
PACCMIT-CDS
Searching the coding region for microRNA targets [1]

Concise user’s manual
(version 0.1)

Miroslav Šulc, Ray M. Marín, and Jiří Vaníček†

Laboratory of Theoretical Physical Chemistry
Institut des Sciences et Ingénierie Chimiques

Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

†Electronic address: jiri.vanicek@epfl.ch

http://lcpt.epfl.ch
mailto:jiri.vanicek@epfl.ch

Contents

1 Concise user’s manual 3

2 User’s manual 5

2.1 Structure of the bundle . 5

2.2 Installation . 5

2.3 Software requirements . 5

3 Basic usage 7

3.1 Input . 7

3.1.1 Format of the input files . 7

3.2 Output . 8

3.3 Parameters of the algorithm . 8

3.3.1 Shuffling 101 . 8

3.3.2 Shuffling constraints . 9

3.3.3 Advanced options . 10

3.4 Various options . 11

4 Examples 12

4.1 Timing calculation . 12

4.2 Printing out the gene sequence information 13

4.3 Displaying conservation information . 14

4.4 Small working example . 16

5 Supplementary utilities 17

5.1 Parallelization: SPLIT utility . 17

5.1.1 Usage . 17

5.1.2 Example . 18

1

Ray M. Marín, Miroslav Šulc, and Jiří Vaníček PACCMIT-CDS

5.2 Histograms of the data: HISTO utility . 18

5.2.1 Usage . 19

5.2.2 Example . 20

6 References 21

2

1 Concise user’s manual

Note that this chapter contains precisely the content of the Concise User’s Manual.

PACCMIT-CDS is a program searching for microRNA targets within coding sequences. The
program is written in C++ and is distributed in source form. The current version can be
downloaded in a compressed form from http://lcpt.epfl.ch. Below we describe the ba-
sic usage of PACCMIT-CDS assuming a Linux-like operating system running on x86-64 archi-
tecture. As a courtesy to the authors, if you use this algorithm, please cite Ref. [1].

1. Download the tarball paccmit-cds.tgz from our website http://lcpt.epfl.ch and
decompress it by means of the command

tar -xzvf paccmit-cds.tgz

2. Compile the program with the command

make

3. The basic function of PACCMIT-CDS is taking two input files – one with coding se-
quences of the genes of interest and one with sequences of the miRNAs, and comput-
ing for each miRNA-gene pair M-G the probability (PSH) that an interaction between M

and G would occur by chance. The smaller this probability, the more likely is gene G

the target for miRNA M.

There are two basic ways to run PACCMIT-CDS:

• if the conservation of target sites is not required:

./paccmit-cds \

-g ./data/genes_noncons_example.fa \

-m ./data/miRNAs_example.fa \

-i 8

• if the conservation of target sites is required (e.g., in at least 12 species):

./paccmit-cds \

-g ./data/genes_cons_example.fa \

-m ./data/miRNAs_example.fa \

-i 8 \

-x 27 \

-M">11"

The meaning of the program options employed above is:

• the option -i 8 requests the PSH values to be evaluated with precision 10−8. Typ-
ically, the PSH values are sufficiently resolved if the value of -i is set to

log10

[
#miRNAs × #genes

]
.

3

http://lcpt.epfl.ch
http://lcpt.epfl.ch

Ray M. Marín, Miroslav Šulc, and Jiří Vaníček PACCMIT-CDS

This value (or larger) should be used in productions runs. The run time of PACCMIT-CDS
for large databases can be lowered by running the code in parallel (see Section 5.2).

• -g and -m options (required) specify the location of the gene and miRNA input
files in FASTA format [see genes_noncons_example.fa and Section 3.1 for more
detailed description]

• if the conservation is required, the switch -x determines the number of aligned se-
quences while the -M switch specifies the conservation mask [see Subsection 3.3.2].
The preceding example requires the conservation of the target sites in at least 12
species. For the precise format of the aligned sequences needed in this case, in-
spect the file genes_cons_example.fa and see Section 3.1.

4. The output of PACCMIT-CDS is printed into files stat_1ei.dat for each i from 1 to the
value set by the -i option. Each line of file stat_1ei.dat corresponds to a unique
gene-miRNA pair and contains, in the sixth column, the PSH value of this pair com-
puted with precision 10−i . In order to rank the predictions generated by either of the
preceding two examples, simply sort the output file with:

sort -n -k6,7 stat_1e8.dat > ranked_predictions

The top predictions appear at the top of the file ranked_predictions, which is basi-
cally the final result of the PACCMIT-CDS algorithm. Note that generating the prelimi-
nary results in files with lower resolution of PSH-values is useful since the calculation
of final results can take a lot of time for large input files.

