CHAOS, CRITICALITY, AND COMPUTATION IN RECURRENT NETWORKS

MORITZ HELIAS

2023-06-15 LAUSANNE

COMPUTATIONAL AND SYSTEMS NEUROSCIENCE (INM-6) THEORETICAL NEUROSCIENCE (IAS-6) FACULTY OF PHYSICS, RWTH AACHEN UNIVERSITY

Member of the Helmholtz Association

INFERENCE OF COLLECTIVE NETWORK DYNAMICS FROM OBSERVED ACTIVITY

Member of the Helmholtz Association

COLLECTIVE DYNAMICS - CORRELATIONS

Forschungszentrum

SMALL AVERAGE CORRELATIONS

(Brochier et al. 2018)

Member of the Helmholtz Association

SMALL AVERAGE CORRELATIONS – BALANCED STATE

SMALL AVERAGE CORRELATIONS – BALANCED STATE

AVERAGE CORRELATIONS - PREDOMINANTLY GENERATED INTRINSICALLY

Renart et al. 2010

Member of the Helmholtz Association

WIDE DISTRIBUTION

SIGNATURES OF CRITICAL STATES IN MOTOR CORTEX

DAVID DAHMEN

LINEAR NETWORK MODEL (LINEAR RESPONSE THEORY)

• Linear response theory captures fluctuations in asynchronous irregular brain states (Lindner et al. 2006, Pernice et al. 2011, Trousdale et al. 2012, Grytskyy et al. 2014)

$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

Member of the Helmholtz Association

$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

FIELD THEORETIC FORMULATION

$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

FIELD THEORETIC FORMULATION

$$C = [1 - W]^{-1} D [1 - W]^{-T}$$
$$\tau \frac{dx_i(t)}{dt} = -x_i(t) + \sum_{j=1}^{N} W_{ij} x_j(t) + \xi_i(t)$$

FIELD THEORETIC FORMULATION

$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

$$\tau \frac{dx_i(t)}{dt} = -x_i(t) + \sum_{j=1}^{N} W_{ij}x_j(t) + \xi_i(t)$$

$$p[x(t)] = \int D\tilde{x} e^{S(\tilde{x}, x|W)}$$

$$f$$
Martin Siggia Rose formalism
Martin et al. 1973, DeDominicis 1975, Janssen 1976

Forschungszentrum

ENSEMBLES OF NETWORKS

$$p[x(t)] = \int D\tilde{x} \, e^{S(\tilde{x}, x | W)}$$

disorder (W) average

$$W_{ij}$$

disordered realization
 $S_0(\tilde{X}, X) = \tilde{X}^T(1 - \mu\{1\})X + \frac{D}{2}\tilde{X}^T\tilde{X}$
 $S_{int}(\tilde{X}, X) = \frac{\sigma^2}{2N}\tilde{X}^T\tilde{X}X^TX$

BEYOND MEAN-FIELD THEORY

$$S_{0}(\widetilde{X}, X) = \widetilde{X}^{T}(1 - \mu\{1\})X + \frac{D}{2}\widetilde{X}^{T}\widetilde{X}$$
$$S_{int}(\widetilde{X}, X) = \frac{\sigma^{2}}{2N}\widetilde{X}^{T}\widetilde{X}X^{T}X \longrightarrow_{mean + fluctuation corrections}$$

Result:

variance of entries of W spectral radius of connectivity W

Forschungszentrum

Forschungszentrum

LARGE WIDTH IMPLIES CRITICALITY

MOTOR CORTEX NEARLY UNSTABLE

Motor cortex is operating close to critical point of linear instability R=1 !

DYNAMICAL AND FUNCTIONAL CONSEQUENCES - RICH REPERTOIRE OF DYNAMICAL MODES

Dahmen et al., Second type of criticality in the brain uncovers rich multiple-neuron dynamics, PNAS, 2019

DYNAMICAL AND FUNCTIONAL CONSEQUENCES - RICH REPERTOIRE OF DYNAMICAL MODES

Dahmen et al., Second type of criticality in the brain uncovers rich multiple-neuron dynamics, PNAS, 2019

DYNAMICAL AND FUNCTIONAL CONSEQUENCES -LONG-RANGE INTERACTIONS DESPITE SHORT-RANGE CONNECTIONS

Dahmen et al., Long-range coordination patterns in cortex change with behavioral context, elife, 2022

TRANSIENT CHAOTIC DIMENSIONALITY EXPANSION

CHRISTIAN KEUP, TOBIAS KÜHN, DAVID DAHMEN

Member of the Helmholtz Association

DRIVEN RANDOM RATE NETWORKS

- OPTIMAL MEMORY CLOSE TO CRITICALITY coupling input $\tau \frac{dx_i(t)}{dt} = -x_i(t) + \sum_{ij}^N J_{ij}\phi(x_j(t)) + \xi_i(t)$ nonlinear network: transition to chaos Var(input) > Var(neurons) $q^2 \langle \phi^2 \rangle > \langle x^2 \rangle$ coupling strength optimal memory linear unstable dynamical state between linear stable loss of linear stability and onset of chaos has optimal memory regular linear instability $R^2 = q^2 \langle \phi'^2 \rangle > 1$

