Doctoral class on neurophysics June 15, 2023

Neural population dynamics of finite-size spiking neural networks

Tilo Schwalger

Institute of Mathematics, TU Berlin

Modeling complex brain activity

Modeling complex brain activity

How can we understand the collective neural activity (and computations) emerging from thousands of interacting neurons?

Microscopic model: individual neurons

Potjans & Diesmann, Cereb Cortex (2014)

Markram et al. (2015), Cell Billeh et al. (2020) Neuron Schmidt M, et al. (2018) PloS Comput Biol Izhikevich & Edelmann (2008), PNAS

80'000 LIF neurons

Too complicated!

Coarse-graining: population activity

Spike trains

Population activities

Macro-/mesoscopic model: neural populations

Microscopic model (network of 80 000 neurons)

Mesoscopic model (network of 8 populations)

Firing-rate models

Wilson & Cowan, 1972

$$A^{\alpha}(t) = F_0^{\alpha}(h^{\alpha}(t))$$

$$\tau \frac{\mathrm{d}h^{\alpha}}{\mathrm{d}t} = -h^{\alpha} + \sum_{\beta} J^{\alpha\beta} A^{\beta}(t)$$

- $F_0^{\alpha}(h)$ Steady-state transfer function (f-I curve)
 - au Integration time constant
 - $\int \alpha \beta$ Synaptic efficacy from population β to α

- Low-dimensional, mathematically tractable
- Models, which "do something"
 - Perceptual decision making (Wong & Wang 2008, Moreno-Bote et al. 2007)
 - Visual processing (Ben-Yishai & Sompolinsky 1995, Ozeki et al. 2009, Rubin et al. 2015)
 - Working memory (Barak & Tsodyks 2007, Kilpatrick & Ermentrout 2013)
 - Associative memory (Hopfield 1984, Perreira & Brunel 2018)
 - Motor control (Zhang 1996, Hennequin et al. 2014)
 - Reservoir computing (Sussillo & Abbott 2009)

Challenges for firing-rate models

2. Finite-size fluctuations

Challenge: Finite-size fluctuations

Small population sizes

Lefort et al., Neuron (2009)

 $\sim 10^2 - 10^3$ neurons / population

("mesoscopic")

• Finite-size causes spiking noise in population activity

Goal: Consistent mesoscopic model

Outline

1) Introduction

2) Mesoscopic dynamics: Toy example without refractoriness

- 3) Mesoscopic dynamics of integrate-and-fire neurons
- 4) Reduction to low-dimensional population dynamics

A tractable toy example

• Network of Linear-Nonlinear-Poisson neurons (nonlinear Hawkes process)

$$\frac{dh_i}{dt} = \frac{\mu(t) - h_i}{\tau} + \frac{J}{N} \sum_{j=1}^{N} \frac{dZ_j(t)}{dt}, \quad h_i(0) = 0$$
$$r_i(t) = f(h_i(t^-))$$
$$dZ_i(t) = \pi_i(dt, [0, r_i(t)]) \sim \text{Poisson}[r_i(t)dt], \qquad i = 1, \dots, N$$

• $s_i(t) = \frac{dZ_i(t)}{dt} = \sum_k \delta(t - t_{k,i})$ is spike train of neuron *i* with stochastic intensity $r_i(t)$

- Define population activity (coarse-graining): $A_N(t) := \frac{1}{N} \sum_{i=1}^N s_i(t)$
- $\{dZ_i(t)\}_{i=1,...,N}$ are conditionally independent Poisson given $h_i(t^-) =: h(t^-)$

$$\Rightarrow dZ(t) := \sum_{i=1}^{N} dZ_i(t) \sim \text{Poisson}[Nf(h(t^-))dt] \qquad A_N(t)?$$

• Equivalent mesoscopic model:

$$\frac{dh}{dt} = \frac{\mu(t) - h}{\tau} + JA_N(t), \quad h(0) = 0$$
$$A_N(t) = \frac{1}{N} \frac{dZ(t)}{dt}, \qquad dZ(t) \sim \text{Poisson}[Nf(h(t^-))dt]$$