Finally, we note that files human_mirna_v18.fa and human_hg18_28_species.fa with
all human miRNAs and with the aligned coding sequences of all human genes are
available at http://lcpt.epfl.ch for more detailed tests.

Results published in Ref. [1] were generated by using these two files as input files in
the preceding two examples.

References

[1] R. M. Marín, M. Šulc, J. Vaníček, RNA accepted (2012).

4

http://lcpt.epfl.ch

2 User’s manual

2.1 Structure of the bundle

The program consists of several source *.cc and header *.h files which are stored in the
“root” directory. The “production” tarball contains also several subdirectories:

• include

third party include files as detailed in Section 2.3

• lib

third party static libraries required to link the executables

• data

sample genome and microRNA data files (since the entire data files are quite large, we
provide them in a separate archive paccmit-data.tgz)

2.2 Installation

We provide a minimalistic Makefile in order to facilitate the installation process. In prin-
ciple the following command

make or make all

should compile all required source files and build final executables. Resulting executables
are created in the directory in which the program was compiled. The main program can
be launched by executing the command ./paccmit-cds, options of which are detailed in
Chapter 3.

The attached tarball package has been tested with the GNU G++ (version 4.4.3) and Intel
C++ (version 11.1) compilers under Linux (Debian) operating system running on x86-64

architecture.

2.3 Software requirements

The PACCMIT-CDS package relies partially on third party software, therefore it is necessary
to set up the attached Makefile accordingly in order to be able to use PACCMIT-CDS properly.
Following dependencies are enforced:

5

Ray M. Marín, Miroslav Šulc, and Jiří Vaníček PACCMIT-CDS

1. zlib library [2] – is utilized in order to enable reading of the (presumably large) files
with genome information in compressed form as well as to write the output files gener-
ated by PACCMIT-CDS in the course of the computational process. Better performance
is achieved with versions of the zlib library supporting internally the gzbuffer func-
tion. Static library libz.a (version 1.2.6 compiled for the x86-64 architecture) is
included in the PACCMIT-CDS bundle in the ./lib subdirectory, while the necessary
header files are stored in the ./include subdirectory.

2. RandomLib library [3] – ensures the computational core of the PACCMIT-CDS package,
namely the generation of the random numbers utilized in the implementation of the
codon shuffling algorithm. The RandomLib library of Karney provides C++ interfaces
for the Mersenne Twister random number generator MT19937 and as such should
be far more reliable than the routines of the standard C/C++ library. For potential
user’s convenience, static version of the RandomLib library (compiled for the x86-64

architecture) is included in the ./lib subdirectory, while the necessary include files
are stored in the ./include subdirectory.

However, we strongly encourage potential reader/user to download the source codes of the
above-mentioned libraries separately and compile them directly for his/her target architec-
ture in order to gain optimal performance as well as prevent eventual linkage issues. In this
case, the consequent modification of the Makefile can be easily done in two steps:

• set the LIBRARY_PATH variable to point to a directory containing required libraries. The
switch -Wl,static of the GNU G++ compiler can be used in order to enforce utilization
of static libraries.

• set the INCLUDE_PATH variable to point to a directory containing required header files.

6

3 Basic usage

The PACCMIT-CDS program accepts arguments from the command line in the standard UNIX-
like fashion, i.e., either in short or (if available) long form. In this section we include a con-
cise list of the most important options. For description of the actual algorithm we refer the
interested reader to the original publication [1]. Default values of parameters (if applicable)
are shown in gray on the right.

3.1 Input

-g, --glist=file

specifies the path to the genome file. This file must contain at least one sequence
per gene or several aligned sequences in case that binding site conservation should be
taken into account. The latter case can be customized with the -x option (see below).

-m, --miRNA=file

specifies the path to the data file containing the miRNA sequences to be processed

3.1.1 Format of the input files

The input files are expected to be given in the standard FASTA format. The program expects
the whole sequence for each gene to be on one line. When several aligned sequences are
provided for one gene, each sequence must be on a different line (see example below). For
the sake of completeness we show an excerpt of the sample input files provided with the
PACCMIT-CDS package. Note that the PACCMIT-CDS program can read compressed (with the
gzip utility) input files directly.

microRNA data

the data file containing the microRNA sequences consists of pairs of lines such as:

>hsa-let-7d-3p MIMAT0004484

CUAUACGACCUGCUGCCUUUCU

7

Ray M. Marín, Miroslav Šulc, and Jiří Vaníček PACCMIT-CDS

genome data

the genome file has a similar structure, nevertheless the “chunk” of data for each
gene can consist of more lines if corresponding aligned sequences for different
species are provided. A typical (truncated) example looks as follows

