetylenes
- 3.1.3 Olefin Metathesis (see inorganic chemistry lectures)
- 3.1.4 From carbonyls
 - 3.1.4.1 Aldol Condensation
 - 3.1.4.2 Wittig and Variations
 - 3.1.4.3 Julia and Variations
 - 3.1.4.4 Peterson Olefination

3.2 Hydroboration of Alkenes

- 3.2.1 Important Boron Reagents and General Mechanism
- 3.2.2 Control of Diastereoselectivity

3.3 Alkene Oxidation

- 3.3.1 Epoxidation
 - 3.3.1.1 Directed Epoxidation with m-CPBA
 - 3.3.1.2 Directed Epoxidation with metal catalysts
 - 3.3.1.3 Epoxide Opening and the Fürst-Plattner Rule
- 3.3.2 Dihydroxylation

4. Addition to Carbonyl

- 4.1 General Concepts and Models
- 4.2 Addition to Carbonyls not Following the Felkin Ahn Model
 - 4.2.1 Chelate Control
 - 4.2.2 Directed Reduction
 - 4.2.3 Reagents Binding to Carbonyl during Addition
- 4.3 Allylation of Carbonyls

5. Enolate Generation and Reactivity

- **5.1 Selective Generation of Enolates**
- 5.2 Chiral Auxiliary and Enolate Alkylation
 - 5.2.1 General Concept
 - 5.2.2 Evans Oxazolidinone Auxiliary
 - 5.2.3 Other Auxiliaries

6. Aldol Reaction

- **6.1 Zimmermann-Traxler Transition State**
- 6.2 Aldol Reactions using Evans' Auxiliary
- 6.3 Ketone (Paterson) Aldol

7. Reaction of Imines and Conjugated Systems

- 7.1 Chemistry of Imines
- 7.2 Chemistry of Enamine and Metalloenamine
- 7.3 Conjugate Addition and the Vinylogous Principle

8. Cross Coupling Reactions

8.1 Organometallic-RX Cross Coupling

8.2 Heck Coupling8.3 C-Heteroatom Coupling

9. Cycloadditions

9.1 Diels-Alder Cycloaddition

- 9.1.1 General Aspects
- 9.1.2 Diastereoselective Diels-Alder with Evans' Auxiliary
- 9.1.3 Special Diels-Alder Reactions

9.2 [3+2] Cycloaddition Reactions (1,3-Dipolar Cycloadditions)

10. Rearrangements

10.1 Rearrangements via Reactive Intermediates

- 10.1.1 Cationic Intermediates
- 10.1.2 Carbene and Nitrene Intermediates

10.2 [3,3] Sigmatropic Rearrangements

- 10.2.1 General Mechanism
- 10.2.2 Overman's Aza-Cope Mannich approach towards Strychnine

Supplementary Material

- Prerequired Knowledge (required for exam)
- General Mechanism for Diels Alder Reaction (required for exam)
- Polyketides and Drugs (**not** required for exam)

Structure and Reactivity: Summary

1. Introduction and Literature

Warning: This summary is meant as an help to check the note taken in the lecture and contains only the most important concepts and transition states, it cannot replace the blackboard notes!

Important Supporting Material

- Prerequired Knowledge Summary (necessary to solve exam problems!) repetition of easy concepts from bachelor
- Evans CHEM 206 (on the internet via google) probably the best lecture on the net on advanced organic chemistry, contains most of the topics of this lecture and much more
- Carey Sundberg: Advanced Organic Chemistry Part A and B
 Comprehensive books, focusing mostly on reactivity, but weaker on selectivity.
- March's: Advanced Organic Chemistry Book good for consultation, not for learning
- Kurti-Czako: Strategic Applications of Named Reactions in Organic Synthesis
 One of the best book for named reactions, very good to revise mechanism and scope of specific reactions

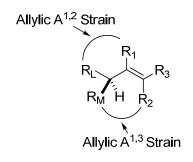
2. Conformational Analysis

(Energy Values in Kcal/mol, M = Medium, L = Large)

