Doctoral Class in Neurophysics EPFL, June 12-16, 2023 – Lausanne, Switzerland

Synaptic Volatility, Inhibitory Plasticity and the Synaptic Trace Theory of Memory

Gianluigi Mongillo

¹Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France ²Centre National de la Recherche Scientifique, Paris, France

Plan of the Lecture

First 2 hours (talk + blackboard):

G Mongillo, <u>S Rumpel</u>, <u>Y Loewenstein</u> (2017). Intrinsic volatility of synaptic connections -- a challenge to the synaptic trace theory of memory. *Current Opinion in Neurobiology* **46**:7-13.

G Mongillo, <u>S Rumpel</u>, <u>Y Loewenstein</u> (2018). Inhibitory connectivity defines the realm of excitatory plasticity. *Nature Neuroscience* **21**:1463-1470.

Last hour – Implications of the balanced regime for memory function (talk):

G Mongillo & <u>M Tsodyks</u> (2023).

Balance of excitation and inhibition is necessary for robust memory storage and retrieval in cortical networks. (unpublished results).

Outline

• Synaptic dynamics in vivo: chronic spine imaging

• Implications for learning (and memory storage)

Conclusions

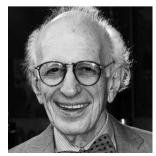
Memory, or Stabilization of Synaptic Changes

«[...] les esprits qui sortent de la glande [...] ont la force [...] de <u>plier et disposer diversement les</u> <u>petits filets qu'ils rencontrent [...] en sorte qu'ils y tracent aussi des figures, qui se rapportent à celles</u> <u>des objets</u>; non pas toutefois si aisément du premier coup [...] mais peu à peu de mieux en mieux, selon que leur action [...] est plus de fois réitérée. Ce qui est cause que <u>ces figures ne s'effacent pas</u> <u>non plus si aisément</u> [...]. Et c'est en quoi consiste la mémoire. »

René Descartes (1664)

"The first step in this neural schematizing is a bald assumptions about <u>the structural changes</u> <u>that make lasting memories</u> possible. [...] The assumption, in brief, is that a growth process accompanying synaptic activity makes the synapse more readily traversed. [...] <u>To account</u> <u>for the permanence [of the memory] some structural change seems necessary</u> [...]".

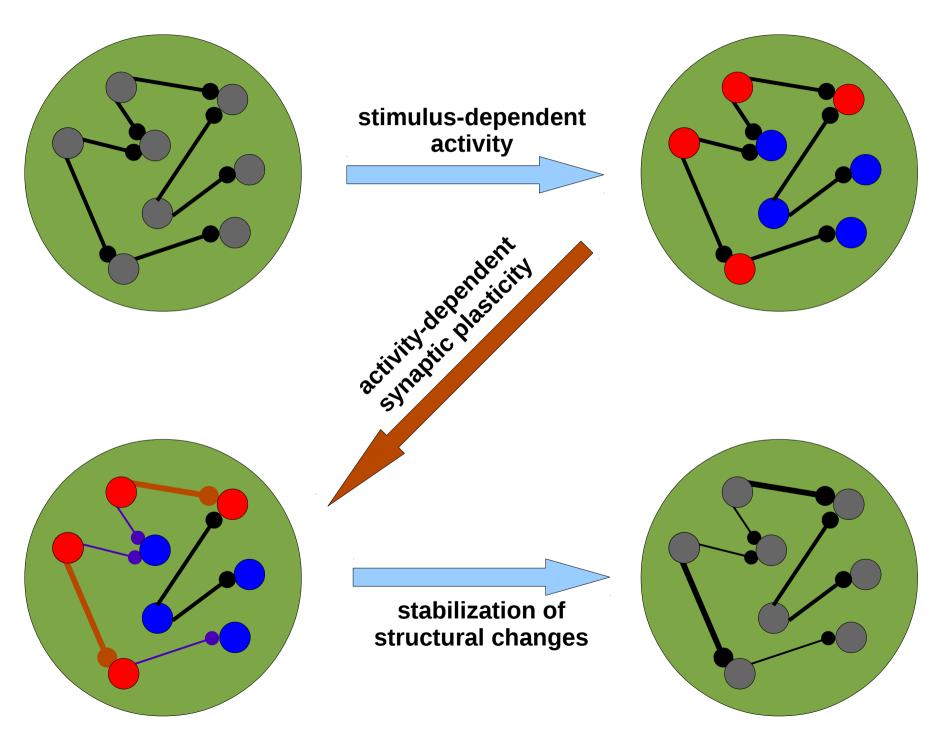
Donald O. Hebb (1949)



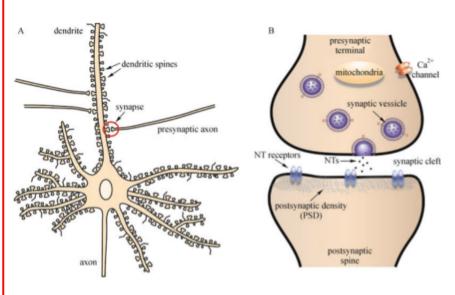
"With both explicit and implicit memory there are stages in memory that <u>are encoded as changes</u> in synaptic strength and that correlate with the behavioral phases of short- and long-term memory [...] whereas the long-term synaptic changes involve activation of gene expression, new protein synthesis, and the formation of new connections".

Eric R. Kandel (2001)

Synaptic Ghosts of Things Past

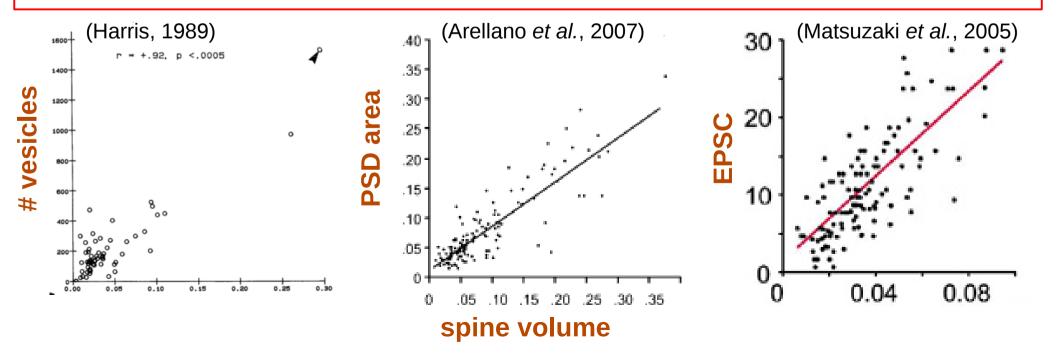


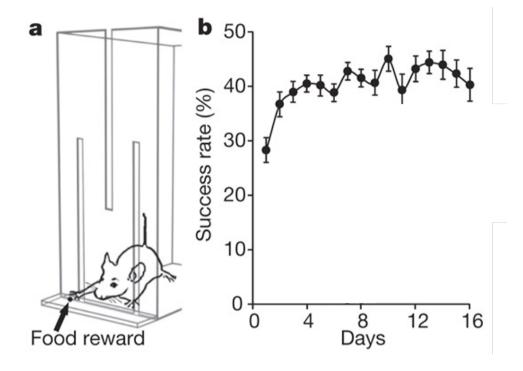
Spines: Basic Facts

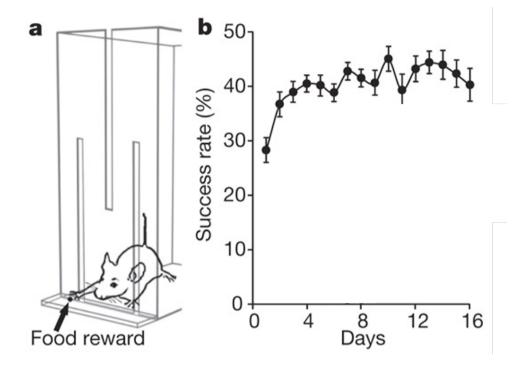


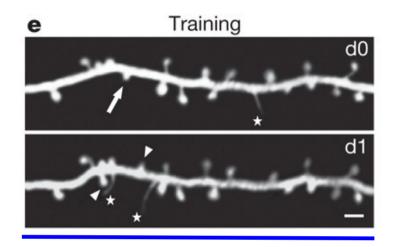
(Smrt & Zhao, 2010)

