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INFERENCE OF COLLECTIVE NETWORK DYNAMICS 
FROM OBSERVED ACTIVITY
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mechanisms of network dynamics neural information processing

implement

extract



COLLECTIVE DYNAMICS - CORRELATIONS
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(Brochier et al. 2018)



SMALL AVERAGE CORRELATIONS
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(Brochier et al. 2018)



SMALL AVERAGE CORRELATIONS – BALANCED STATE
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Renart et al. 2010

Finite size-theory of average fluctuations
Helias et al. 2014

intrinsic externally-driven
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Renart et al. 2010

Finite size-theory of average fluctuations
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SMALL AVERAGE CORRELATIONS – BALANCED STATE



AVERAGE CORRELATIONS
- PREDOMINANTLY GENERATED INTRINSICALLY
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Renart et al. 2010

Finite size-theory of average fluctuations
Helias et al. 2014

intrinsic externally-driven

simulation explanation:
negative feedback by inhibition



WIDE DISTRIBUTION
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SIGNATURES OF CRITICAL STATES IN 
MOTOR CORTEX

DAVID DAHMEN



LINEAR NETWORK MODEL (LINEAR RESPONSE THEORY)
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• Linear response theory captures fluctuations in asynchronous irregular brain states
     (Lindner et al. 2006, Pernice et al. 2011, Trousdale et al. 2012, Grytskyy et al. 2014)

exponential relaxation i.i.d. Gaussian 
coupling weights

external 
white noise
Var = D



COVARIANCES             CONNECTIVITY
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(Lindner et al. 2006, Pernice et al. 2011, Trousdale et al. 2012, Grytskyy et al. 2014)
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(Lindner et al. 2006, Pernice et al. 2011, Trousdale et al. 2012, Grytskyy et al. 2014)

matrix equation

COVARIANCES             CONNECTIVITY
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(Lindner et al. 2006, Pernice et al. 2011, Trousdale et al. 2012, Grytskyy et al. 2014)

matrix equation

COVARIANCES             CONNECTIVITY
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(Lindner et al. 2006, Pernice et al. 2011, Trousdale et al. 2012, Grytskyy et al. 2014)

matrix equationenough to estimate statistics

COVARIANCES             CONNECTIVITY



FIELD THEORETIC FORMULATION
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FIELD THEORETIC FORMULATION
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FIELD THEORETIC FORMULATION
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Martin Siggia Rose formalism
Martin et al. 1973, DeDominicis 1975, Janssen 1976



ENSEMBLES OF NETWORKS
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disorder (W) average



BEYOND MEAN-FIELD THEORY
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Result:

mean + fluctuation corrections

variance of entries of W
spectral radius of connectivity W

width of distribution of correlations

number of neurons
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theory data

edge of spectrum
determines stability 
of dynamics

loss of stability
→ critical point

spectrum of connectivity W

LARGE WIDTH IMPLIES CRITICALITY
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theory data

loss of stability
→ critical point

LARGE WIDTH IMPLIES CRITICALITY



MOTOR CORTEX NEARLY UNSTABLE

Page 23

 Motor cortex is operating close to 
critical point of linear instability R=1 !

 

datatheory

width

width



DYNAMICAL AND FUNCTIONAL CONSEQUENCES
- RICH REPERTOIRE OF DYNAMICAL MODES
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Dahmen et al., Second type of criticality in the brain uncovers rich multiple-neuron dynamics, PNAS, 2019



DYNAMICAL AND FUNCTIONAL CONSEQUENCES
- RICH REPERTOIRE OF DYNAMICAL MODES
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Dahmen et al., Second type of criticality in the brain uncovers rich multiple-neuron dynamics, PNAS, 2019



DYNAMICAL AND FUNCTIONAL CONSEQUENCES
-LONG-RANGE INTERACTIONS DESPITE SHORT-RANGE CONNECTIONS 
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Dahmen et al., Long-range coordination patterns in cortex change with behavioral context, elife, 2022



