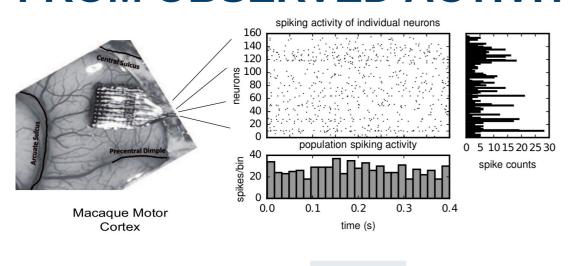
CHAOS, CRITICALITY, AND COMPUTATION IN RECURRENT NETWORKS

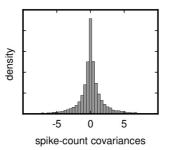
MORITZ HELIAS

2023-06-15 LAUSANNE

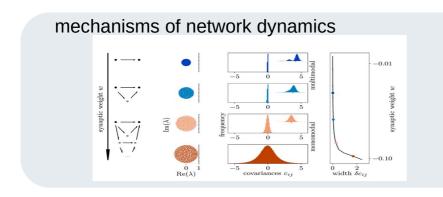
COMPUTATIONAL AND SYSTEMS NEUROSCIENCE (INM-6)
THEORETICAL NEUROSCIENCE (IAS-6)
FACULTY OF PHYSICS, RWTH AACHEN UNIVERSITY