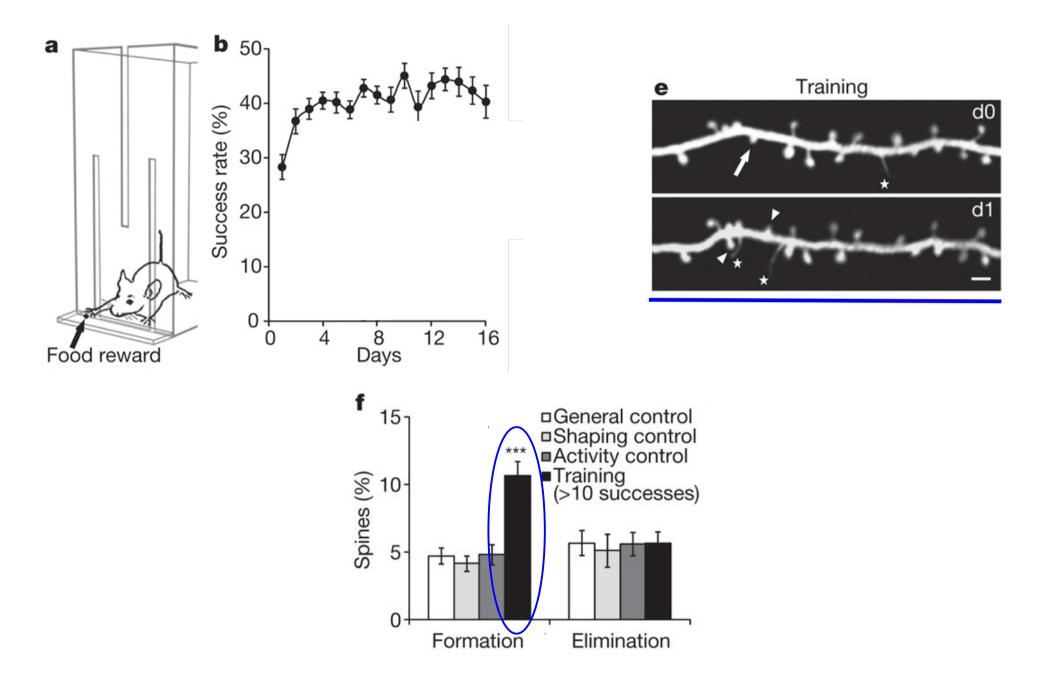
- >90% of excitatory synapses terminate on spines
- Spine volume is a proxy of the synaptic efficacy

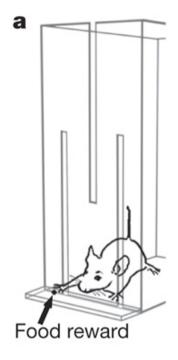


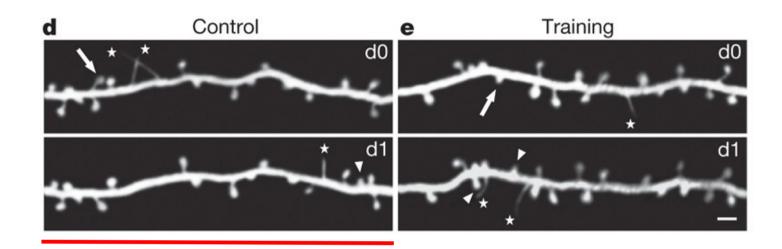


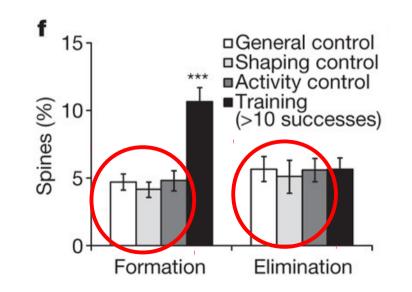








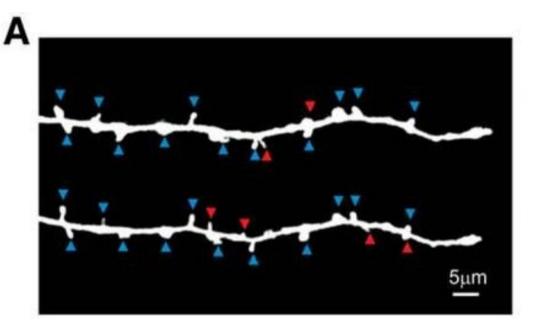


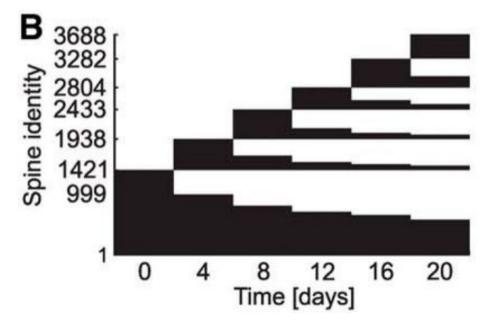


(Xu et al., 2009)

The Dataset

6 mice 8 neurons 3688 spines 6 time points (4-days interval)

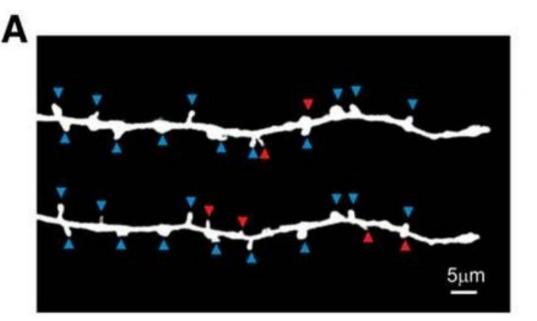


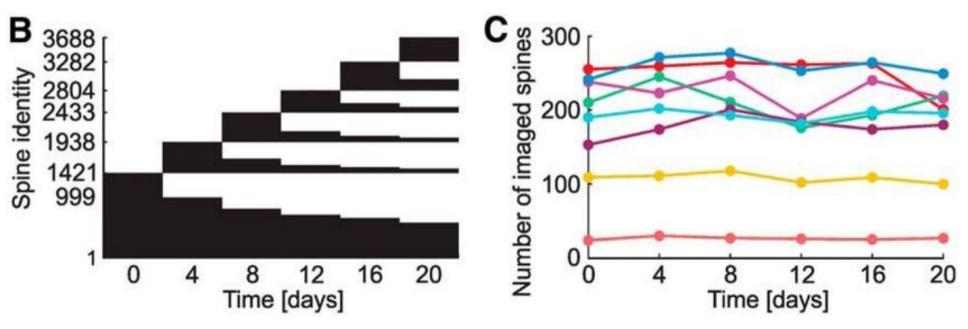


(Loewenstein et al., 2011; Loewenstein et al., 2015)

The Dataset

6 mice 8 neurons 3688 spines 6 time points (4-days interval)

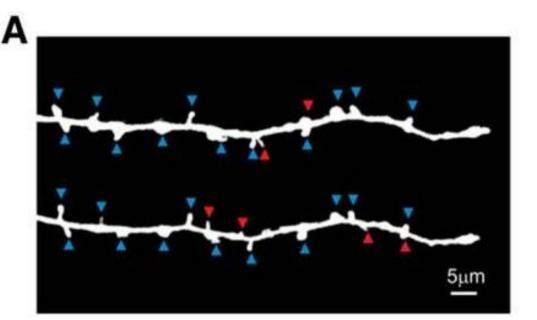


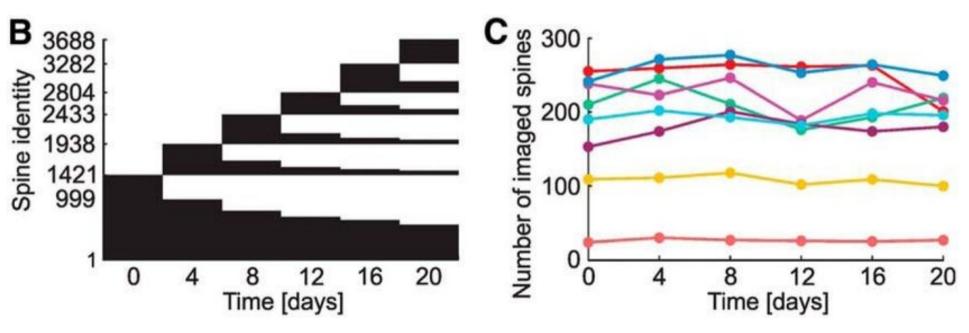


(Loewenstein et al., 2011; Loewenstein et al., 2015)

The Dataset

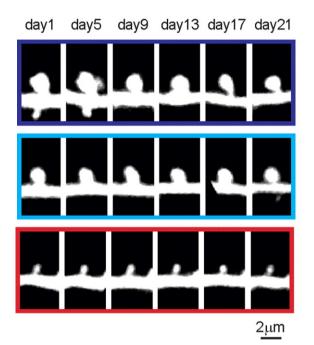
6 mice 8 neurons 3688 spines 6 time points (4-days interval)