2.1 Alkanes

Butane

Sägebock Projection


Newman Projection

$$H_3CHH$$
 H_3CHH
 H_3CH

Special Interaction for Pentane:

Double Gauche Pentane or Syn Pentane Interaction

2.2 Alkenes: Allylic Strain

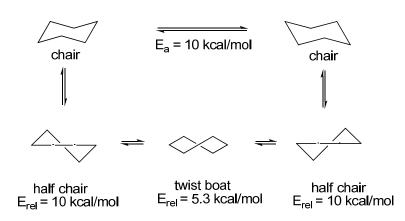
$$R_1$$
 H R_2 R_2

A^{1,3} Minimized:

- R_L in free room \perp to DB
- H towards R₂

Favored for R₂ bigger R₁

A^{1,2} Minimized:


- R_L in free room \perp to DB
- H towards R₁

Favored for R₁ bigger R₂

- If R_1 and R_2 are of similar size, $A_{1,3}$ is more important.
- R₃ is usually less important for selectivity.

Rigid

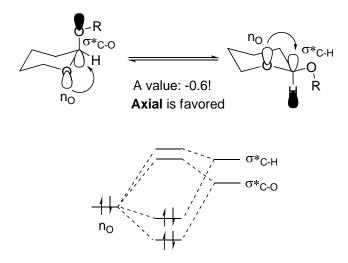
2.3 Cyclohexane

Special Case: Decalin

Flexible

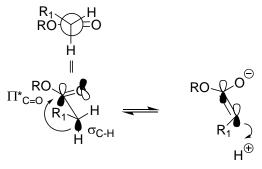
A Values

R	A value	2 gauche interactions (also called 1,3-diaxial interactions)
CH ₃ CH₂CH ₃	1.7 1.7	H R R
CH(CH ₃) ₂	2.1	R axial R equatorial
$C(CH_3)_3$	4.7	A value (R) = - Δ G (axial-equatorial)
CN	0.2	!!! A value are exact only for monosubstituted cyclohexanes!!!
C_6H_5	2.8	Important number to remember:
Si(CH ₃) ₃	2.5	A Value CH ₃ : 1.7 Kcal/mol
OCH ₃	0.6	1.4 Kcal = 10:1 mixture
CI	0.6	21 Kcal = thermal energy at room temperature


2.4 Stereoelectronic Effects: HOMO-LUMO interactions

Important Rules for HOMO-LUMO interactions

- 1) The nearest the energy of HOMO and LUMO, the strongest the interaction.
- 2) The absolute energy of orbitals is correlated to the electronegativity of the atoms/bonds
- 3) Stereoelectronics: a geometrical overlap of orbitals is necessary for interaction


Important examples:

Structural Anomeric Effect

Anomeric Effect: In the axial position, a better stabilization with the more electronegative $\sigma^*_{\text{C-O}}$ is possible.

Enolate Formation

 \implies Hydrogen is acidic only \perp to C=O!

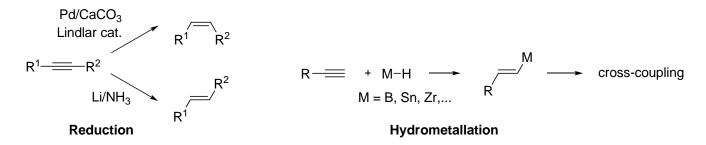
Microscopic Reversibility:

Protonation from Enolate is \bot to C=C!

Other examples seen in the lecture: Sn² substitution, elimination, conformation of esters, stabilization of carbocations

3. Alkenes

3.1 Synthesis of Alkenes


3.1.1 Elimination

E₂, trans elimination

Chugaev syn elimination

Selenoxide syn elimination

3.1.2 From Acetylenes

3.1.3 Olefin Metathesis (see inorganic chemistry lectures)

3.1.4 From carbonyls

3.1.4.1 Aldol Condensation

3.1.4.2 Wittig and Variations

Original Wittig

Mechanism

Two transition state are possible: puckered and planar. For alkyl groups, the reaction is controlled by sterics and the puckered TS is favored (less interactions with bulky Ph group). For esters, the reaction is controlled by electronics and the planar TS is favored (better Dipoles orientation).