INFERENCE OF COLLECTIVE NETWORK DYNAMICS FROM OBSERVED ACTIVITY

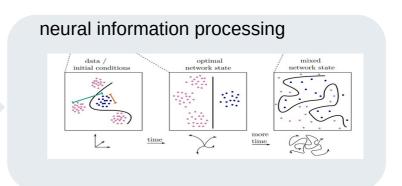




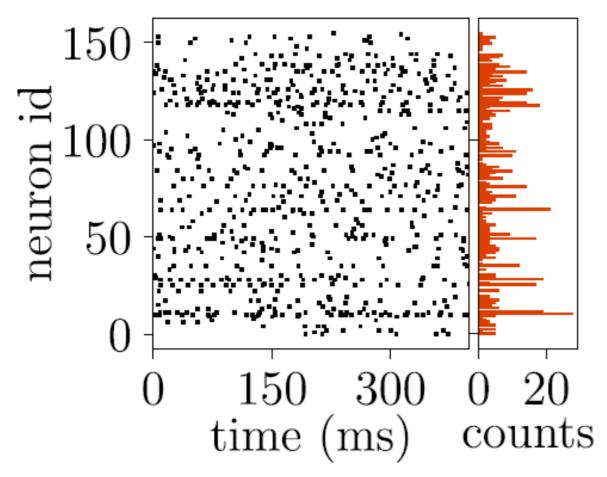
extract

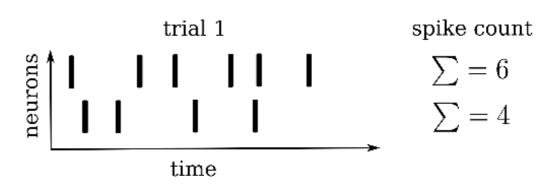


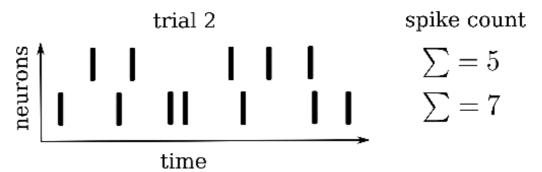
implement



COLLECTIVE DYNAMICS - CORRELATIONS

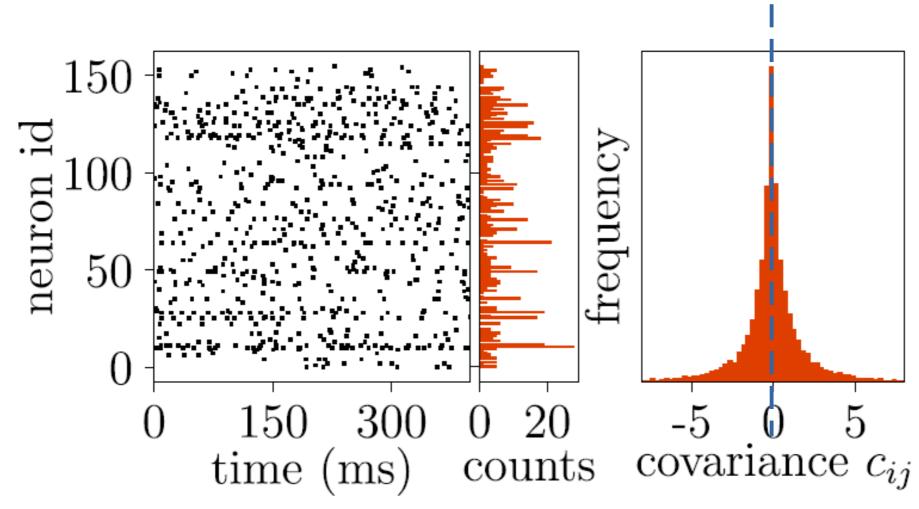






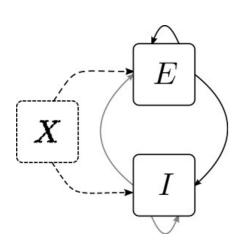
(Brochier et al. 2018)

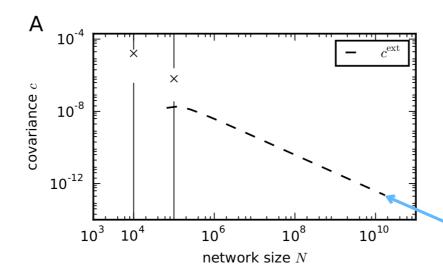
SMALL AVERAGE CORRELATIONS



(Brochier et al. 2018)

SMALL AVERAGE CORRELATIONS – BALANCED STATE





Finite size-theory of **average** fluctuations Helias et al. 2014

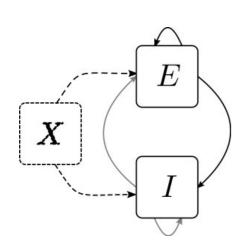
$$c_{\alpha\beta} = \langle c_{ij} \rangle_{i \in \alpha, j \in \beta}$$
 $\alpha, \beta \in \{E, I, X\}$

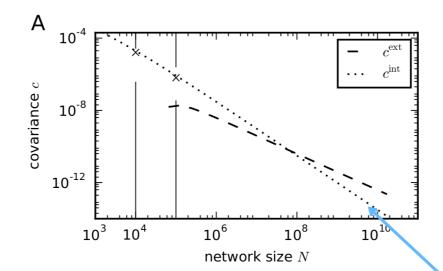
$$\begin{pmatrix} c_{EE} \\ c_{EI} \\ c_{II} \end{pmatrix} = \mathbf{c}_{\mathrm{int}}(a_E, a_I) + \mathbf{c}_{\mathrm{ext}}(a_x)$$

RWTHAACHEN LINIVERSITY

Renart et al. 2010

SMALL AVERAGE CORRELATIONS – BALANCED STATE





$$c_{
m ext} \propto N^{-1}$$
 $c_{
m int} \propto N^{-\frac{3}{2}}$

Finite size-theory of **average** fluctuations Helias et al. 2014

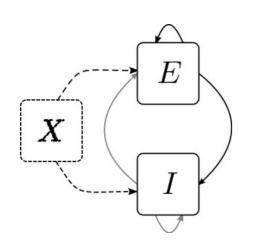
$$c_{\alpha\beta} = \langle c_{ij} \rangle_{i \in \alpha, j \in \beta}$$
 $\alpha, \beta \in \{E, I, X\}$

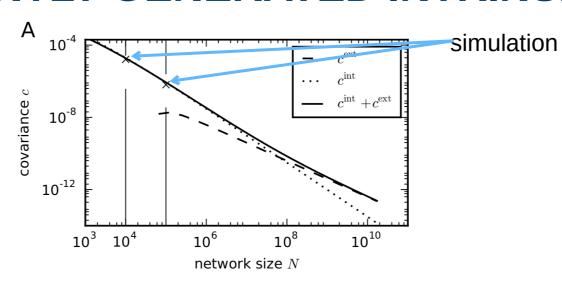
$$\begin{pmatrix} c_{EE} \\ c_{EI} \\ c_{II} \end{pmatrix} = \mathbf{c}_{\mathrm{int}}(a_E, a_I) + \mathbf{c}_{\mathrm{ext}}(a_x)$$