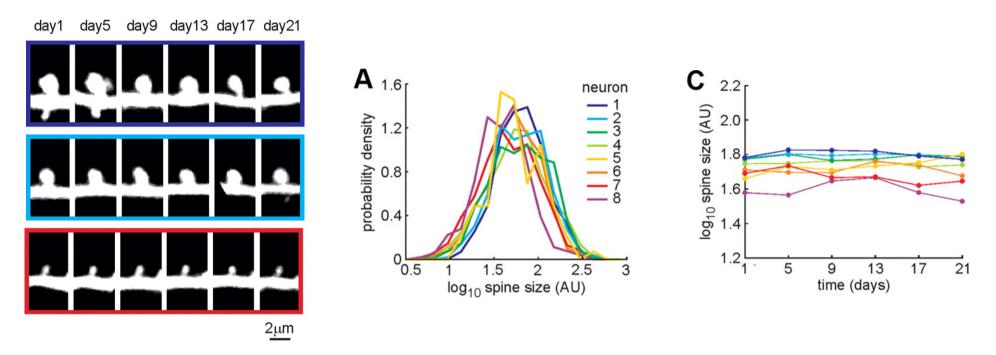




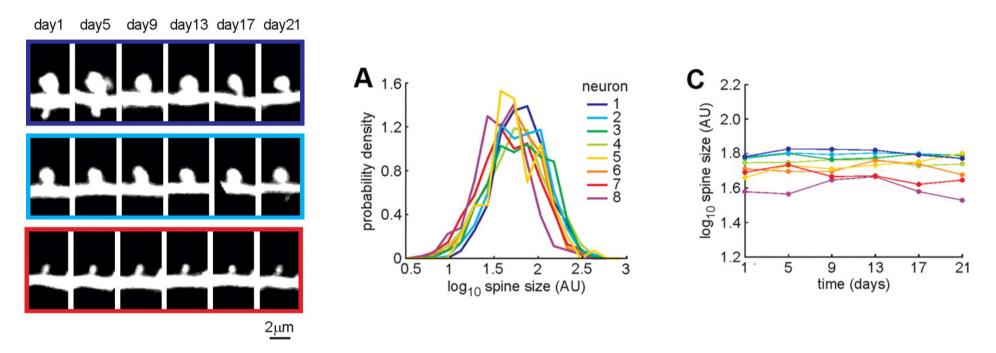
of spines (on a given neuron) is approximately constant across sessions

(Loewenstein et al., 2011; Loewenstein et al., 2015)





- spines' size distribution is well fitted by a log-normal distribution, and approximately constant across sessions
- spines' size distribution is approximately constant across neurons

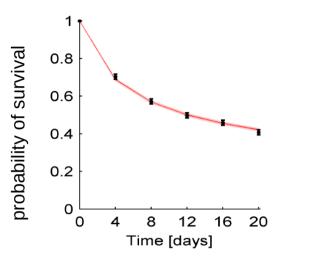


- spines' size distribution is well fitted by a log-normal distribution, and approximately constant across sessions
- spines' size distribution is approximately constant across neurons

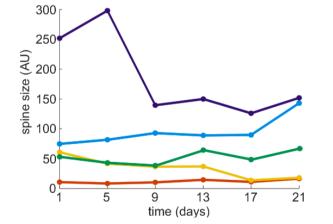
<u>Ongoing spine dynamics preserve the gross statistical features of synaptic</u> <u>connectivity ($E \rightarrow E$)</u>

Ephemeral Cortical Circuits

..the fine structure, however, appears to undergo dramatic changes..



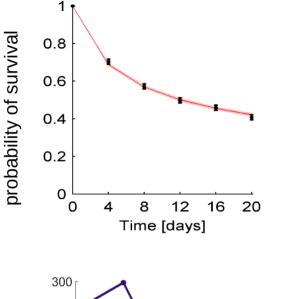
Most spines present in the first imaging day are no longer present after 20 days (Loewenstein *et al.*, 2015)



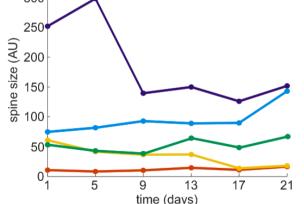
70% of the *stable* spines changed their size by at least a factor 2 within 20 days (Loewenstein *et al.*, 2011)

Ephemeral Cortical Circuits

..the fine structure, however, appears to undergo dramatic changes..



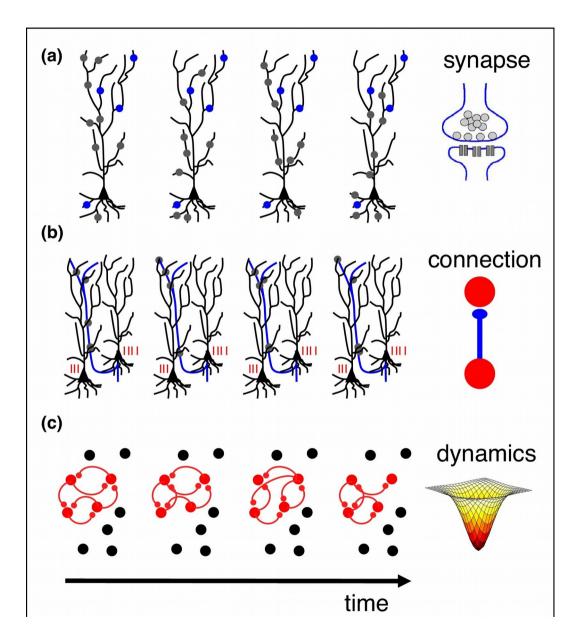
Most spines present in the first imaging day are no longer present after 20 days (Loewenstein *et al.*, 2015)



70% of the *stable* spines changed their size by at least a factor 2 within 20 days (Loewenstein *et al.*, 2011)

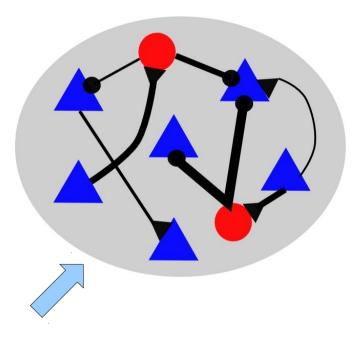
<u>What is the effect of such a massive structural re-organization</u> on the patterns of neuronal activity exhibited by the network?

Mechanisms for Stability of Long-term Memories



Mongillo, Rumpel & Loewenstein, Curr. Opin. Neurobiol. (2017)

A Biologically-Constrained Model Network



External inputs were adjusted to reproduce experimentally observed firing rates:

<u>Exc:</u> ~1Hz – <u>Inh:</u> ~5Hz

Experimentally observed spine data were used to simulate network re-organization

N=40.000 (80% E – 20% I) LIF Neurons Random connectivity Log-normal distribution of synaptic efficacies E → E connectivity from spine data

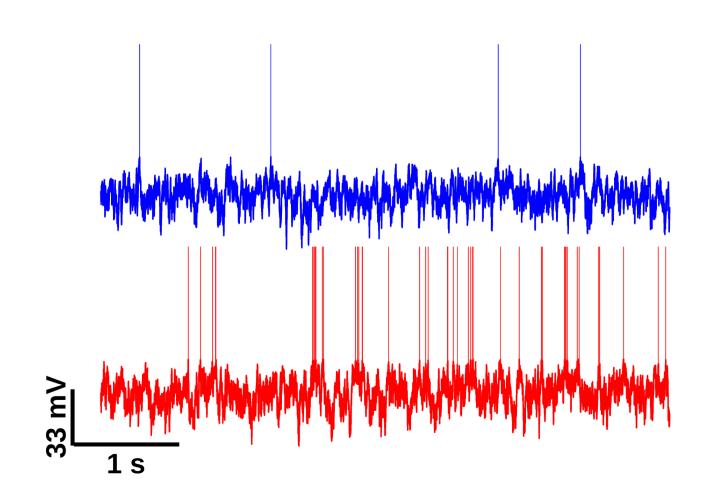
> Table 2. Synaptic connectivity and uPSP amplitudes in L2/3 of mouse barrel cortex

Postsynaptic	Presynaptic		
	EXC	FS	NFS
EXC			
P, % (found/tested)	16.8% (16/95)	60.0% (21/35)	46.5% (20/43)
Mean ± SE, mV	0.37 ± 0.10	-0.52 ± 0.11	-0.49 ± 0.11
Median, mV	0.20	-0.29	-0.30
Range, mV	0.06 - 1.42	-0.10 to -1.55	-0.10 to -2.00
FS			
P, % (found/tested)	57.5% (23/40)	55.0% (11/20)	37.9% (11/29)
Mean ± SE, mV	0.82 ± 0.10	-0.56 ± 0.14	-0.37 ± 0.10
Median, mV	0.68	-0.44	-0.23
Range, mV	0.16 - 1.94	-0.07 to -1.46	-0.12 to -0.99
NFS			
P, % (found/tested)	24.4% (11/45)	24.1% (7/29)	38.1% (8/21)
Mean \pm SE, mV	0.39 ± 0.11	-0.83 ± 0.25	-0.49 ± 0.20
Median, mV	0.19	-0.60	-0.15
Range, mV	0.12-1.21	-0.09 to -1.85	-0.07 to -1.47

(Avermann et al., 2012)

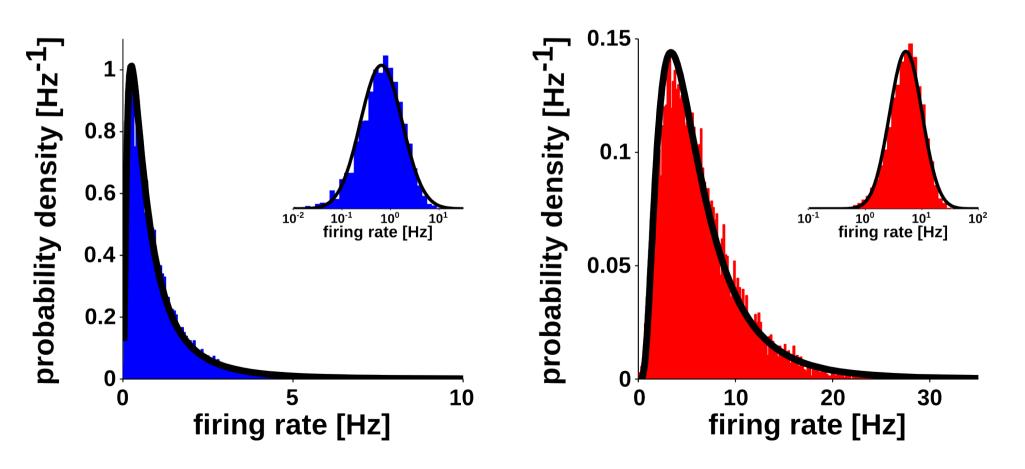
A Biologically-Constrained Model Network

Temporally irregular spiking resembling Poisson process.