>ENST00000374123

AGCAAAGGGGGAAAGGGTCAGTCACCAGGGTGGGGCCAAGGCAGT

AGCAAAGGGGGAAAGGGTCAGGCCCCAGGGTGGGGCCAAGGCAGC

ATTAAAGGGGGAAAGGGTCAGTCACCATGGTGGGGGCCAGGCAGC

AGGGAAAGGAAGAAGTGGCAGGCCCCAGGGGTAGGGTGAGGTAGT

----------------------CTCCTGGGGTGGGGTGGGGGGGT

Here, the excerpt of the genome data file corresponding to the gene
ENST00000374123 contains the human sequence (on the second row) together with
other 4 aligned sequences.

3.2 Output

--gzip

write output files in compressed (gzip-ed) form. The resulting files are compatible
with the gzip command present on most Linux systems.

3.3 Parameters of the algorithm

-l, --mer-length=L default: L=7
this parameter controls the length of the seed sequence in the miRNA, i.e., the number
of consecutive nucleotides at the 5’ end of the miRNA considered as the seed.

-s, --start-offset=s default: s=2
starting position of the seed region counting from the 5’ end of the miRNA. Default
value of 2 thus corresponds thus to the seed starting at the second position in the
miRNA.

3.3.1 Shuffling 101

-i, --iteration-count=I

perform I iterations (shuffle & analyze). At the I
th iteration, the PSH values are evalu-

ated with precision 10−I.

--randomize-genome

shuffle (100× by default) the entire genome during the initialization phase, i.e., before

8

Ray M. Marín, Miroslav Šulc, and Jiří Vaníček PACCMIT-CDS

actually starting to scan the randomized genome for seed matches

-r, --init-random-shuffles=R default: R=100
override the default value of 100 shuffles for the initial randomization of the genome.
If the --randomize-genome switch is omitted, this option is ignored.

-T, --shuffle-seed=T

set the (integer) seed of the random number generator used in the shuffling procedure.
The seed is generated randomly if this option is omitted.

3.3.2 Shuffling constraints

-x, --number-of-species=x

specifies the number of additional aligned sequences requested for each gene. For
instance if one is interested in considering conservation between human and mouse,
the human and mouse sequences should be provided for each gene and x should be
set to 1. If more than x sequences are provided in the genome file, the program will
only read the first x + 1 sequences. Due to the implementation reasons, the program
requires x ≤ 32.

-M, --mask-rule="string"

if x is greater than 0, string specifies the conservation rule, i.e., given nucleotide is
considered conserved if:

string a given nucleotide is considered conserved if

<m at most m− 1 species (including the reference species) match

>m at least m+ 1 species (including the reference species) match

=m m species (including the reference species) match

:i1, . . . , id species i1, . . . , id match (d ≤ s and 1 ≤ ij ≤ s)

@i1, . . . , id (if and only if) species i1, . . . , id match (d ≤ s and 1 ≤ ij ≤ s)

For example, the rule ":1,2" should “pick out” exactly those sequence positions that
contain the same nucleotides in the reference species sequence.

--initial-shuffling-preserves="method" default: method=cu+ps
specification of the initial shuffling used to randomize the input genome data; method
specifies the shuffling protocol

nothing don’t preserve anything
cu preserve codon usage
ps preserve protein sequence
cu+ps

ps+cu

preserve codon usage and protein sequence

--shuffling-preserves="method" default: method=cu+ps
specification of the shuffling as for the --initial-shuffling-preserves option. If
only the option --shuffling-preserves is specified, the initial shuffling is performed
using the same procedure.

9

Ray M. Marín, Miroslav Šulc, and Jiří Vaníček PACCMIT-CDS

3.3.3 Advanced options

This subsection details the procedure which we have employed in order to alleviate the over-
all computational costs. The idea consists in excluding some of the gene–miRNA pairs in the
course of the computation, namely the pairs for which the PSH value is already sufficiently
converged and further refinement would be neither effective nor desirable.