Schlosser Variation

Ph₃P
$$\xrightarrow{R_1}$$
 $\xrightarrow{P_1}$ $\xrightarrow{P_2}$ $\xrightarrow{P_3}$ $\xrightarrow{P_4}$ $\xrightarrow{P_4}$ $\xrightarrow{P_4}$ $\xrightarrow{P_4}$ $\xrightarrow{P_5}$ $\xrightarrow{P$

General problem with Wittig: Strong base is needed! It cannot be used for base-sensitive substrates.

Milder Variations:

Horner-Wadsworth-Emmons (HWE)

HWE is trans selective and weaker base can be used: very often used in total synthesis.

Cis-selective variations:

$$\begin{array}{c|cccc} & O & O & O & O \\ \hline F_3CH_2CO-P & OEt & PhO-P & OEt \\ \hline F_3CH_2CO & OEt & PhO & OEt \\ \hline \\ \textbf{Still-Gennari} & \textbf{Ando} \\ \end{array}$$

3.1.4.3 Julia and Variations

Julia-Lythgoe

$$R \longrightarrow SO_2Ph \xrightarrow{1) \text{ BuLi, } R^1} H \longrightarrow HO \longrightarrow R^1 \longrightarrow Ac_2O \longrightarrow AcO \longrightarrow R^1 \longrightarrow SO_2Ph \longrightarrow Na, Hg$$

$$R \longrightarrow R^1 \longrightarrow AcO \longrightarrow R^1 \longrightarrow Na, Hg$$

$$R \longrightarrow R^1 \longrightarrow AcO \longrightarrow R^1 \longrightarrow Na, Hg$$

$$R \longrightarrow R^1 \longrightarrow R^1 \longrightarrow R^1 \longrightarrow R^1 \longrightarrow R^1$$

Highly trans selective, but multi-steps

Julia-Kocienski

If high selectivity can be achieved in the first step, the Peterson protocol allows obtaining *trans* or *cis* olefins depending on the reaction conditions.

3.2 Hydroboration of Alkenes

3.2.1 Important Boron Reagents and General Mechanism

BH₃ borane

9-BBN

catechol borane

$$R^{1_2}BH \longrightarrow R^{1_2}BH$$
 $R^{1_2}BH \longrightarrow R^{1_2}BH$
 R^{1_2

Regioselectivity: H goes to more stabilized carbocation, because the mechanism is asynchronous:

Partial positive charge $H = BH_2$ tertiary carbocation > secondary carbocation > primary carbocation

3.2.2 Control of Diastereoselectivity

Hydroboration with BH₃: Minimize strongest Allylic strain, BH₃ comes opposite from R_L

A^{1,2} Minimized

Hydroboration with bulky boron reagents: Minimize reagent-substrate interactions

3.3 Alkene Oxidation

3.3.1 Epoxidation

3.3.1.1 Directed Epoxidation with m-CPBA

OH directs
$$m$$
-CPBA

OH directs m -CPBA

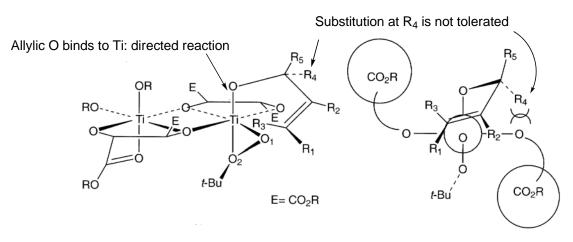
OH

 R_1

H

 R_2
 R_1
 R_1
 R_2
 R_3
 R_4
 R_4
 R_4
 R_5
 R_5

Directed reactions often allows for good selectivity in organic chemistry!