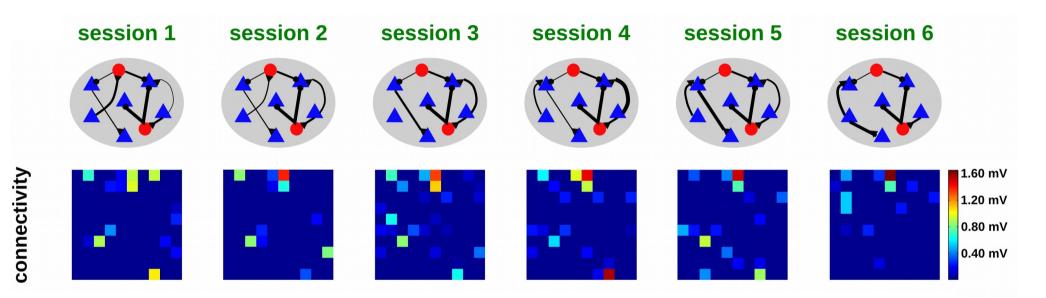


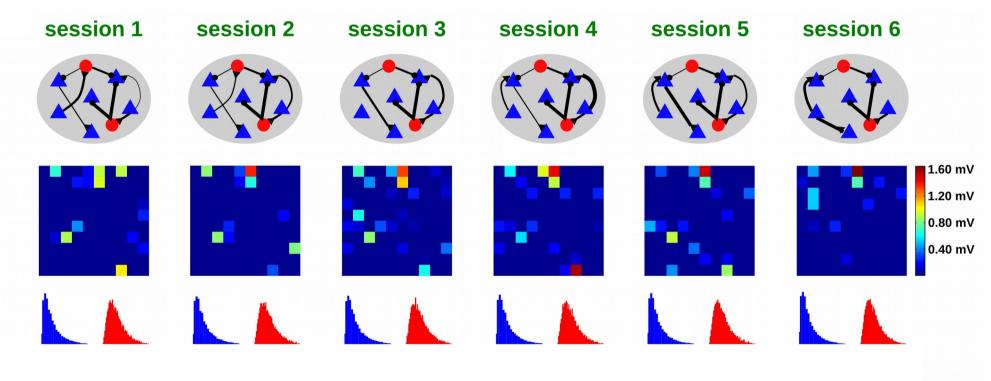
A Biologically-Constrained Model Network

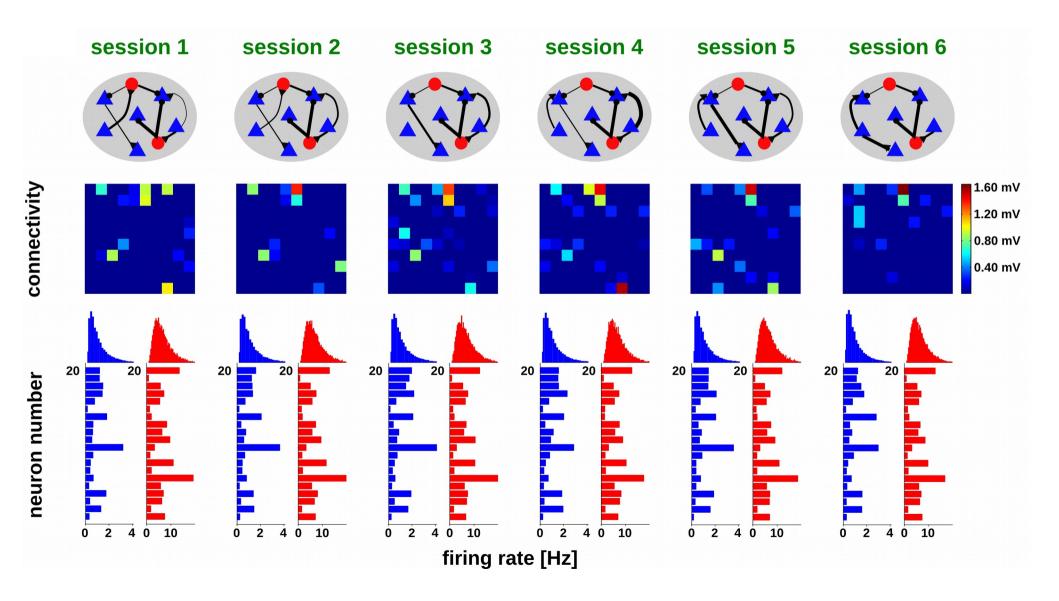
- Temporally irregular spiking resembling Poisson process.
- Right-skewed, long-tailed distributions of average rates.

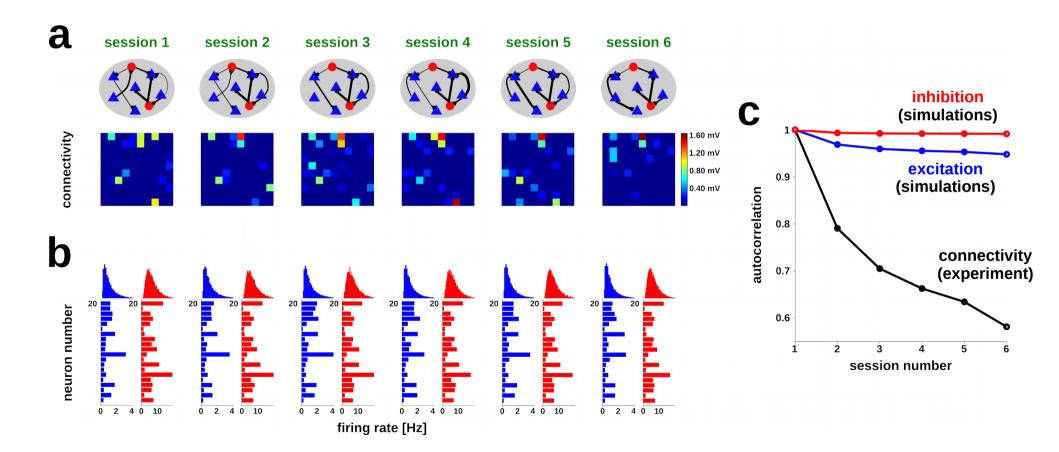


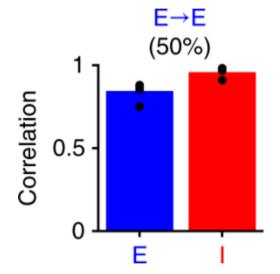
(Roxin et al., 2011)