The first method, which is simpler, is schematically shown in Figure 3.1. At nth iteration
(which evaluates the PSH values with precision 10−n), we divide the current active genome–
miRNA pairs (those that are still being refined) into two groups according to the current PSH
value as alluded to in Figure 3.1. The group containing pairs with PSH ≥ u·10−n is considered
sufficiently converged and is therefore “deactivated”: PSH values of pairs in this group are
not further refined.

in other words all the pairs belonging to this group are not subject to further refinement.
It can happen that a particular gene will loose by this procedure all its miRNA “comrades”
and hence can be excluded from the subsequent shuffling procedure with impunity. This
leads to a significant speed-up of the calculation, since the shuffling comprises the most
time-consuming part of the program.

active
gene – miRNA

pairs

PSH < u · 10−n

PSH ≥ u · 10−n

refine

further refine

fix current
value of PSH

(n− 1)th
nth (n+ 1)th

Figure 3.1: Strict (and simpler) method for excluding sufficiently converged gene–miRNA
pairs in the course of the computation. At each “checkpoint”, i.e., at nth iteration, the gene–
miRNA pairs are divided into two groups according to the current value of PSH. The calcu-
lation continues only within the “green” group, i.e., if the PSH value is below a predefined
threshold and hence needs to be evaluated more precisely.

A slightly generalized version of the algorithm introduced above is recorded in Figure 3.2.
Here, the conceptual modification consists in dividing the set of all active gene–miRNA
pairs into three groups as indicated. The “middle group” [not present in the algorithm of
Figure 3.1] is refined only until the next checkpoint, i.e. until (n + 1)th iteration. Because
each gene is within this approach active for longer time, the total computational time will
be in general longer than in the previous case. On the other hand, the generalized algorithm
might prevent discarding some pairs prematurely.

10

Ray M. Marín, Miroslav Šulc, and Jiří Vaníček PACCMIT-CDS

active
gene – miRNA

pairs

PSH < u · 10−n

u · 10−n ≤
PSH < 2u·10−n

PSH ≥ 2u·10−n

refine

further refine

refine until
next iteration

fix current
value of PSH

(n− 1)th
nth (n+ 1)th

Figure 3.2: Modified method for excluding sufficiently converged gene–miRNA pairs in the
course of the computation. At each “checkpoint”, i.e., at nth iteration, the set of gene–miRNA
pairs is divided into three groups according to the current value of PSH. The pairs having
PSH above a predefined threshold are excluded. The pairs belonging to the middle group are
marked for exclusion at the next checkpoint, while the last group is simply further refined
(without any marking).

The algorithm of Figure 3.2 is activated by default. This behavior can be altered by means
of the following program options.

--no-filter

do not use any “speed-up” techniques and refine all gene-miRNA pairs to the same
(absolute) accuracy

--strict-filter

use the algorithm of Figure 3.1 instead of the slower approach of Figure 3.2.

-u, --ulps=u default: u=4
set the u parameter of the filtering procedure [see Figure 3.1 and 3.2]

3.4 Various options

-b, --benchmark

for a given number of iterations, perform just the benchmark calculation, i.e., shuffle
& analyze the genome without producing any output, and measure the total elapsed
time. This is useful for estimating the computational requirements.

--gzip

write output files in compressed (gzip) form

-h, --help

print an overview of the supported options

11

4 Examples

In order to illustrate currently implemented capabilities of the PACCMIT-CDS program pack-
age, this section provides a few examples showing how to use individual command line
options discussed in Chapter 3.

For this purpose we have used the data files accompanying the source code, namely the files:

./data/human_hg18_28_species.fa

the genome file which contains also 27 additional aligned sequences

./data/human_mirna_v18.fa

the miRNA data file encompassing 1919 sequences

These files can be downloaded separately [paccmit-data.tgz] from http://lcpt.epfl.ch.

4.1 Timing calculation

Overall performance can be deduced from a simple timing calculation, which loads the
entire genome file together with all provided miRNA sequences and performs given number
of iterations, i.e., rounds of shuffling and analysis. The corresponding command reads

./paccmit-cds -b -i 3 \

-g ./data/human_hg18_28_species.fa \

-m ./data/human_mirna_v18.fa

where the -b options activates the timing mode. The output written by default to stdout

might look as

22.11. 15:00:59.135 (0.000014 s): using random seed for the shuffling generator

+--+

| PACCMIT-CDS v O.1 alpha |

+--+

./paccmit-cds -b -g ./data/human_hg18_28_species.fa -m ./data/human_mirna_v18.fa -i3

random seed vector: [135384,1353592859,24956,2994753847,2012]

RNA random seed : [1234]

+--+

Parameters:

shuffleSeed = -1

rnaSeed = 1234

startOffset = 2

mer length = 7

ulps = 4

iterations = 10^3

Shuffling method:

initial shuffling: (protein pres.: no, codon usage pres.: no)

main shuffling: (protein pres.: no, codon usage pres.: no)