Diffusion approximation for large N

• Equivalent mesoscopic model:

$$\frac{dh}{dt} = \frac{\mu(t) - h}{\tau} + JA_N(t), \quad h(0) = 0$$
$$r(t) = f(h(t^-))$$
$$A_N(t) = \frac{1}{N} \frac{dZ(t)}{dt}, \qquad dZ(t) \sim \text{Poisson}[Nr(t)dt]$$

• Central limit theorem:

$$dZ(t) \sim \mathcal{N}\left[Nr(t)dt, Nr(t)dt
ight] \qquad \qquad N o \infty$$

• Population activity:

$$A_N(t) = rac{1}{N} rac{dZ(t)}{dt} pprox r(t) + \sqrt{rac{r(t)}{N}} \xi(t),$$

where $\xi(t)$ is Gaussian white noise with $\langle \xi(t) \rangle = 0$ and $\langle \xi(t) \xi(t') \rangle = \delta(t - t')$

Outline

- 1) Introduction
- 2) Mesoscopic dynamics: Toy example without refractoriness
- 3) Mesoscopic dynamics of integrate-and-fire neurons
- 4) Reduction to low-dimensional population dynamics

Wulfram Gerstner (EPFL)

Moritz Deger (EPFL)

Valentin Schmutz (EPFL)

Eva Löcherbach (Univ Paris 1)

Microscopic model

Network of leaky integrate-and-fire (LIF) neurons with escape noise:

$$dU_{t}^{i} = \frac{\mu_{t} - U_{t}^{i}}{\tau_{m}} dt + \frac{J}{N} \sum_{j=1}^{N} dZ_{t}^{j} - U_{t-}^{i} dZ_{t}^{i}$$
$$dZ_{t}^{i} = \pi^{i} (dt, [0, f(U_{t-}^{i})]),$$

- U_t^i membrane potential of neuron *i*, *i* = 1, ..., *N*
- Z_t^i spike count of neuron *i* firing with stochastic intensity $f(U_{t-}^i)$

Coarse-grained activity: $dZ_t := \frac{1}{N} \sum_{i=1}^{N} dZ_t^i(t)$

Membrane potentials differ because last spike times \hat{t}_i are different:

$$U_t^i = \frac{1}{\tau} \int_{\hat{t}_i}^t e^{\frac{t-s}{\tau}} \left[\mu_s \, ds + J dZ_s \right] =: u^{\dot{Z}}(t|\hat{t}_i)$$

[Gerstner 2000, Galves & Löcherbach, 2016, Cormier et al. 2020]

Macroscopic population dynamics $(N \rightarrow \infty)$: Integral equation

Macroscopic population dynamics (N $\rightarrow \infty$): Integral equation

Wilson & Cowan, 1972 Gerstner, 1995, 2000 Cormier et al. 2020

last spike time \hat{t}

Conservation of neural mass:

$$A(\hat{t})d\hat{t}, \qquad \qquad a_0:=\int_{0^-}^t S^{\mathcal{A}}(t|\hat{t})\mathcal{A}(\hat{t})d\hat{t}=1$$

$$A(t) = \int_{0^-}^t \lambda^A(t|\hat{t}) S^A(t|\hat{t}) A(\hat{t}) d\hat{t}$$

$$\lambda^{A}(t|\hat{t}) := f\left(u^{A}(t|\hat{t})\right)$$

 $S^{A}(t|\hat{t}) := \exp\left(-\int_{\hat{t}}^{t} \lambda^{A}(r|\hat{t}) dr\right)$

hazard function

survivor function

Naive finite-size extension of integral equation (" Λ =0")

$$r(t) = \left[\int_{0^{-}}^{t} \lambda^{A}(t|s) S^{A}(t|s) A_{N}(s) ds \right]_{+}$$
$$\lambda^{A}(t|\hat{t}) = f\left(u^{A}(t|\hat{t})\right), \quad S^{A}(t|\hat{t}) = \exp\left(-\int_{\hat{t}}^{t} \lambda^{A}(t|\hat{t}) dr\right)$$
$$A_{N}(t) = r(t) + \sqrt{\frac{r(t)}{N}} \xi(t) \qquad \langle \xi(t)\xi(t') \rangle = \delta(t-t')$$