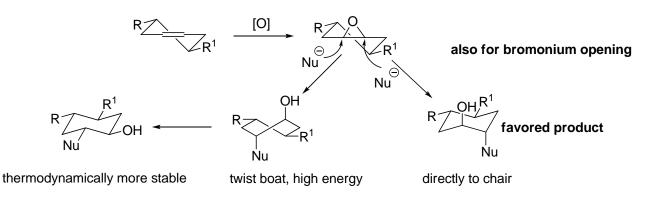

3.3.1.2 Directed Epoxidation with metal catalysts

General Mechanism

Catalytic Asymmetric Version: Sharpless Epoxidation

conditions: 5 mol% Ti(OⁱPr)₄, 5 mol% DET, ^tBuOOH, molecular sieves, CH₂Cl₂, -20 °C

DET = diethyltartrate
$$HO_{2}OH_{2}$$
 a cheap member of the chiral pool $EtO_{2}C$ $CO_{2}Et$


(The view down O1-Ti bond axis)

Important:

- ^tBuOOH does not react until bound to Ti ⇒ Catalysis is possible
- Face of attack of the peroxide is determined by the chiral diester ligand, <u>not</u> the conformation of the substrate \Rightarrow very good reagent control

The Sharpless epoxidation is very often used for the synthesis of complex organic molecules!

3.3.1.3 Epoxide Opening and the Fürst-Plattner Rule

The thermodynamically more stable product is not observed, because an unvaforable twist-boat intermediate has to be formed.

3.3.2 Dihydroxylation

General Mechanism

$$= + OsO_4 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow H_2O \longrightarrow HO \longrightarrow OH$$

Problem with first method: Stoichiometric use of very toxic and expensive OsO₄

Sharpless Catalytic Asymmetric Dihydroxylation: Ad-mix

5 mol% K₂OsO₄(OH)₄ (catalyst) K₃Fe(CN)₆ (stoichiometric oxidant) cinchona-derived amines (chiral ligand) Inorganic Base

≻ sold as Ad-mix

example of chiral ligand

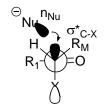
The Sharpless dihydroxylation is the most used method for the asymmetric synthesis of diols.

This reaction will be discussed in details in the couse catalytic asymmetric reactions in organic synthesis.

4. Addition to Carbonyl

4.1 General Concepts and Models

Comparison with Olefins


- Sterics is different: only lone pairs on O
- C=O bond is polarized: no issue of regiochemistry
- Further activation of carbonyls with Lewis Acis is easy and allow to modulate the reactivity

Felkin-Ahn Model

- R_L is \perp to C=O
- Nu comes along the Bürgi-Dunitz trajectory (109 °C to C=O)
- Minimize Nu-Substrate interaction ⇒ Smallest Substituent on Bürgi-Dunitz trajectory (Here H)

Polar Felkin-Ahn Rule

Electron-deficient groups behave as R_I

Favorable Interaction n_{Nu} to σ^*_{C-X}

X = OR, F, Cl, Br, I, ...

4.2. Addition to Carbonyls not Following the Felkin Ahn Model

4.2.1. Chelate Control

1,2 Chelate control

- Metal forces two donors in plane through chelation
- Nu comes towards smallest substituent (H)

1,3 Chelate control

Factors favoring chelation

- R group sterically not hindered:

good: R = Me, Bn, MeOCH₂ (MOM), BnOCH₂ (BOM) bad: R = t Bu, SiMe₃, SiMe₂ t Bu (TBDMS or TBS), Si t Pr₃ (TIPS)

- non-coordinating solvents:

Toluene, CH₂Cl₂ >> Et₂O > THF >> DMF, EtOH, H₂O

- Strong Lewis Acid, with more than one coordination site available

Bad: Na⁺, K⁺ (too weak Lewis Acid), BF₃ (only 1 coordination site), LiX Good: MgX₂, ZnX₂, LiX, TiCl₄, SnCl₄, SnCl₂, LnX₃, AlCl₃...

Importance of anion X: If X is not too tightly bond to the metal, it can dissociate generating a new free coordination site. F^- , R^- generally don't dissociate, Cl^- and OAc^- can dissociate and Br^- , l^- , OTf^- often dissociate easily. For example BF_3 is not a chelating agent, but BBu_2OTf is a chelating agent.