12

http://lcpt.epfl.ch

Ray M. Marín, Miroslav Šulc, and Jiří Vaníček PACCMIT-CDS

+--+

22.11. 15:00:59.135 (0.000343 s): opening genome file ’./data/human_hg18_28_species.fa’

22.11. 15:01:03.308 (4.173268 s): estimated number of genes = 21426

22.11. 15:01:08.279 (4.970835 s): total count of genes: 21426

22.11. 15:01:08.279 (0.000018 s): average codon count per gene: 528.59

22.11. 15:01:08.279 (0.000041 s): opening miRNA file ’./data/human_mirna_v18.fa’

22.11. 15:01:08.280 (0.000271 s): estimated number of miRNAs = 1919

22.11. 15:01:08.281 (0.001494 s): total count of valid miRNA sequences: 1919

22.11. 15:01:08.281 (0.000009 s): count of valid unique miRNA sequences: 1552

22.11. 15:01:08.281 (0.000003 s): loaded miRNA sequences:

id code name

0 1C5D hsa-let-7a-5p,hsa-let-7b-5p,hsa-let-7c,hsa-let-7d-5p,hsa-let-7e-5p,... (truncated)

1 3ECC hsa-let-7a-3p,hsa-let-7b-3p,hsa-let-7f-1-3p

2 1EC4 hsa-let-7a-2-3p,hsa-let-7g-3p

3 36CC hsa-let-7d-3p

4 16CC hsa-let-7e-3p

Once the calculation is finished, the program informs the user and terminates.

22.11. 15:01:08.747 (0.367589 s): starting benchmark 10^03 iterations

22.11. 15:04:29.722 (3.349580 m): benchmark finished

22.11. 15:04:29.722 (0.000019 s): total benchmark time: 200.974803 s

22.11. 15:04:29.722 (0.000004 s): finished

number of genes
found in the input file

some of the miRNA
sequences are gen-
erally non-unique

miRNA sequences corresponding
to the same L-mer code

current time

time elapsed since last event

The calculation took (using 1 core of a main stream desktop computer) about 3 minutes.
This justifies the need for algorithms along the lines of the approaches discussed in Subsec-
tion 3.3.3, since 104 iterations within the same setting would take half an hour, while 105

iterations would necessitate already more than 2 days.

The excerpt of the log included above contains other useful pieces of information (high-
lighted above). Most importantly, note that a given seed region in the miRNA sequences
(specified by the -s and -l switches discussed on p. 8) can lead to duplicities among the
miRNA sequences present in the input file. The PACCMIT-CDS program then groups the
“seed–equivalent” miRNA sequences and prints out corresponding collective label. From
the log excerpt we see that in this case the number of miRNA sequences was reduced from
1919 to 1552.

4.2 Printing out the gene sequence information

In order to verify the loaded gene sequences, PACCMIT-CDS provides a -p switch which asks
the program to print the amino acid sequences.

Example:

./paccmit-cds -g ./data/ENST00000374123.dat -m ./data/human_mirna_v18.fa \

-i3 -p ./genes

Directory ./genes is assumed to be accessible for writing. Since the genome file in its en-
tirety is certainly too big for this particular demonstration, we have extracted one particular

13

Ray M. Marín, Miroslav Šulc, and Jiří Vaníček PACCMIT-CDS

gene, ENST00000374123, and saved its sequence (together with other aligned sequences) into
a separate file.

Before performing 3 iterations for this gene, the command above saves the amino acid in-
formation of this gene into the file ./genes/ENST00000374123.dat (its content is shown
below). Should more genes be present in the input, a separate file is created for each gene.

Gene ’ENST00000374123’:

AA usage:

arginine: 0

leucine: 0

serine: 1

7

alanine: 0

glycine: 6

2 3 5 9 11 13

proline: 1

8

threonine: 0

valine: 0

isoleucine: 0

asparagine: 0

aspartic acid: 0

cysteine: 0

glutamic acid: 0

glutamine: 2

6 12

histidine: 0

lysine: 2

1 4

phenylalanine: 0

tyrosine: 0

methionine: 0

tryptophan: 1

10

sequence:

0 1 2 3 4 5 6 7 8 9

000: AGC AAA GGG GGA AAG GGT CAG TCA CCA GGG

010: TGG GGC CAA GGC AGT

number of glycine
occurences

corresponding positions
in the codon sequences

The structure of the file is rather self-explanatory. It lists the number of occurrences of each
AA in the given sequence. The corresponding positions in the sequence are also provided.

4.3 Displaying conservation information

It can be useful to visualize the conservation mask which affects matching of miRNA seeds
against individual genes and enters the code via the -M and -x switches discussed in Sub-
section 3.3.2.