Microscopic model

Naive mesoscopic model

Mesoscopic model for finite-size population: Stochastic integral equation

$$\begin{split} A_N(t) &= r(t) + \sqrt{\frac{r(t)}{N}} \xi(t) \\ r(t) &= \left[\int_{0^-}^t \lambda^A(t|s) S^A(t|s) A_N(s) \, ds + \Lambda^A_t \left(1 - \int_{0^-}^t S^A(t|s) A_N(s) ds \right) \right]_+ \\ u^A(t|\hat{t}) &= \frac{1}{\tau} \int_{\hat{t}}^t e^{\frac{t-s}{\tau}} \left[\mu(s) + J A_N(s) \right] \, ds \end{split}$$

$$\lambda^{\mathcal{A}}(t|\hat{t}) = fig(u^{\mathcal{A}}(t|\hat{t})ig), \quad S^{\mathcal{A}}(t|\hat{t}) = \expig(-\int_{\hat{t}}^t \lambda^{\mathcal{A}}(r|\hat{t})\,drig)$$

$$\Lambda_{t}^{A} = \frac{\int_{-\infty}^{t} \lambda^{A}(t|s) S^{A}(t|s) (1 - S^{A}(t|s)) A_{N}(s) ds}{\int_{-\infty}^{t} S^{A}(t|s) (1 - S^{A}(t|s)) A_{N}(s) ds}$$

Extension to models with adaptation (generalized integrate-and-fire model, nonlinear Hawkes process) available via quasi-renewal approximation

Schwalger et al., PloS Comput. Biol (2017) Schmutz, Löcherbach, Schwalger, SIAM Appl. Dyn. Syst. (2023)

Schmutz, Löcherbach, Schwalger, SIAM Appl. Dyn. Syst. (2023)

Microscopic model

Mesoscopic model

Approximate conservation of neuronal mass

- Hitting time $\tau := \inf\{t > 0 : r(t) = 0\}$
- for $0 < t < \tau$, the neural mass $a_0(t) := \int_{-\infty}^t S^A(t|\hat{t}) A(\hat{t}) d\hat{t}$ obeys

$$\dot{a}_0 = \Lambda^{\mathcal{A}}(1-a_0) + \sqrt{rac{r(t)}{N}} \xi(t)$$

- if $\Lambda^A = 0$ then $a_0(t) = 0$ for all $t \ge \tau$
- simlar to Cox-Ingersoll-Ross process $\dot{a} = \Lambda(1-a) + \sigma \sqrt{a}\xi(t)$, which for $\Lambda = 0$ goes extinct with $P(a(t) = 0|a(0) = x) = e^{-\frac{x}{\sigma^2 t}}$

If $\Lambda^A > 0$, the mesoscopic model is well-posed and stable!

Schmutz, Löcherbach, Schwalger, SIAM Appl. Dyn. Syst. (2023)

Finite-size noise causes hopping between attractors

Finite-size noise causes hopping between attractors

Model of a local cortical circuit

_2/3

_4

_5

L6

bower spectrum of A_N [1/s]

f [Hz]

excitatory

inhibitory

Potjans & Diesmann, Cereb Cortex (2014)

80'000 LIF neurons with adaptation

other background input

microscopic

mesoscopic

Ο

f [Hz]

See also: Bos et al. , Cain et al. PloS Comput Biol 2016

thalamo-cortical input

Outline

1) Introduction

- 2) Mesoscopic dynamics: Toy example without refractoriness
- 3) Mesoscopic dynamics of integrate-and-fire neurons
- 4) Reduction to low-dimensional population dynamics

Noe Gallice (EPFL)

Microscopic model

Network of leaky integrate-and-fire (LIF) neurons with escape noise:

$$\begin{aligned} \tau_{\rm m} dU_t^{i,N} &= (h_t - U_t^{i,N}) dt - \tau_{\rm m} U_{t^-}^{i,N} dZ_t^{i,N}, \\ \tau_h dh_t &= (-h_t + I_t) dt + \frac{J}{N} \sum_{j=1}^N dZ_t^{j,N} \\ Z_t^{i,N} &= \int_{[0,t] \times \mathbb{R}_+} \mathbb{1}_{z \le f(U_{s^-}^{i,N})} \pi^i (ds, dz), \end{aligned}$$