input strength

Schuecker et al., Optimal Sequence Memory in Driven Random Networks, PRX, 2018

SPIKING INTERACTION: ABSTRACTION AS BINARY

Taking into account discrete coupling

DISCRETE COUPLING: BINARY NEURON

DISCRETE COUPLING: BINARY NEURON

$$\rho[\boldsymbol{h}|\boldsymbol{x}](J) = \delta[\boldsymbol{h} - \boldsymbol{J}\boldsymbol{x}]$$

$$egin{aligned} &
ho[oldsymbol{h}|oldsymbol{x}](J) = \deltaig[oldsymbol{h} - oldsymbol{J}oldsymbol{x}ig] \ &= \int \mathcal{D}\hat{oldsymbol{h}} \expig(\hat{oldsymbol{h}}^{\mathrm{T}}oldsymbol{h}ig) \expig(-\hat{oldsymbol{h}}^{\mathrm{T}}oldsymbol{J}oldsymbol{x}ig). \end{aligned}$$

linear J in exponent

$$\rho[\boldsymbol{h}|\boldsymbol{x}](J) = \delta[\boldsymbol{h} - \boldsymbol{J}\boldsymbol{x}]$$

= $\int \mathcal{D}\hat{\boldsymbol{h}} \exp(\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{h}) \exp(-\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{J}\boldsymbol{x}).$

linear J in exponent

$$\rho[\boldsymbol{h}|\boldsymbol{x}](J) = \delta[\boldsymbol{h} - \boldsymbol{J}\boldsymbol{x}]$$

= $\int \mathcal{D}\hat{\boldsymbol{h}} \exp(\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{h}) \exp(-\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{J}\boldsymbol{x})$

linear J in exponent

instantaneous synaptic coupling

$$\rho[\boldsymbol{h}|\boldsymbol{x}](J) = \delta[\boldsymbol{h} - \boldsymbol{J}\boldsymbol{x}]$$

= $\int \mathcal{D}\hat{\boldsymbol{h}} \exp(\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{h}) \exp(-\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{J}\boldsymbol{x})$

only term affected: interaction

$$= \left\langle \exp(-\hat{h}^{\mathrm{T}}Jx) \right\rangle_{J_{ij}} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\frac{\bar{g}}{N}, \frac{g^{2}}{N})$$
$$= \exp\left(-\frac{\bar{g}}{N}\hat{h}^{\mathrm{T}}\mathcal{R} + \frac{g^{2}}{2N}\hat{h}^{\mathrm{T}}\mathcal{Q}\hat{h}\right)$$

...

$$\mathcal{R}(t) = \frac{\bar{g}}{N} \sum_{j=1}^{N} x_j(t)$$
$$\mathcal{Q}(t,s) = \frac{g^2}{N} \sum_{j=1}^{N} x_j(t) x_j(s)$$

Macroscopic field theory

• auxiliary fields and conjugate fields $(\mathcal{R}, \mathcal{Q}, \hat{\mathcal{R}}, \hat{\mathcal{Q}}) \sim e^{N S[\mathcal{R}, \mathcal{Q}, \hat{\mathcal{R}}, \hat{\mathcal{Q}}]}$

Continuous and discrete coupling: same DMFT

same dynamical e.o.m.

 $\tau^{2}\ddot{Q}\left(\Delta t\right) = -V_{Q(0)}'\left(Q\left(\Delta t\right)\right).$

same activity statistics (mean and fluctuations)

CLASSIFICATION OF INPUT PATTERNS

Reservoir computing setup

CLASSIFICATION OF INPUT PATTERNS

Reservoir computing setup

CHAOS AS CORRELATION TRANSMISSION

CHAOS AS CORRELATION TRANSMISSION

Replica

method

licator 2000

correlation?

NETWORK-SIZE DEPENDENT TRANSITION

Van Vreeswijk & Sompolinsky 1996

TRANSITION TO CHAOS IN BINARY NETWORKS

Replica decorrelation

condition for finite-size transition to chaos

$$1 \leq \sqrt{\frac{2}{\pi}} g \langle \mathbf{T}'(h) \rangle_h \sqrt{N}$$

Forschungszentrum

CHAOS IN BINARY NETWORKS

Differences to continuous rate networks

1. Mutually exclusive regimes.

2. Limited chaotic attractor.

DECORRELATION CURVE

Inter-class distance increases compared to intra-class distance

JÜLICH

Forschungszentrum

TRANSIENT CHAOTIC DIMENSIONALITY EXPANSION

Classification in chaotic binary networks

- Input data: 50 Gaussian classes in 8 dim. (not linearly separable)
 - 2 ln(2) ~ 1.5 activations per neuron Linear readout accuracy peaks during expansion phase b d^* $^{0}p\nabla^{5}$ decorrelation L00 0 coupling g $2\ln(2)$ 10 5 time [τ] t/τ

optimal signal after

TRANSIENT CHAOTIC DIMENSIONALITY EXPANSION

Classification in chaotic binary networks

Input data: 50 Gaussian classes in 8 dim. (not linearly separable)

optimal signal after 2 In(2) ~ 1.5 activations per neuron

Acknowledgments

ERS Exploratory Research Space RWTHAACHE

Federal Ministry of Education and Research

SUMMARY

• novel type of critical state

implied by wide distribution of correlations dynamics close to linear instability and chaos caused by disorder of connectivity

 chaotic dynamics enhances separability discrete coupling: stereotypical and fast quick separation of signals by recurrent networks

Dahmen, Gruen, Diesmann, Helias (2019) PNAS

Keup, Kuehn, Dahmen, Helias (2021) Phys Rev X