14

Ray M. Marín, Miroslav Šulc, and Jiří Vaníček PACCMIT-CDS

To this end, PACCMIT-CDS provides the -P switch which specifies the file into which the
conservation mask (for each gene) will be written. To demonstrate this feature on a simple
example, we consider a genome data file ./data/ENST00000374123.dat containing only the
sequence of the gene ENST00000374123 together with 27 additional aligned sequences.

./paccmit-cds -g ./data/ENST00000374123.dat -m ./data/human_mirna_v18.fa \

-x27 -M">11" -i3 -P./mask.dat

The meaning of the -M">11" option above is that the mask should be constructed so that at
least 12 species (including the reference sequence) are conserved.

>ENST00000374123

AGCAAAGGGGGAAAGGGTCAGTCACCAGGGTGGGGCCAAGGCAGT

AGCAAAGGGGGAAAGGGTCAGTCACCAGGGTGGGGCCAAGGCAGC

ATTAAAGGGGGAAAGGGTCAGTCACCAGGGTGGGGGCCAGGCAGC

AGGGAAAGGAAGAAGTGGCAGGCCCCAGGGGTAGGGTGAGGTAGT

----------------------CTCCTGGGGTGGGGTGGGGGGGT

AGT------------GGTCAG------------------------

AGT------------GGTCAT-CACAGGGCTGAGGGTGAGATGGT

GG---

AGGAAAGGGGAAAAGTGTCAATCACCTGGGGTGGGCTGAGGCCAT

AGGAAAGGGGGAAGTGGTCAGTCACCTGGGGCGGGCTGAGGTAGC

GGGAAAGGAGGAAGTGGGCAGTCACCTGGGGCGGGCCGCAGTAGC

AGGAAAGGCAGAAGTGGTCTGACAACATGGACGGACTGAGGAAGT

AGGAGAGGGGAA-GTGGTCAGCACCTGGGG---------------

AGGAAAGGGGGACATGGGCGGT-----------------------

GGGAATGTGCCCTGTGGCTGGT-----------------------

al
te

rn
at

iv
e

al
ig

ne
d

se
qu

en
ce

s

Inspection of the gene data file (shown above) reveals that this rule is fulfilled at the 3
highlighted nucleotide positions.

The generated file ./mask.dat contains two lines for each gene, namely the gene designa-
tion (label) and a binary representation of the conservation mask, i.e., 0’s represent those
nucleotide positions, where the mask criterion is not fulfilled and vice versa.

In this particular example the file ./mask.dat should look as

>ENST00000374123

010000000000000010100000000000000000000000000

which is consistent with the graphical representation included above.

15

Ray M. Marín, Miroslav Šulc, and Jiří Vaníček PACCMIT-CDS

4.4 Small working example

./paccmit-cds -g ./data/human_hg18_28_species.fa -m ./data/human_mirna_v18.fa -i4

loads the entire genome file (included in the PACCMIT-CDS package) as well as all miRNA
sequences and request to perform 4 iterations employing the filtering procedure of Subsec-
tion 3.3.3. Moreover, the option --gzip enforces compression of the output files.

After the jth iteration, PACCMIT-CDS creates an output file called stat_1ej.dat. The exam-
ple below shows the excerpt of stat_1e4.dat.

ENST00000369381 A 1 41 3! 4.100000e-02 hsa-miR-4735-5p

ENST00000369381 A 1 39 3! 3.900000e-02 hsa-miR-4742-3p

ENST00000369381 A 4 0 4+ 0.000000e+00 hsa-miR-4753-3p

ENST00000369381 A 1 56 3! 5.600000e-02 hsa-miR-4762-3p

ENST00000369381 A 1 60 3! 6.000000e-02 hsa-miR-4768-5p

ENST00000369381 A 2 9 4~ 9.000000e-04 hsa-miR-4775

ENST00000369381 A 1 49 3! 4.900000e-02 hsa-miR-4778-3p

ENST00000369381 A 2 15 4! 1.500000e-03 hsa-miR-4436b-5p

ENST00000369381 A 1 56 3! 5.600000e-02 hsa-miR-4781-3p

ENST00000369381 A 1 58 3! 5.800000e-02 hsa-miR-4999-5p

ENST00000369381 A 1 63 3! 6.300000e-02 hsa-miR-5192

ENST00000369381 A 1 58 3! 5.800000e-02 hsa-miR-5193

ENST00000369381 A 1 55 3! 5.500000e-02 hsa-miR-5582-3p

ENST00000369381 A 1 38 3! 3.800000e-02 hsa-miR-5692a

ENST00000369381 A 1 40 3! 4.000000e-02 hsa-miR-5694

ENST00000369382 E 1 142 4! 1.420000e-02 hsa-miR-200b-3p,hsa-miR-200c-3p,hsa-miR-429

ENST00000369382 E 1 12 3! 1.200000e-02 hsa-miR-324-5p

ENST00000369382 E 1 98 4! 9.800000e-03 hsa-miR-491-3p

PSH miRNA sequencesgenes

gene
activity

fl
ag

gene
term

ination
fl

ag

The gene and miRNA sequence designations (labels) are written out to the first and seventh
columns, respectively, while the current value of PSH is stored in the sixth column.