- $U_t^{i,N}$ membrane potential of neuron *i*, *i* = 1, ..., *N*
- $Z_t^{i,N}$ spike count of neuron *i* firing with stochastic intensity $f(U_{t-}^{i,N})$

[Gerstner 2000, Galves & Locherbach, 2016, Cormier et al. 2020]

Macroscopic dynamics (N $\rightarrow \infty$): Refractory density equation

age au

Time since the last spike: $\tau = t - \hat{t}$ $\rho^h(\tau) = f(u^h(\tau))$ refractory
density

 $p(\tau, t)$

(age-structured population dynamics)

Gerstner & Kistler 2001 Chizhov & Graham 2007, 2008 Pakdaman, Perthame, Salort, 2010 Dumont, Payeur, Longtin 2017 Schwalger & Chizhov 2019

$$\frac{\partial p}{\partial t} + \frac{\partial p}{\partial \tau} = -\rho^h(\tau)p + A(t)\delta(\tau)$$
$$A(t) = \int_0^\infty \rho^h(\tau)p(\tau, t) d\tau$$

Conservation of neural mass:

$$a_0 := \int_0^\infty p(\tau, t) \, d\tau = 1$$

Macroscopic dynamics (N $\rightarrow \infty$): Refractory density equation

(age-structured population dynamics)

Gerstner & Kistler 2001 Chizhov & Graham 2007, 2008 Pakdaman, Perthame, Salort, 2010 Dumont, Payeur, Longtin 2017 Schwalger & Chizhov 2019

$$\partial_t p = -[\partial_\tau + \rho(\tau, h)]p(\tau, t) =: L_\tau(h)p(\tau, t)$$
$$p(0, t) = A(t) \equiv \int_0^\infty \rho(\tau, h)p(\tau, t) d\tau$$

Eigenmode expansion for renewal models

dh

dt

• Eigenmode expansion of refractory-density equation:

For any renewal model, the eigenvalues are the solutions of

$$P_L(\lambda) := \int_0^\infty P_{\mathsf{ISI}}(t) e^{-\lambda t} \, dt = 1$$

Low-dimensional dynamics

$$A(t) = F_0(h) - 2\sum_{n=1}^{M} \operatorname{Re}\left(\frac{a_n}{P'_L(\lambda_n)}\right)$$
$$\tau_h \frac{dh}{dt} = -h(t) + I(t) + JA(t)$$
$$\frac{da_n}{dt} = \lambda_n a_n + \left\{c_0 + \sum_{m=1}^{M} [c_m a_m + \hat{c}_m a_m^*]\right\}$$

Pietras, Gallice, Schwalger, Phys Rev E (2020)

50

time [ms]

100

50

0

0

Recurrent network

Pietras, Gallice, Schwalger, Phys. Rev. E 2020

Mesoscopic population equation (N < ∞)

Mesoscopic model:

$$\frac{\partial p}{\partial t} + \frac{\partial p}{\partial \tau} = -\rho^{h}(\tau)p(\tau, t) + A_{N}(t)\delta(\tau)$$
$$\bar{A}(t) = \left[\int_{0}^{\infty} \rho^{h}(\tau)p(\tau, t) d\tau + \Lambda^{h}(t) \left(1 - \int_{0}^{\infty} p(\tau, t) d\tau\right)\right]_{+}$$
$$A_{N}(t) = \bar{A}(t) + \sqrt{\frac{\bar{A}(t)}{N}}\xi(t) \qquad \text{,,correction term''}$$

- $\langle \xi(t)\xi(t')\rangle = \delta(t-t')$
- firing intensity $\rho^h(\tau) = f(u^h(\tau))$
- $\bar{A}(t)$: population firing rate
- $a_0 := \int_0^\infty p(\tau, t) d\tau \neq 1$ is no longer the exact neural mass!