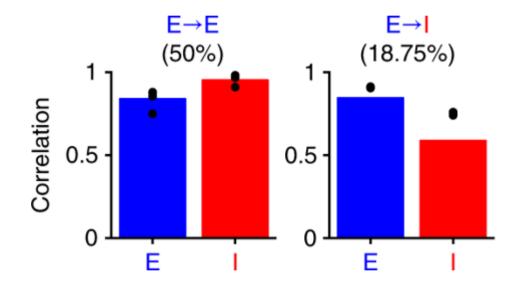




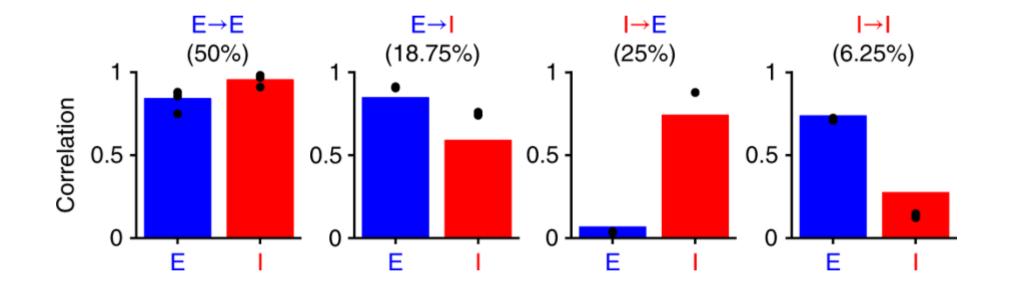




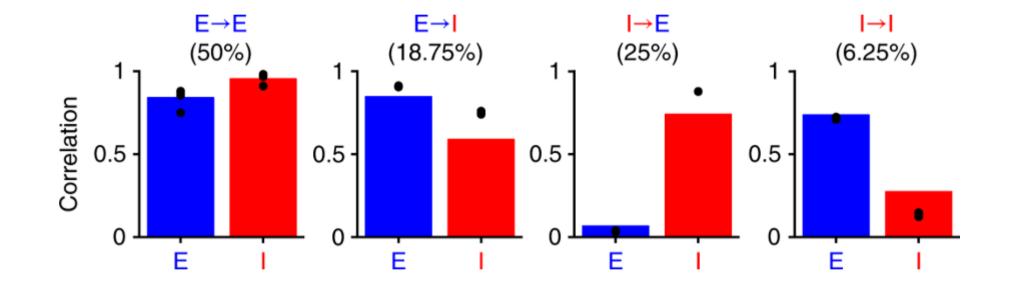
Rewiring



Rewiring

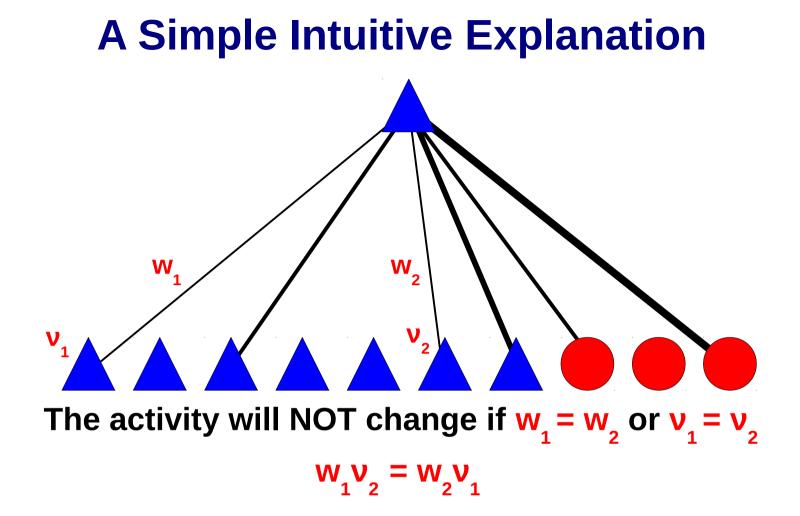


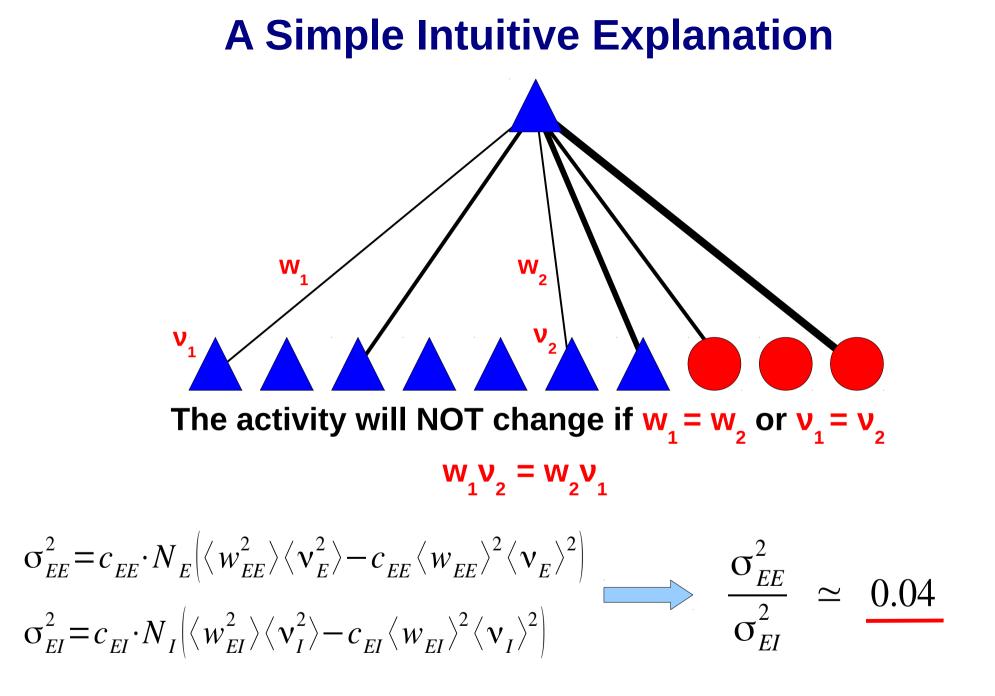
Rewiring



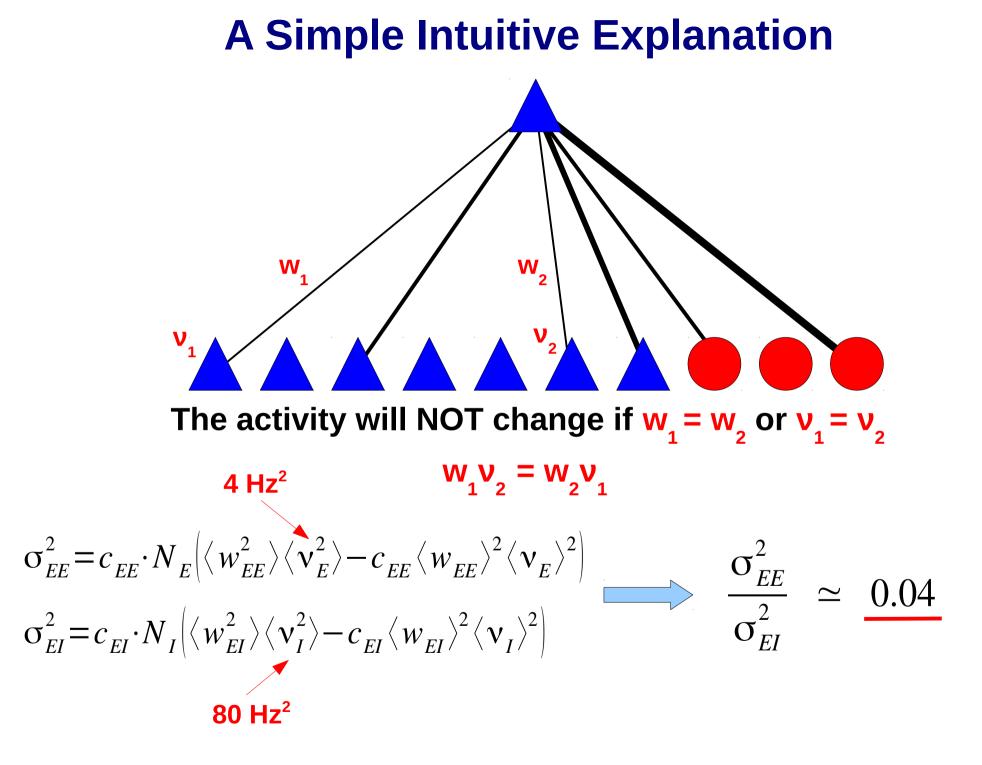
Patterns of ongoing activity are robust against changes in excitatory synapses while being very sensitive to changes in inhibitory synapses

A Simple Intuitive Explanation



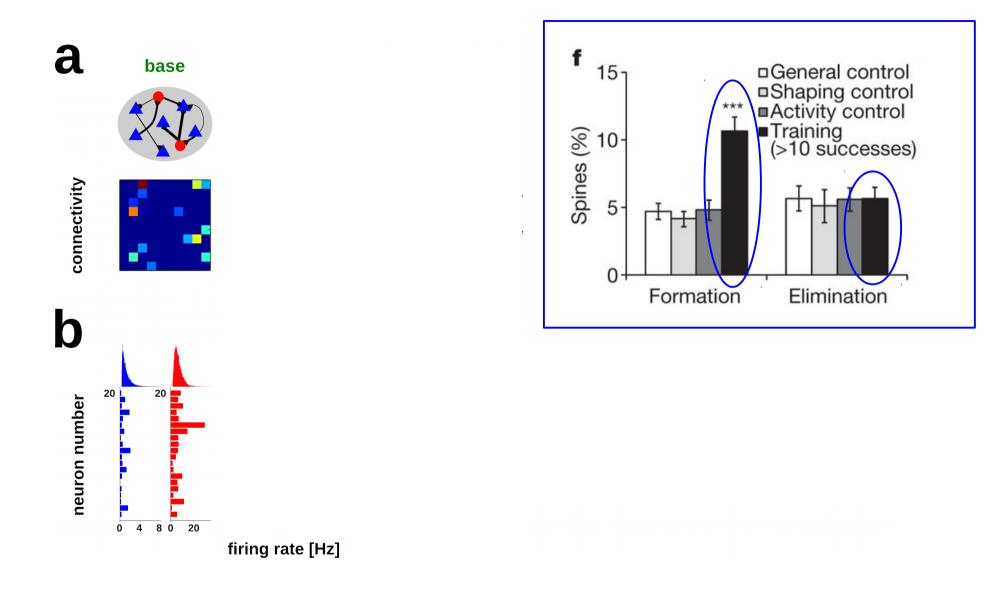


(Gentet *et al.*, 2010; Avermann *et al.*, 2012)