The columns number 2 and 5 are pertinent to the filtering procedure of Subsection 3.3.3.
Specifically, the second column contains either character A or E depending on the fact whether
the corresponding gene has been already excluded (E) or is still active (A). By terming a par-
ticular gene as “being excluded” (from the calculation) we mean that there are no pairing
miRNA sequences which (in combination with the gene under consideration) would require
further refinement of the PSH value.

The “fate” of each gene in the course of the calculation is recorded in the fifth column. The
meaning of the (perhaps a bit cryptic) values is following. If the flag has a value as indicated
in the first column of the table below, then the PSH value of a particular gene–miRNA pair:

n! was finalized (excluded from further refinement) at nth

iteration
n+ is at (n+1)th iteration still subject to further refinement
n~ will be finalized at (n + 1)th iteration (in case of the

modified algorithm of Subsection 3.3.3)

Finally, note that the current implementation skips this filter at 1st and 2nd iterations.

16

5 Supplementary utilities

5.1 Parallelization: SPLIT utility

The purpose of this utility is to facilitate calculations in a “parallel” fashion, where the
parallelism consists in splitting the input genome file into several parts which can be then
processed independently.

The implementation of PACCMIT-CDS, as described above, scales linearly with the total num-
ber of nucleotides contained in the genome file (and also with the number of corresponding
aligned sequences).

A drawback of a parallelization based on a naïve division of the genome file into several
groups would be that so produced groups might differ significantly in the total numbers
of nucleotides contained in different groups. This would in turn spoil the efficiency of the
entire “parallel” approach.

That is where the SPLIT utility sets in. To be more specific, SPLIT tries to divide the genome
file into several groups with similar nucleotide counts. We have implemented a very simple
approach [described below] which is definitely far from optimal, nevertheless it should be
still superior to the naïve method.

Our implementation simply loads the genome file, sorts the genes according to the length
of the nucleotide sequence and employs the “card dealer” method, i.e., the longest gene
is attributed to the first group, the second longest gene to the second group and so forth.
Formally, if one labels the sorted genes by index 1 ≤ i ≤M, then the ith gene goes into the jth

group, where j = (i − 1)%N + 1 with N denoting the total number of groups, i.e., 1 ≤ j ≤ N .
Moreover, current implementation performs two passes through the genome file in order to
obviate the need to hold the (possibly quite huge) genome file in memory.

5.1.1 Usage

The utility is invoked from the command line as follows:

./split [OPTIONS]

-g, --genome-file=path

path to the (eventually gzip-ed) genome file in FASTA format

-n, --number-of-groups=N

number of groups (should be between 2 and 256)

-c, --number-of-cores=c default: c=1
use c cores (threads, to be more precise) for the compression of the individual group

17

Ray M. Marín, Miroslav Šulc, and Jiří Vaníček PACCMIT-CDS

files. The program does not allow to use more threads than C− 1, where C denotes the
number of cores of the machine executing the utility (the value of C is determined by
the utility automatically in run-time)

-p, --prefix=pattern

output file names will be generated as pattern_%03d.gz1

-h, --help

print short usage instructions

5.1.2 Example

The command

./split -g"genome.list" -n16 -c3 --pattern="part_"

will look for the genome.list file in the current directory, split it into 16 (almost) equally
sized groups, and write the groups of genes to files part_000.gz, part_001.gz, . . ., part_016.gz.
Saving and compression of the resulting files will be done in 3 threads provided that the ma-
chine executing this command has at least 4 cores.

5.2 Histograms of the data: HISTO utility

The second small utility is an implementation of a naive algorithm producing histogram out
of the output file(s) containing the PSH values for the gene–miRNA pairs under considera-
tions. The output file is assumed to be in the format detailed in the previous section, i.e.,
the PSH values are stored in sixth column. The algorithm proceeds in the following steps:

1. for a given value of m, construct histogram bins as

0 10−m 10−m+1 10−1 100 101

b0 b1 b2 bm bm+1 bm+2

g0 g1 g2 gm gm+1

2. load the PACCMIT-CDS output file and for each row, i.e., value of PSH determine index j
such that

bj ≤ PSH < bj+1.