Schwalger, Deger, Gerstner, PloS Comput Biol (2017)

Langevin equation for $N < \infty$: Eigenmode expansion of mesoscopic equation

$$A_{N}(t) = r(t) + \sqrt{\frac{r(t)}{N}}\xi(t)$$

$$r(t) = F_{0}(h) - 2\sum_{n=1}^{M} \operatorname{Re}\left(\frac{a_{n}}{P_{L}'(\lambda_{n})}\right) \cdot \tau_{h}\frac{dh}{dt} = -h + I(t) + JA_{N}(t)$$

$$\frac{da_{n}}{dt} = \lambda_{n}a_{n} + \left\{c_{0} + \sum_{m=1}^{M} [c_{m}a_{m} + \hat{c}_{m}a_{m}^{*}]\right\}\frac{dh}{dt} + \Lambda(t)(1 - a_{0}) + \sqrt{\frac{r(t)}{N}}\xi(t)$$

$$\frac{da_{0}}{dt} = \Lambda(t)(1 - a_{0}) + \sqrt{\frac{r(t)}{N}}\xi(t)$$

$$\Lambda(t) = \frac{1}{\sigma_{\rm ISI}(t)}$$

Power spectrum

$$P_L(s) = \exp\left[\frac{1}{C_V^2}\left(1-\sqrt{1+\frac{2C_V^2s}{r}}\right)\right].$$

Perfect integrate-and-fire model

Power spectrum

Summary

- Stochastic integral equation for mesoscopic population activity accurately describes finite-size integrate-and-fire network. Crucial point: Conservation of neural mass on average.
- The eigenmode expansion of the mesoscopic refractory density equation yields a low-dimensional firing-rate model that captures non-stationary dynamics and lowfrequency fluctuations

Thanks to:

Wulfram Gerstner (EPFL)

Moritz Deger (EPFL)

Valentin Schmutz (EPFL)

Eva Löcherbach (Univ Paris 1)

Bastian Pietras (TU Berlin)

Noe Gallice (EPFL)

Eigenvalues and eigenfunctions of RDE

For arbitrary renewal models, eigenvalues given by:

$$P_L(\lambda_n) = 1 \quad \Leftrightarrow \quad S_L(\lambda_n) = 0$$
Laplace transforms of interspike interval density / survivor function

$$P_L(\lambda) \equiv \int_0^\infty P(\tau; h) e^{-\lambda \tau} \, d\tau \qquad S_L(\lambda) \equiv \int_0^\infty S(\tau; h) e^{-\lambda \tau} \, d\tau$$

• Eigenfunctions

$$\phi_n(\tau, h) = -\frac{S(\tau, h)e^{-\lambda_n(h)\tau}}{P'_L(\lambda_n(h), h)}$$

$$\psi_n(\tau, h) = \frac{e^{\lambda_n(h)\tau}}{S(\tau, h)} \left[1 - \int_0^\tau P(s, h)e^{-\lambda_n(h)s} ds\right]$$

Pietras, Gallice, Schwalger, Phys. Rev. E 2020

$$P_{L}(\lambda) = \frac{\nu}{\nu + \lambda} e^{-\lambda\Delta}$$
$$\lambda_{n} = \frac{1}{\Delta} W_{n}(\Delta \nu e^{\nu\Delta}) - \nu,$$

Eigenvalues: further examples

• Approximately Gaussian-distributed ISI densities

$$P_L(\lambda) = \exp\left(\sum_{n=1}^{\infty} \frac{(-\lambda)^n}{n!} \kappa_n\right) \approx \exp\left(-\kappa_1 \lambda + \frac{\kappa_2}{2} \lambda^2\right)$$

$$\Rightarrow \quad \lambda_n = \frac{\kappa_1}{\kappa_2} \left(1 - \sqrt{1 + 4\pi i n \frac{\kappa_2}{\kappa_1^2}} \right)$$

• Leaky integrate-and-fire model driven by Gaussian white noise

$$P_L(\lambda) = \mathrm{e}^{\delta} \, rac{\mathcal{D}_{-\lambda}\left(rac{\mu}{\sqrt{D}}
ight)}{\mathcal{D}_{-\lambda}\left(rac{\mu-1}{\sqrt{D}}
ight)}, \quad \delta = rac{1+2\mu}{4D},$$

Dominant eigenvalues differ for different models with same rate and CV

Relaxation dynamics of population activity

Relaxation dynamics of population activity

Linear response to current modulation

 $I(t) = I_0 + \epsilon \cos(\omega t)$

Recurrent network

Pietras, Gallice, Schwalger, Phys. Rev. E 2020