Renart et al. 2010

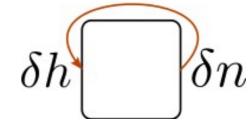
AVERAGE CORRELATIONS

- PREDOMINANTLY GENERATED INTRINSICALLY





explanation: negative feedback by inhibition



Finite size-theory of **average** fluctuations Helias et al. 2014

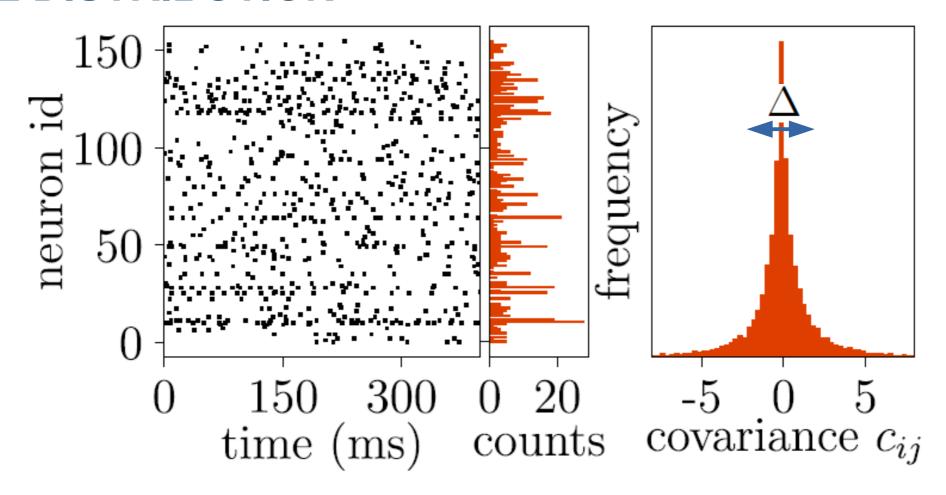
$$c_{\alpha\beta} = \langle c_{ij} \rangle_{i \in \alpha, j \in \beta}$$
 $\alpha, \beta \in \{E, I, X\}$

$$\left(\begin{array}{c} c_{EE} \\ c_{EI} \\ c_{II} \end{array} \right)$$
 intrinsic externally-driven $= \mathbf{c}_{\mathrm{int}}(a_E, a_I) + \mathbf{c}_{\mathrm{ext}}(a_x)$

RWTHAACHEN UNIVERSITY

Renart et al. 2010

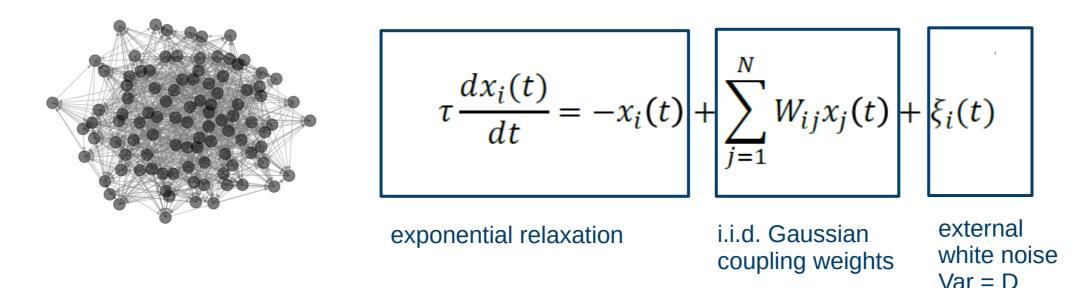
WIDE DISTRIBUTION



SIGNATURES OF CRITICAL STATES IN MOTOR CORTEX

DAVID DAHMEN

LINEAR NETWORK MODEL (LINEAR RESPONSE THEORY)

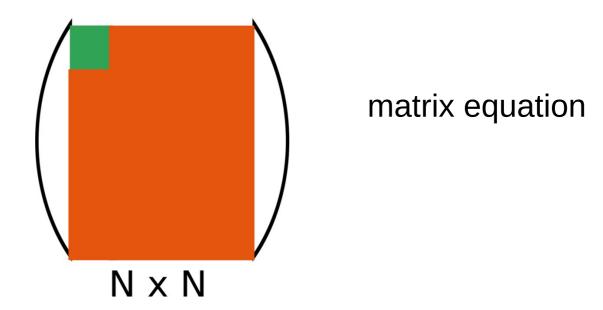


• Linear response theory captures fluctuations in asynchronous irregular brain states (Lindner et al. 2006, Pernice et al. 2011, Trousdale et al. 2012, Grytskyy et al. 2014)

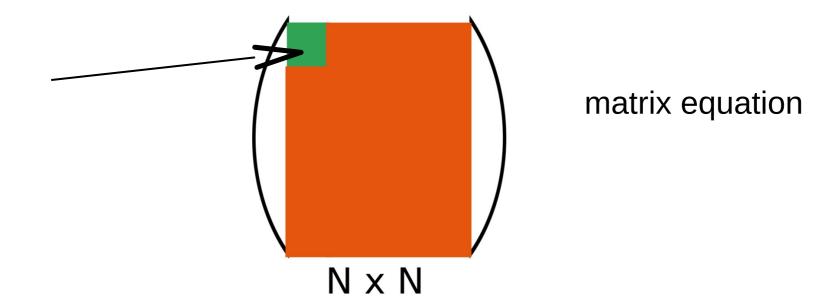
$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