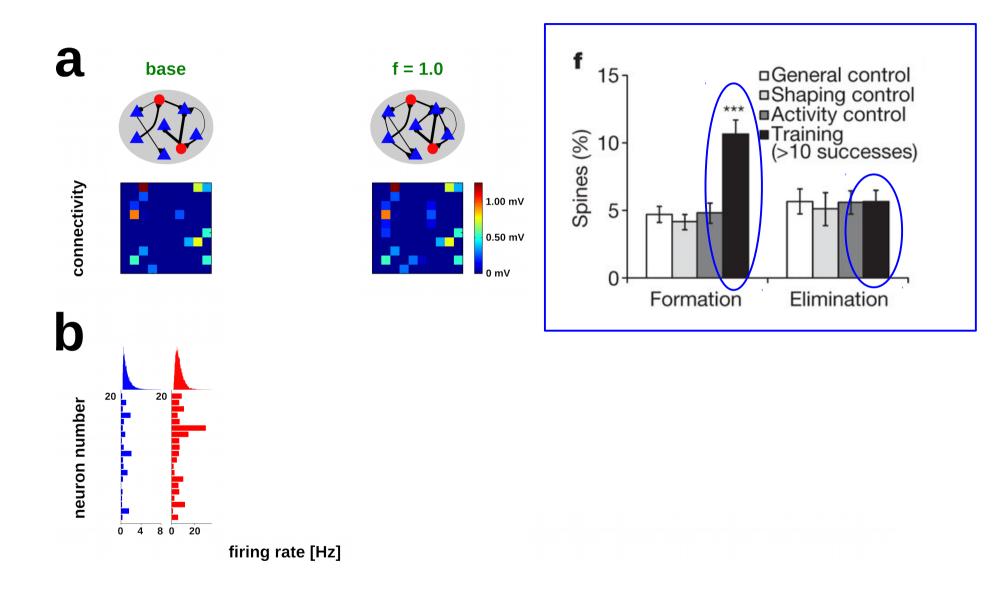


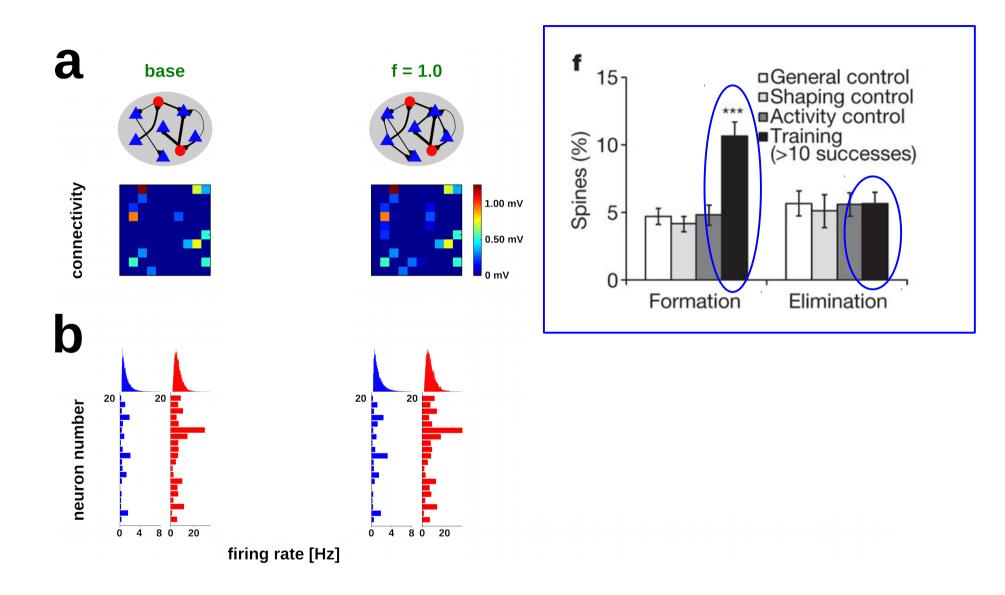
(Gentet et al., 2010; Avermann et al., 2012)