4.2.2. Directed Reduction

$$\begin{array}{c} \text{OH O} \\ \text{R} \\ \text{"Aldol Product"} \end{array} \xrightarrow{\text{NaBH}(\text{OAc})_3} \begin{array}{c} \text{NaBH}(\text{OAc})_3 \\ \text{R} \\ \text{NaBH}(\text{OAc})_3 \\ \text{NaBH}(\text{OAc})_3 \\ \text{NaBH}(\text{OAc})_3 \\ \text{NaBH}(\text{OAc})_4 \\ \text{NaBH}(\text{OAc})_3 \\ \text{NaBH}(\text{OAc})_4 \\ \text{NaBH}(\text{OAc})_5 \\ \text{NaBH}(\text{OAc})_6 \\ \text{NaBH}(\text{OAc})_7 \\ \text{NaBH}(\text{OAc})_8 \\ \text{NaBH}($$

Chair transition state

- All R groups equatorial

chelate conditions give syn!

Sodium trisacetoxy borohydride is a very weak reducing reagent \Rightarrow Only intramolecular reduction is possible

Use of chelate conditions or directed reductions allow to acces both syn and anti diols from aldol synthons, and are also essential methods for the selective synthesis of polyols polyketide natural products.

4.2.3 Reagents Binding to Carbonyl during Addition

Borane Reduction

- R_I is \perp to C=O
- BR₂ bind to O during reduction
- Minimize BR_2 -Substrate interaction \Rightarrow Smallest Substituent towards BR_2 (H)

Other important examples where Felkin-Ahn models does not apply:

Allylation, Aldol Reactions via Chair Transitions States

4.3 Allylation of Carbonyls

Allylation

Crotylation

- 6-membered, chair transition state
- Substituent in equatorial position
- Transfer from double bond geometry to stereochemistry (E to anti, Z to cis)

Chiral Reagents For Allylation Reactions

$$CO_{2}^{i}Pr$$

$$Roush Reagent$$

$$Ester group in axial position further away interaction less important
$$CO_{2}^{i}Pr$$

$$RCHO$$

$$RC$$$$

Brown lpc reagent is very reliable and often used in total synthesis.

5. Enolate Generation and Reactivity

5.1 Selective Generation of Enolates

Kinetic vs thermodynamic control

pK_a = 22

H_a

H_b

Ph

NaH

$$20 \, ^{\circ}\text{C}$$

H

kinetic product

 $\rm H_a$ is less sterically hindered, faster to deprotonate and leads to the kinetic product with bulky base at low temperature.

Deprotonation of Hb leads to the more stable conjugated double bond, the thermodynamic product, at higher temperature.

Important bases for kinetic deprotonation:

Deprotonation with LDA: cis vs trans selectivity

For big X (CR₃, NR₂)
$$R + HN^{i}Pr_{2}$$

$$LDA$$
For small X (OR, H)
$$X/R \text{ interaction minimized}$$

exception for esters: Adding HMPA leads to Z (Cis) Enolate

Deprotonation of Imides with Bu₂BOTf and NEt₃ (soft enolization)

Very strong A^{1,3} with Imides!

Deprotonation of Ketones

5.2 Chiral Auxiliary and Enolate Alkylation

5.2.1 General Concept

The chiral auxiliary X* should be:

- easy to introduce and remove
- able to create an efficient asymmetric induction
- cheap and recoverable

Disadvantage: multi-step protocol

Advantage: chiral auxiliary is bound covalently: good asymmetric induction and separation of diastereomers possible

5.2.2 Evans Oxazolidinone Auxiliary

Synthesis: easy from cheap natural amino acid

^{*}The complete switch of selectivity is not well understood, some authors proposed an extra CI-hydrogen interaction