TRANSIENT CHAOTIC DIMENSIONALITY EXPANSION
CHRISTIAN KEUP, TOBIAS KÜHN, DAVID DAHMEN

Christian
Keup

Tobias
Kühn
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chaotic

dynamical state between
loss of linear stability and onset 
of chaos has optimal memory

DRIVEN RANDOM RATE NETWORKS
- OPTIMAL MEMORY CLOSE TO CRITICALITY

Schuecker et al., Optimal Sequence Memory in Driven Random Networks, PRX, 2018

nonlinear network:

regular

transition to chaos    Var(input) > Var(neurons)   

linear instability   

inputcoupling



SPIKING INTERACTION: ABSTRACTION AS BINARY
Taking into account discrete coupling
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binary, all-or-nothing signal

Binary neurons

1

0
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DISCRETE COUPLING: BINARY NEURON
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discrete signal sent to 
other neurons

DISCRETE COUPLING: BINARY NEURON



32

discrete signal sent to 
other neurons

idea:
build neuron-model independent field theory

MODEL-INDEPENDENT FIELD THEORY
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MODEL-INDEPENDENT FIELD THEORY



34

MODEL-INDEPENDENT FIELD THEORY
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linear J in exponent

MODEL-INDEPENDENT FIELD THEORY
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linear J in exponent

MODEL-INDEPENDENT FIELD THEORY
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linear J in exponent

MODEL-INDEPENDENT FIELD THEORY
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Macroscopic field theory

neuron model

dynamical mean-field theory (DMFT)

mean input to a neuron
variance of input
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Continuous and discrete coupling: same DMFT

• same activity statistics (mean and fluctuations)

                 

au
to

co
rr

el
ati

o
n

 f
u

n
cti

o
n

binary:

rate:

same dynamical e.o.m.



CLASSIFICATION OF INPUT PATTERNS
Reservoir computing setup
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CLASSIFICATION OF INPUT PATTERNS
Reservoir computing setup
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CHAOS AS CORRELATION TRANSMISSION



fixed point
infinite Lyapunov exponent
(van Vreeswijk & Sompolinsky 1996, 1998)

CHAOS AS CORRELATION TRANSMISSION
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decorrelation by flipping single neuron

perfect correlation of replicas

correlates
-> regular

decorrelates
 -> chaotic

network size

infinite 
slope

N → infinity: always chaotic
Van Vreeswijk & Sompolinsky 1996

NETWORK-SIZE DEPENDENT TRANSITION



TRANSITION TO CHAOS IN BINARY NETWORKS
Replica decorrelation
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condition for finite-size transition to chaos

Theory Simulation

MFT for pair of networks: decorrelation  

mean synaptic strength
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CHAOS IN BINARY NETWORKS
Differences to continuous rate networks
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1. Mutually exclusive regimes.
 

2. Limited chaotic attractor.
 

3. No critical slowing down.
  

Binary Rate

Time
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DECORRELATION CURVE
Inter-class distance increases compared to intra-class distance

Page 47

mixing dominated

expansion
dominated
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TRANSIENT CHAOTIC DIMENSIONALITY EXPANSION
Classification in chaotic binary networks
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• Input data: 50 Gaussian classes in 8 dim. (not linearly separable)

• Linear readout accuracy peaks during expansion phase

optimal signal after 
2 ln(2) ~ 1.5 
activations per neuron

coupling g
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TRANSIENT CHAOTIC DIMENSIONALITY EXPANSION
Classification in chaotic binary networks
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• Input data: 50 Gaussian classes in 8 dim. (not linearly separable)

• Linear readout accuracy peaks during expansion phase

optimal signal after 
2 ln(2) ~ 1.5 
activations per neuron

coupling g

Continuous rate LSTM

Fast!Keup, Kuehn, Dahmen, Helias (2021) Phys Rev X
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SUMMARY

• novel type of critical state

implied by wide distribution of correlations

    dynamics close to linear instability and chaos

    caused by disorder of connectivity

• chaotic dynamics enhances separability

discrete coupling: stereotypical and fast

       quick separation of signals by recurrent networks

Dahmen, Gruen, Diesmann, Helias (2019) PNAS

Keup, Kuehn, Dahmen, Helias (2021) Phys Rev X
 