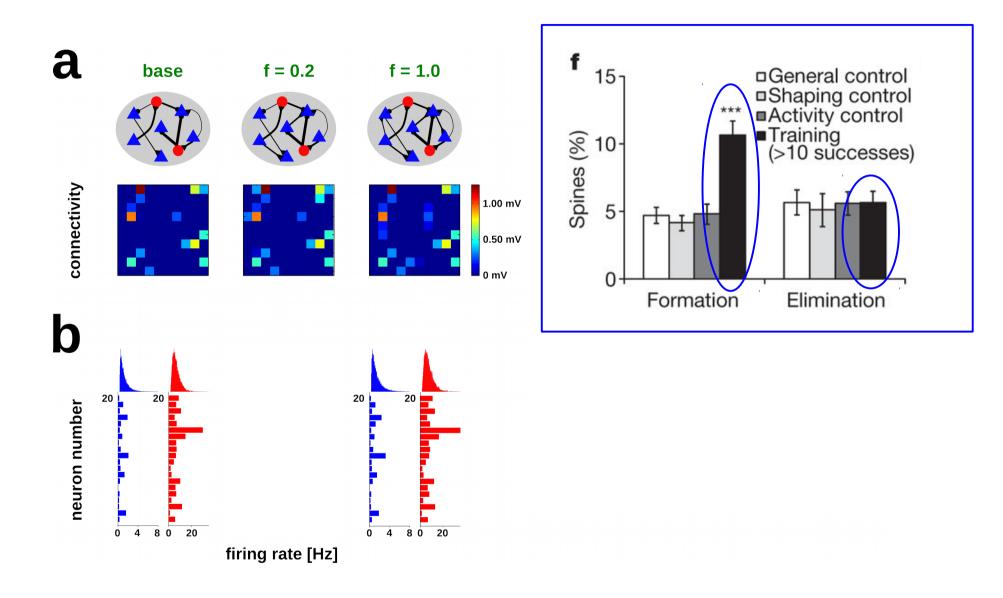
A Possible Mechanism for Learning

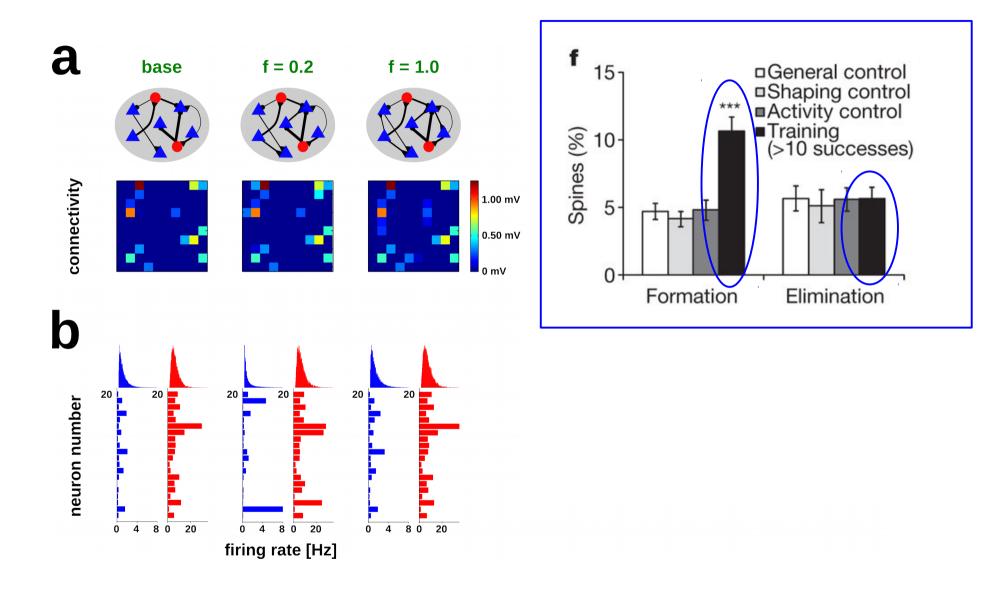


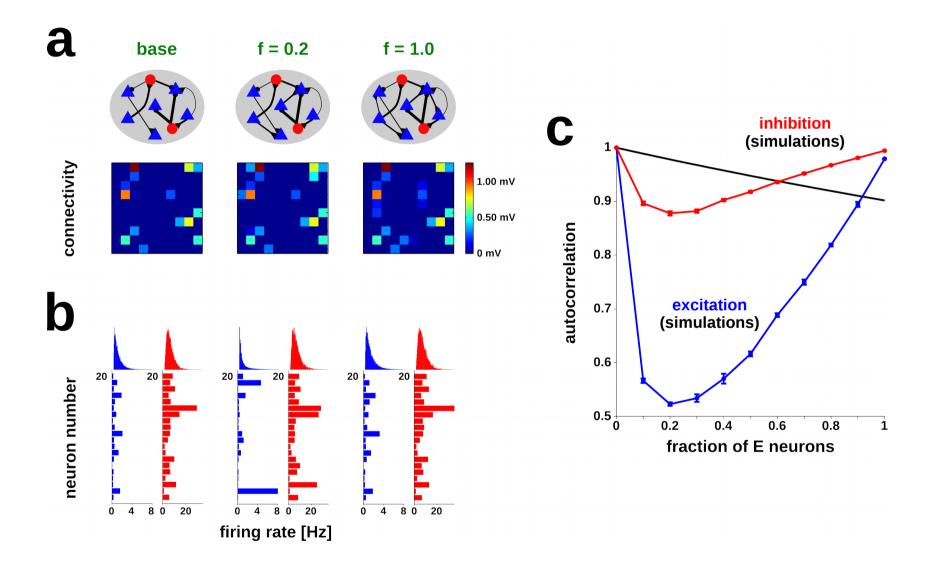
A Possible Mechanism for Learning

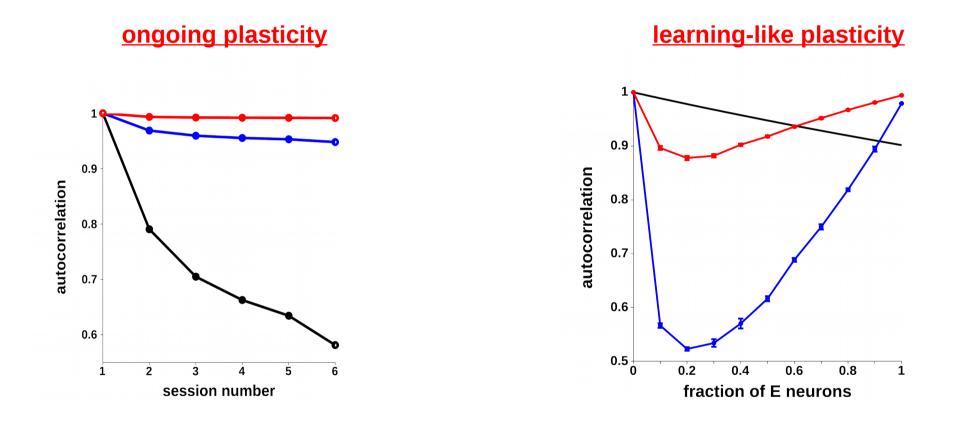




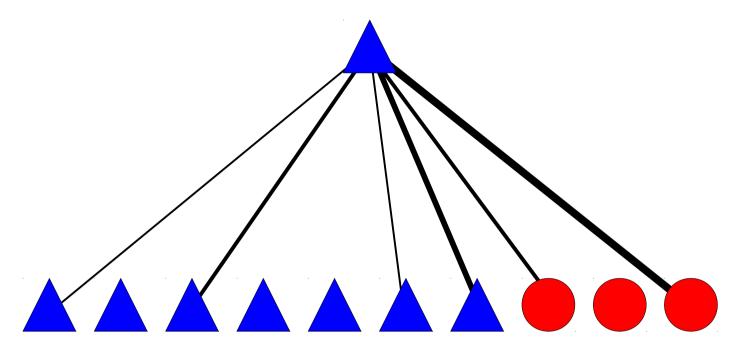






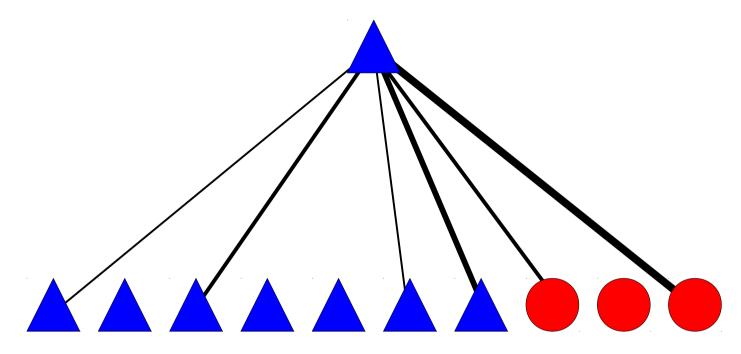


The Balanced State

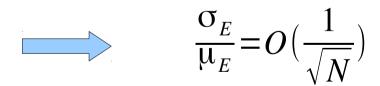


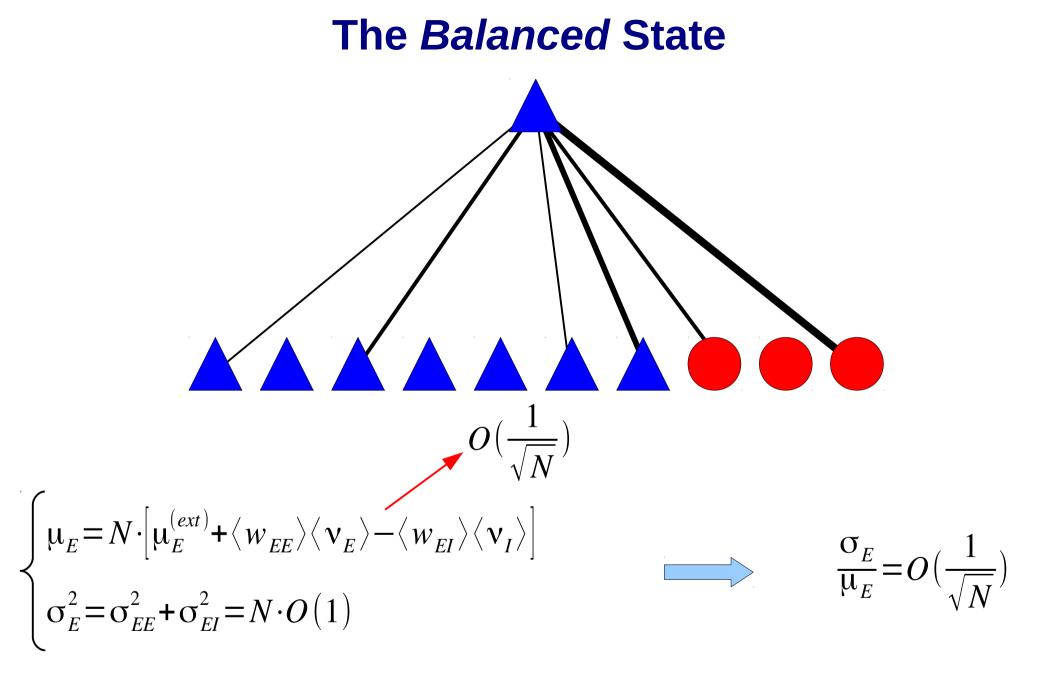
$$\begin{cases} \mu_E = N \cdot \left[\mu_E^{(ext)} + \langle w_{EE} \rangle \langle v_E \rangle - \langle w_{EI} \rangle \langle v_I \rangle \right] \\ \sigma_E^2 = \sigma_{EE}^2 + \sigma_{EI}^2 = N \cdot O(1) \end{cases}$$