Auxiliary Introduction

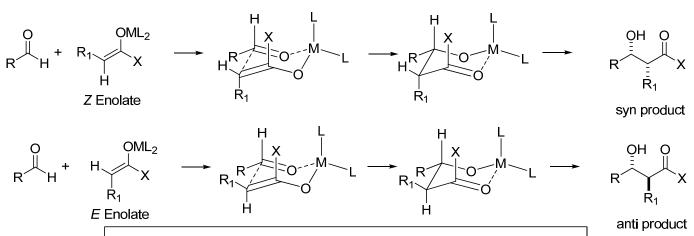
Enolate Alkylation

Auxiliary Removal

5.2.3 Other Auxiliaries

Myers auxiliary is often used for alkylation reaction in synthesis, as the enolate formed are more reactive then the ones from Evans' auxiliary

good E⁺

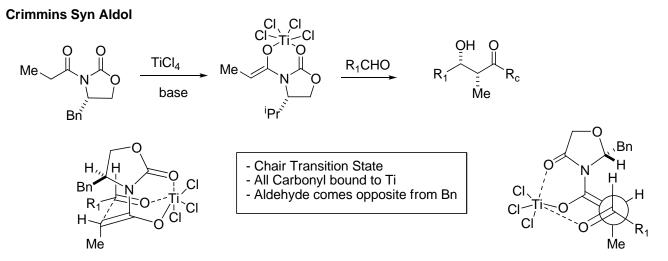

Oppolzer Sultam

Myers Pseudoephedrin auxiliary

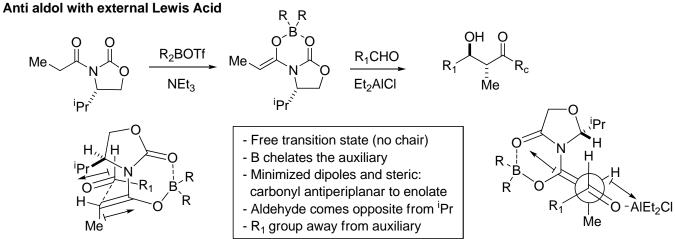
From Camphor

6. Aldol Reaction

6.1 Zimmermann-Traxler Transition State



- Chair transition state (Zimmerman-Traxler)
- R group of aldehyde equatorial
- Geometry of double bond transfered to stereocenter: cis to syn, trans to anti


6.2 Aldol Reactions using Evans' Auxiliary

Evans Syn Aldol:

Important: In order to activate the aldehyde for addition, B has to bind to the aldehyde. As B has only two free binding sites, the oxazolidinone carbonyl is now free and rotates to minimize dipole interactions.

Newman view from the back

Newman view from the back

6.3 Ketone (Paterson) Aldol

- Chair transition state
- R₁ group of aldehyde equatorial
- position of chiral group: minimize steric interaction with BR_2 for cis enolate, aldehyde comes towards R_M , not R_L , minimize $A^{1,3}$ with Me of enolate for trans enolate, R_M and not R_L towards BR_2 , aldehyde comes towards H

7. Reaction of Imines and Conjugated Systems (Mannich and Michael Reactions)

7.1 Chemistry of Imines

Comparison of Reactivity as Electrophile

Imine are less reactive as electrophile then carbonyl compounds, but they are easy to activate as iminium

Reductive Amination

Because of the electron-withdrawing CN group, $Na(BH_3CN)$ is not able to reduce carbonyls, but it is strong enough to reduce the more reactive iminium.

Mannich Reaction = Imine equivalent of aldol reaction

OM
$$R^{1,\bigoplus}X$$
 Q $R^{1,\bigvee}X$ Q R^{2} R^{2} R^{2} β -amino ketone

7.2 Chemistry of Enamine and Metalloenamine

Comparaison of Nucleophilicity

Enamine are easily formed from iminium, but less nucleophilic than enolate. Metalloenamine are very reactive.

Enders SAMP Chiral Auxiliary for Ketone

SAMP Hydrazone

- A highly reactive Li enamine is formed
- The Li metal is bound opposite to the enamine double bond to minimize steric interactions with the electrophile
- The electrophile comes opposite to the pyrrolidine ring

Proline Catalyzed Aldol: via enamine intermediates

Me
$$\stackrel{+}{\text{Me}}$$
 $\stackrel{+}{\text{H}}$ $\stackrel{+}{\text{CO}_2H}$ $\stackrel{+}{\text{Me}}$ $\stackrel{+}{\text{Me$