Since 0 ≤ PSH ≤ 1 by definition, then 0 ≤ j ≤m+ 1. Consequently, increase the counter
of the jth group, i.e., gj ← gj + 1.

1i.e., the first two group files will be named pattern_000.gz, pattern_001.gz and so forth

18

Ray M. Marín, Miroslav Šulc, and Jiří Vaníček PACCMIT-CDS

3. output the values {gj}m+1
j=0 .

Although an implementation in some UNIX-like scripting utility would be straightforward,
the resulting script would be typically quite slow for large output files. There are two ad-
vantages provided by the HISTO utility First, HISTO is implemented in C++. Secondly, HISTO
is able to process several output files at once and produce an overall histogram. Such files
can be obtained, for example, by splitting the input into several parts each of which is then
processed independently, as discussed in Section 5.1 on parallelization.

5.2.1 Usage

The utility is invoked from the command line as follows:

./histo [OPTIONS]

-f, --stat-file="path"

path to the (eventually gzip-ed) output file

-d, --stat-dir="target"

instead of specifying a single input file, scan the directory target containing the out-
put files

-o, --output-file="target"

if specified, the file target will contain the (merged) overall statistics from all pro-
cessed output files

-p, --prefix="string"

search only for files the name of which starts with prefix string. This option is effec-
tive only in directory mode enabled by the -d switch.

-s, --suffix="string"

search only for files the name of which ends with suffix string. This option is effective
only in directory mode enabled by the -d switch. In case both options -p and -s are
specified, the -p option takes precedence.

-m, --min=m default: m=9
sets the m parameter as elaborated above (i.e., the value of m determines the requested
number of bins)

-h, --help

print short usage instructions

19

Ray M. Marín, Miroslav Šulc, and Jiří Vaníček PACCMIT-CDS

5.2.2 Example

The command

./histo -f"stat_1e3.dat.gz" -h"histo.dat" -m4

loads the compressed output file stat_1e3.dat.gz (located in the current directory) and
creates an histogram consisting of bins with boundaries at 0, 10−4, 10−3, . . . , 1, 10.

Typical output might then look like

5.00000e-05 91638

5.50000e-04 0

5.50000e-03 235424

5.50000e-02 1654334

5.50000e-01 1691010

#0

In words, the program prints out the midpoints of individual bins with corresponding pop-
ulations. The population of the last bin, i.e., pairs with PSH = 1, is printed out on the last
line after the # sign. However, since these pairs are not written into the output, the value is
correctly 0.

As compared to a straightforward gawk implementation
BEGIN{

minPower = 9; breaksCnt = minPower + 3

histo[0] = 0; breaks[0] = 0.0; breaks[breaksCnt - 1] = 10.0

for(i = breaksCnt - 2; i > 0; i--){

histo[i] = 0; breaks[i] = breaks[i + 1] / 10.

}

}

{

val = $6*1.0; i = 1;

while(val >= breaks[i] && i < breaksCnt){ i++ }; i = i - 1

histo[i]++;

}

END{

for(i = 0; i < breaksCnt - 2; i++){

print (breaks[i] + breaks[i+1])/2, histo[i]

}

print "#", histo[breaksCnt - 2]

}

the HISTO utility is typically faster. For the input files provided with the PACCMIT-CDS pack-
age, the overall output file consists of, roughly, 3.5·106 lines. While the execution time of the
gawk script on a main stream desktop computer takes about 30s, the HISTO utility provides
an equivalent result in less than 1.5s including the internal decompression.

20

6 References

[1] R. M. Marín, M. Šulc, J. Vaníček, RNA accepted (2012).

[2] J.-l. Gailly, M. Adler, ZLIB library (http://www.zlib.net).

[3] C. Karney, RandomLib library (http://sourceforge.net/projects/randomlib/).

21

http://www.zlib.net
http://sourceforge.net/projects/randomlib/

	Concise user's manual
	User's manual
	Structure of the bundle
	Installation
	Software requirements

	Basic usage
	Input
	Format of the input files

	Output
	Parameters of the algorithm
	Shuffling 101
	Shuffling constraints
	Advanced options

	Various options

	Examples
	Timing calculation
	Printing out the gene sequence information
	Displaying conservation information
	Small working example

	Supplementary utilities
	Parallelization: SPLIT utility
	Usage
	Example

	Histograms of the data: HISTO utility
	Usage
	Example

	References