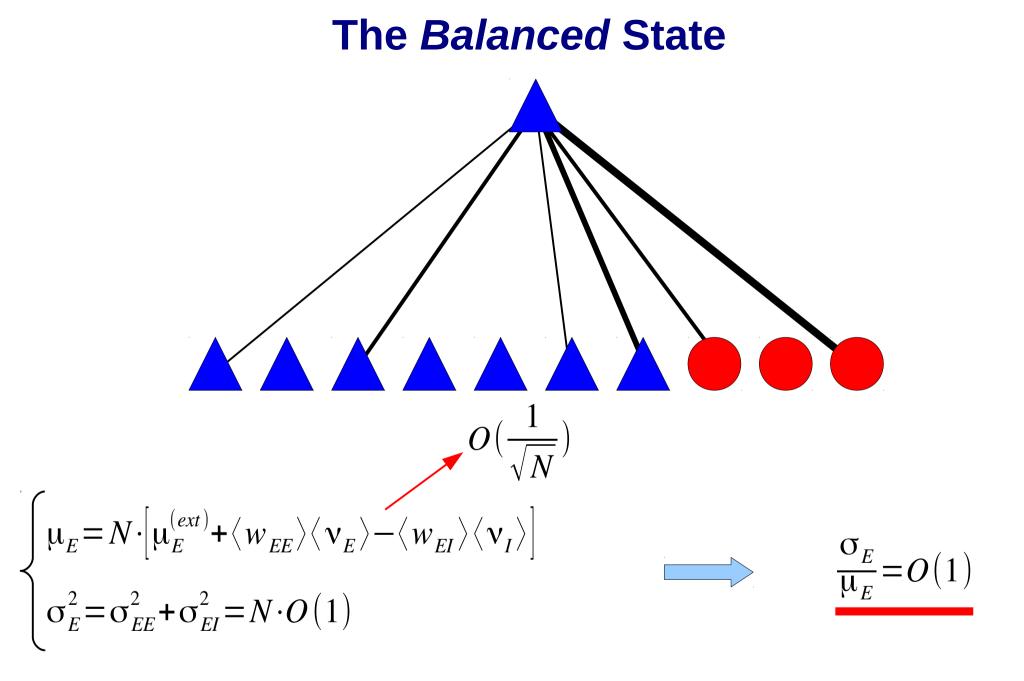
The Balanced State

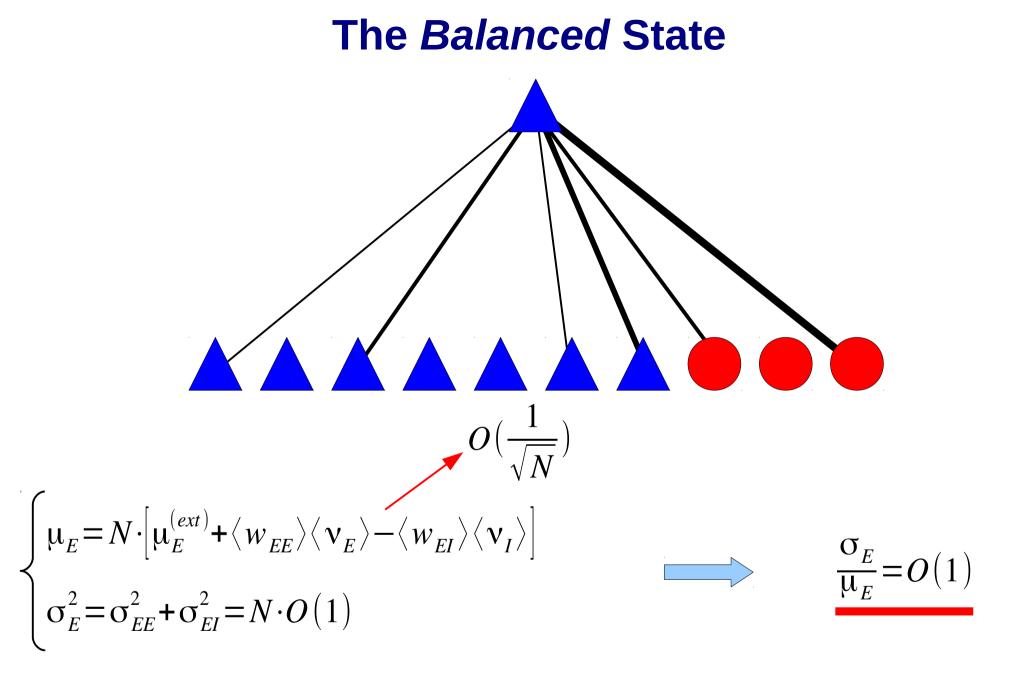


$$\begin{cases} \mu_E = N \cdot \left[\mu_E^{(ext)} + \langle w_{EE} \rangle \langle v_E \rangle - \langle w_{EI} \rangle \langle v_I \rangle \right] \\ \sigma_E^2 = \sigma_{EE}^2 + \sigma_{EI}^2 = N \cdot O(1) \end{cases}$$









<u>Under very general conditions, activity will evolve to a steady state where</u> <u>the total excitation and inhibition nearly cancel each other (balanced state)</u>

(van Vreeswijk & Sompolinsky, 1996; 1998)

$$\mu_{E} = N \cdot \left[\mu_{E}^{(ext)} + \langle w_{EE} \rangle \langle v_{E} \rangle - \langle w_{EI} \rangle \langle v_{I} \rangle \right]$$
$$\mu_{I} = N \cdot \left[\mu_{I}^{(ext)} + \langle w_{IE} \rangle \langle v_{E} \rangle - \langle w_{II} \rangle \langle v_{I} \rangle \right]$$

$$\mu_{E} = N \cdot \left[\mu_{E}^{(ext)} + \langle w_{EE} \rangle \langle v_{E} \rangle - \langle w_{EI} \rangle \langle v_{I} \rangle \right]$$

$$\mu_{I} = N \cdot \left[\mu_{I}^{(ext)} + \langle w_{IE} \rangle \langle v_{E} \rangle - \langle w_{II} \rangle \langle v_{I} \rangle \right]$$

$$\mu_{E}^{(p)} = N \cdot \left[\mu_{E}^{(ext)} + f \gamma \langle w_{EE} \rangle \langle v_{E}^{(p)} \rangle + (1 - f) \langle w_{EE} \rangle \langle v_{E}^{(0)} \rangle - \langle w_{EI} \rangle \langle v_{I} \rangle \right]$$

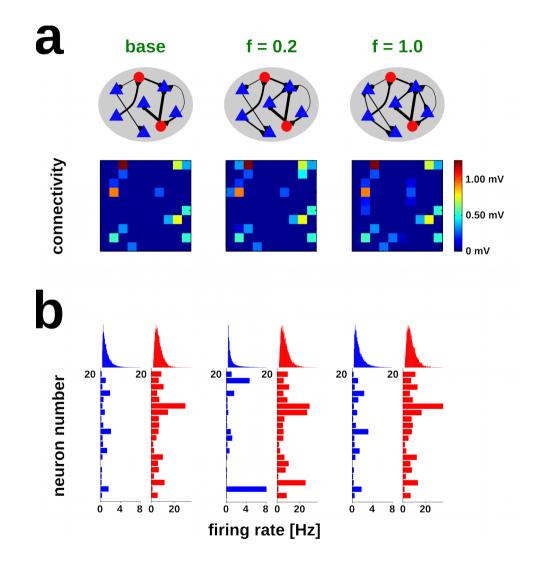
$$\mu_{E}^{(0)} = N \cdot \left[\mu_{E}^{(ext)} + f \langle w_{EE} \rangle \langle v_{E}^{(p)} \rangle + (1 - f) \langle w_{EE} \rangle \langle v_{E}^{(0)} \rangle - \langle w_{EI} \rangle \langle v_{I} \rangle \right]$$

$$\mu_{E} = N \cdot \left[\mu_{E}^{(ext)} + \langle w_{EE} \rangle \langle v_{E} \rangle - \langle w_{EI} \rangle \langle v_{I} \rangle \right]$$
$$\mu_{I} = N \cdot \left[\mu_{I}^{(ext)} + \langle w_{IE} \rangle \langle v_{E} \rangle - \langle w_{II} \rangle \langle v_{I} \rangle \right]$$

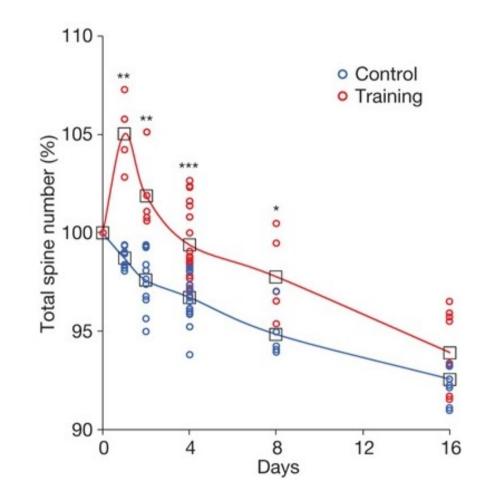
$$\mu_{E}^{(p)} = N \cdot \left[\mu_{E}^{(ext)} + f \gamma \langle w_{EE} \rangle \langle v_{E}^{(p)} \rangle + (1 - f) \langle w_{EE} \rangle \langle v_{E}^{(0)} \rangle - \langle w_{EI} \rangle \langle v_{I} \rangle \right]$$

$$\mu_{E}^{(0)} = N \cdot \left[\mu_{E}^{(ext)} + f \langle w_{EE} \rangle \langle v_{E}^{(p)} \rangle + (1 - f) \langle w_{EE} \rangle \langle v_{E}^{(0)} \rangle - \langle w_{EI} \rangle \langle v_{I} \rangle \right]$$

$$\mu_{E}^{(p)}-\mu_{E}^{(0)}=N\cdot\left[\left(\gamma-1\right)f\langle w_{EE}\rangle\langle v_{E}^{(p)}\rangle\right]=O(N)$$



Where Is Learned Information Stored?



(Xu et al., 2009)

Conclusions

- Quantitative theory relating changes in synaptic connectivity to changes in patterns of ongoing activity. (stability of neuronal representations?)
- Considering changes that preserve the overall distribution of connections, inhibitory plasticity is both necessary and sufficient for large-scale changes in network activity. (functional role of synaptic volatility?)
- Transient, local changes in statistics of the E → E connectivity could drive activity-dependent inhibitory plasticity. (role of inhibitory plasticity in learning/memory?)

Conclusions

- Quantitative theory relating changes in synaptic connectivity to changes in patterns of ongoing activity. (stability of neuronal representations?)
- Considering changes that preserve the overall distribution of connections, inhibitory plasticity is both necessary and sufficient for large-scale changes in network activity. (functional role of synaptic volatility?)
- Transient, local changes in statistics of the E → E connectivity could drive activity-dependent inhibitory plasticity. (role of inhibitory plasticity in learning/memory?)

Next (on the blackboard)

Storing a large number of memories in biologically-constrained model Networks – Mean-field analysis and estimate of the storage capacity