7.3 Conjugate Addition and the Vinylogous Principle (Michael Addition)

Vinylogous Principle

Regioselectivity

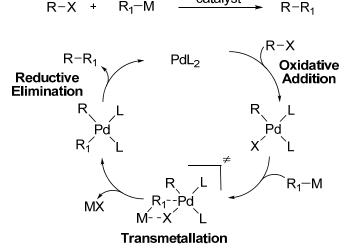
- 1,2 -Addition favored for hard nucleophile (Grignard)
- 1,4 (Michael) Addition favored for soft nucleophile (Cuprate)

Electronic properties are "transmitted" by double bond = vinylogous principle

Important Applications of Michael Addition

Synthesis of (all-carbon) quaternary centers

quaternary centers are generally difficult to synthesize!


Robinson annulation

The asymmetric variation of this method is possible with proline as a catalyst (Hajos-Parrish-Eder-Sauer-Wiechert Reaction)

8. Cross Coupling Reactions

Cross Coupling reactions are very often used in medicinal chemistry and synthesis nowadays!

8.1 Organometallic-RX Cross Coupling

catalyst

catalyst: most often Pd, but also Ni, Fe

Scope:

R and R₁ groups

easy: R, R_1 = aryl, alkenyl, alkynyl difficult: R_1 = alkyl very difficult R = alkyl (topic of current research)

X groups

easy: I, Br, OTf difficult but more interesting: Cl, OTos, H

Comparison of Organometallic Reagents

Reactivity: $BX_2 < SnR_3 < ZnX < MgX$ **Stability**: $BX_2 > SnR_3 > ZnX > MgX$

Boronic acid derivatives are the most stable, but they need activation with nucleophile (OH-) to react!

Recent efforts to accelerate oxidative addition (important to use cheaper CI reagents)

Oxidative addition is faster for:

Electron-rich ligands (more electrons) mono-coordinated Pd intermediates (more place)

Important recently introduced ligands:

$$\nearrow$$
P \leftarrow

Tri-tert-butyl phosphine

Fu, MIT

Steric bulk to promote mono-coordination

Biarylphosphine

Buchwald, MIT

Pd-Aryl interaction to promote mono-coordination

N-Heterocyclic Carbenes (NHC)

more electron-rich than phosphines

here: commercially available PEPPSI ligand (Aldrich)

Special for Suzuki with alkyl-boronic acid derivatibes

dppf (Di(bisphenylphosphino)ferrocene)

Bidentate ligand good to prevent β-hydride elimination

Building blocks for the synthesis of all diene isomers via Suzuki coupling

$$R \longrightarrow + \bigcirc O \longrightarrow R \longrightarrow R \longrightarrow R \longrightarrow H^{+} \longrightarrow H_{2}O \longrightarrow R \longrightarrow BOH_{2}$$

$$\downarrow 1) Br_{2} \longrightarrow I_{2}$$

$$\downarrow 2) NaOMe \longrightarrow R \longrightarrow I_{2}$$

$$\downarrow I_{2}$$

$$\downarrow I_{2}$$

$$\downarrow I_{3}$$

$$\downarrow I_{2}$$

$$\downarrow I_{3}$$

$$\downarrow I_{4}$$

$$\downarrow I_{4}$$

$$\downarrow I_{4}$$

$$\downarrow I_{5}$$

$$\downarrow I_{7}$$

$$\downarrow I_{8}$$

$$\downarrow I_{1}$$

$$\downarrow I_{1}$$

$$\downarrow I_{2}$$

$$\downarrow I_{3}$$

$$\downarrow I_{4}$$

$$\downarrow I_{4}$$

$$\downarrow I_{5}$$

$$\downarrow I_{5}$$

$$\downarrow I_{7}$$

$$\downarrow$$

Hydrozirconation-Transmetallation for the synthesis of Organozinc reagents:

$$\mathsf{R} = + \mathsf{HZrCp_2CI} \longrightarrow \mathsf{R} \nearrow \mathsf{ZrCp_2CI} \stackrel{\mathsf{ZnCl_2}}{\longrightarrow} \mathsf{R} \nearrow \mathsf{ZnC}$$

8.2 Heck Coupling

The β-H elimination step is reversible, which can lead to isomerization of the double bond!

