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Plan of the Lecture

First 2 hours (talk + blackboard):

Last hour – Implications of the balanced regime for
memory function (talk):

G Mongillo, S Rumpel, Y Loewenstein (2017). 
Intrinsic volatility of synaptic connections -- a challenge to the synaptic trace theory of memory. 
Current Opinion in Neurobiology 46:7-13.

G Mongillo, S Rumpel, Y Loewenstein (2018).
Inhibitory connectivity defines the realm of excitatory plasticity.
Nature Neuroscience 21:1463-1470.

G Mongillo & M Tsodyks (2023).
Balance of excitation and inhibition is necessary for robust memory storage and retrieval
in cortical networks. (unpublished results).



  

Outline

● Synaptic dynamics in vivo: chronic spine imaging

● Implications for learning (and memory storage)

● Conclusions



  

Memory, or Stabilization of Synaptic Changes

Donald O. Hebb (1949)

“The first step in this neural schematizing is a bald assumptions about the structural changes
that make lasting memories possible. […] The assumption, in brief, is that a growth process 
accompanying synaptic activity makes the synapse more readily traversed. […] To account
for the permanence [of the memory] some structural change seems necessary […]”.

“With both explicit and implicit memory there are stages in memory that are encoded as changes
in synaptic strength and that correlate with the behavioral phases of short- and long-term memory
[…] whereas the long-term synaptic changes involve activation of gene expression, new protein
synthesis, and the formation of new connections”.

Eric R. Kandel (2001)

René Descartes (1664)

«[…] les esprits qui sortent de la glande […] ont la force […] de plier et disposer diversement les
petits filets qu'ils rencontrent […] en sorte qu'ils y tracent aussi des figures, qui se rapportent à celles
des objets; non pas toutefois si aisément du premier coup […] mais peu à peu de mieux en mieux,
selon que leur action […] est plus de fois réitérée. Ce qui est cause que ces figures ne s'effacent pas
non plus si aisément […]. Et c'est en quoi consiste la mémoire. »  
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Spines: Basic Facts

(Smrt & Zhao, 2010)
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(Harris, 1989) (Arellano et al., 2007) (Matsuzaki et al., 2005)

● >90% of excitatory synapses terminate
  on spines

● Spine volume is a proxy of the synaptic
  efficacy



  

Spines: Experience-driven Dynamics

(Xu et al., 2009)
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Day 1

Day 5

(Loewenstein et al., 2011; Loewenstein et al., 2015)

The Dataset
6 mice
8 neurons
3688 spines
6 time points (4-days interval)

Spines: 'Ongoing' Dynamics
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Day 1

Day 5

(Loewenstein et al., 2011; Loewenstein et al., 2015)

The Dataset
6 mice
8 neurons
3688 spines
6 time points (4-days interval)

Spines: 'Ongoing' Dynamics

 # of spines (on a given neuron) is approximately constant across sessions



  

Spines: 'Ongoing' Dynamics

(Loewenstein et al., 2011)



  

Spines: 'Ongoing' Dynamics

(Loewenstein et al., 2011)

● spines' size distribution is approximately constant across neurons

● spines' size distribution is well fitted by a log-normal distribution, and approximately
constant across sessions



  

Spines: 'Ongoing' Dynamics

(Loewenstein et al., 2011)

● spines' size distribution is well fitted by a log-normal distribution, and approximately
constant across sessions

● spines' size distribution is approximately constant across neurons

Ongoing spine dynamics preserve the gross statistical features of synaptic
connectivity (E→E)



  

Ephemeral Cortical Circuits

Most spines present in the first imaging day are no longer
present after 20 days (Loewenstein et al., 2015)

70% of the stable spines changed their size by at least
a factor 2 within 20 days (Loewenstein et al., 2011)

..the fine structure, however, appears to undergo dramatic changes..
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Ephemeral Cortical Circuits

Most spines present in the first imaging day are no longer
present after 20 days (Loewenstein et al., 2015)

70% of the stable spines changed their size by at least
a factor 2 within 20 days (Loewenstein et al., 2011)

..the fine structure, however, appears to undergo dramatic changes..
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What is the effect of such a massive structural re-organization
on the patterns of neuronal activity exhibited by the network?



  

Mechanisms for Stability of Long-term Memories

Mongillo, Rumpel & Loewenstein, Curr. Opin. Neurobiol. (2017)



  

A Biologically-Constrained Model Network

(Avermann et al., 2012)

N=40.000 (80% E – 20% I) LIF Neurons

External inputs were adjusted to reproduce
experimentally observed firing rates:

Exc: ~1Hz – Inh: ~5Hz

Experimentally observed spine data were
used to simulate network re-organization

Random connectivity

Log-normal distribution of synaptic efficacies

E→E connectivity from spine data



  

A Biologically-Constrained Model Network

● Temporally irregular spiking resembling Poisson process.



  

A Biologically-Constrained Model Network

● Temporally irregular spiking resembling Poisson process.

● Right-skewed, long-tailed distributions of average rates.

(Roxin et al., 2011)



  

Experimentally observed spine data were used to simulate network reorganization

Effects of E→E Volatility
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Effects of E→E Volatility

connectivity
(experiment)

excitation
(simulations)

inhibition
(simulations)

Experimentally observed spine data were used to simulate network reorganization



  

Rewiring



  

Rewiring



  

Rewiring



  

Rewiring

Patterns of ongoing activity are robust against changes in excitatory synapses
while being very sensitive to changes in inhibitory synapses



  

A Simple Intuitive Explanation
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A Possible Mechanism for Learning
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A Possible Mechanism for Learning

excitation
(simulations)

inhibition
(simulations)



  

A Possible Mechanism for Learning

ongoing plasticity learning-like plasticity



  

The Balanced State
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Under very general conditions, activity will evolve to a steady state where
the total excitation and inhibition nearly cancel each other (balanced state)

(van Vreeswijk & Sompolinsky, 1996; 1998)



  

Transiently Unbalanced Networks
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Transiently Unbalanced Networks



  

Where Is Learned Information Stored?

(Xu et al., 2009)



  

Conclusions

● Considering changes that preserve the overall distribution of connections, inhibitory
  plasticity is both necessary and sufficient for large-scale changes in network activity.
  (functional role of synaptic volatility?) 

● Transient, local changes in statistics of the E→E connectivity could drive 
   activity-dependent inhibitory plasticity.
   (role of inhibitory plasticity in learning/memory?) 

● Quantitative theory relating changes in synaptic connectivity to changes in 
  patterns of ongoing activity.
  (stability of neuronal representations?)



  

Conclusions

Storing a large number of memories in biologically-constrained model
Networks – Mean-field analysis and estimate of the storage capacity 

Next (on the blackboard)

● Considering changes that preserve the overall distribution of connections, inhibitory
  plasticity is both necessary and sufficient for large-scale changes in network activity.
  (functional role of synaptic volatility?) 

● Transient, local changes in statistics of the E→E connectivity could drive 
   activity-dependent inhibitory plasticity.
   (role of inhibitory plasticity in learning/memory?) 

● Quantitative theory relating changes in synaptic connectivity to changes in 
  patterns of ongoing activity.
  (stability of neuronal representations?)



  


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