8.3 C-Heteroatom Coupling

NuH + R-X
$$\xrightarrow{\text{Pd cat.}}$$
 R-Nu
Nu = R¹R²N, RO, RS

Especially the amination (Buchwald-Hartwig Amination) is important for pharma

8.4 Future Progress and Current Topic of Research: Olefin and CH Functionalization

9. Cycloadditions

9.1 Diels-Alder Cycloaddition

9.1.1 General Aspects

Mechanism, endo and ortho rules: see supplementary material

Important Dienes

9.1.2 Diastereoselective Diels-Alder Reactions with Evans' Auxiliary

2 Different models depending of stoichiometry of Lewis Acid:

1 Eq. Me₂AICI: no chelate

$$\begin{array}{c} \text{Me} \ominus \\ \text{Cl-Al} \\ \text{Me} \\ \text{O} \\ \text$$

low selectivity

- Endo transition state
- Minimize dipole with oxazolidinone
- L. A. binds O opposite to bulky Bn group
- Dienophile in s-trans conformation to prevent interaction with L. A.
- Diene comes opposite to bulky Bn

2 Eq. Me₂AICI: chelate

- Endo transition state

s-cis

- Abstraction of CI by second L. A. allows chelation
- Dienophile in s-*cis* conformation to prevent interaction with bulky Bn
- Diene comes opposite to bulky Bn

In this case, different mechanisms lead to the same product, because two key structural elements are changing: chelation vs dipole control and s-cis vs s-trans conformation of dienophile

9.1.3 Special Diels-Alder Reactions

Intramolecular Diels-Alder Reactions

HOMO

$$CO_2R'$$
 CO_2R' RO

LUMO

Retro Diels-Alder Reactions

Retro Diels-Alder reaction is particularly good if the products are very stable (aromatic compounds) and/or stable gases that escape the reaction mixture (N_2, CO_2)

9.2 [3+2] Cycloaddition Reactions (1,3-Dipolar Cycloadditions)

Important 1,3-dipoles

Huisgen Cycloaddition of Azide and Acetylene

$$R = + R' - N_3 \xrightarrow{\text{high T}} R \xrightarrow{: N = N - N : \ominus} R \xrightarrow{N N N R'} Triazole$$

Sharpless: At room temperature with Cu catalyst = example of Click Chemistry

Click chemistry: ideally: easy reaction for the addition of compounds, without waste generation, with high tolerance towards impurities and functional group, at room temperature and physiological conditions

Very interesting properties of this reaction: it can be performed in the presence of virtually any other functional group and azide, and to a lesser extent acetylenes, are absent in biomolecules: this reaction is ideally suited for the synthesis of bioconjugates.

Bertozzi trick: use strained alkynes in rings to promote reaction at room temperature without catalyst in living cell!

10. Rearrangements

10.1 Rearrangement via Reactive Intermediates

10.1.1 Cationic Intermediates

1,2-Alkyl Shift: Wagner-Meerwein Rearrangement

Pinacol Rearrangement

Same Starting from:

Prins-Pinacol:

10.1.2 Carbene and Nitrene Intermediates

carbene
$$R_1$$
 R_2 R_3 R_3 important special case: R_3 $R_$

Name Reactions: Fritsch-Buttenberg-Wiechell, Arndt-Einstert, Wolff.

nitrene
$$R_1$$
 N : R_2 important special case: R N : N isocyanate

Name Reactions: Curtius, Hofmann, Lossen, Schmidt

10.2 [3,3] Sigmatropic Rearrangements

10.2.1 General Mechanism

- Chair transition state (with rare exceptions)
- R groups at SP³ centers equatorial
- Transfer of double bond geometry to stereocenter and stereocenter to double bond geometry

Name Reactions: Cope (X = C), Oxy-Cope (X = C, R_3 = OH), Anionic Oxy-Cope (X = C, R_3 = O-), Claisen (X = O), Johnson-Claisen (X = O, Y = OR), Ireland-Claisen (X = O, Y = OLi, OSi R_3)

10.2.2 Overman's Aza-Cope Mannich approach towards Strychnine