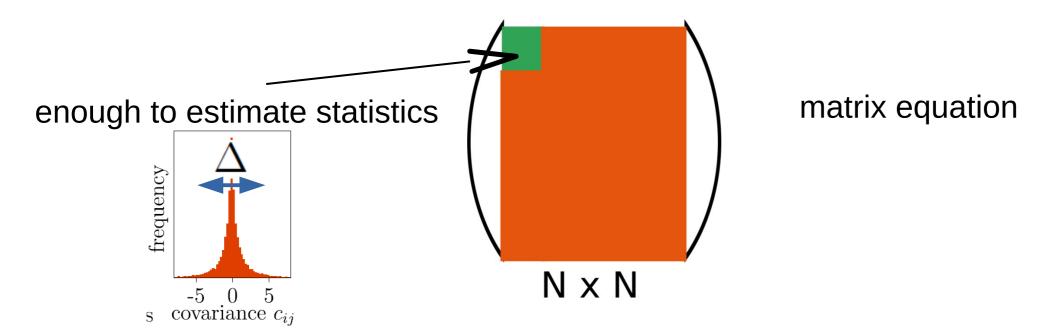
$$C = [1 - W]^{-1}D[1 - W]^{-T}$$



$$C = [1 - W]^{-1}D[1 - W]^{-T}$$



$$C = [1 - W]^{-1}D[1 - W]^{-T}$$



FIELD THEORETIC FORMULATION

$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

FIELD THEORETIC FORMULATION

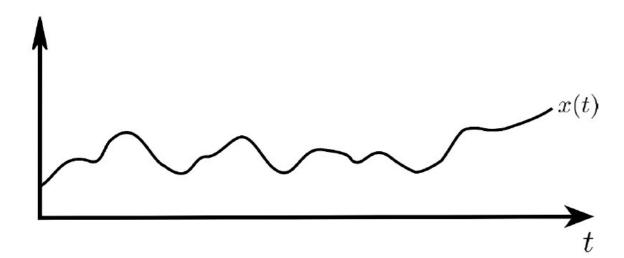
$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

$$\tau \frac{dx_i(t)}{dt} = -x_i(t) + \sum_{j=1}^N W_{ij}x_j(t) + \xi_i(t)$$

FIELD THEORETIC FORMULATION

$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

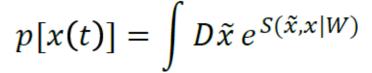
$$\tau \frac{dx_i(t)}{dt} = -x_i(t) + \sum_{j=1}^N W_{ij}x_j(t) + \xi_i(t)$$

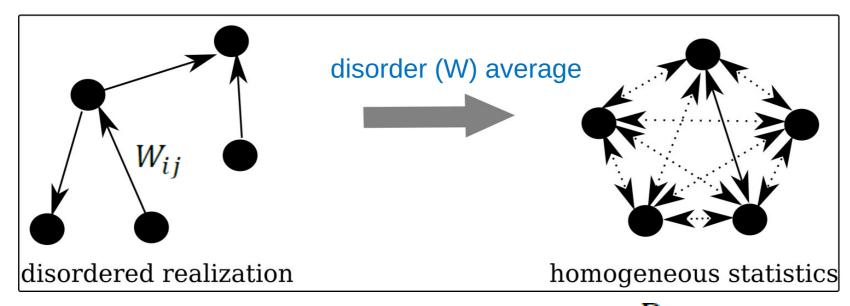


$$p[x(t)] = \int D\tilde{x} \, e^{S(\tilde{x}, x|W)}$$

Martin Siggia Rose formalism Martin et al. 1973, DeDominicis 1975, Janssen 1976

ENSEMBLES OF NETWORKS





$$S_0(\widetilde{X}, X) = \widetilde{X}^{\mathrm{T}}(1 - \mu\{1\})X + \frac{D}{2}\widetilde{X}^{\mathrm{T}}\widetilde{X}$$

$$S_{\text{int}}(\widetilde{X}, X) = \frac{\sigma^2}{2N} \widetilde{X}^{\text{T}} \widetilde{X} X^{\text{T}} X$$

BEYOND MEAN-FIELD THEORY

$$S_0(\widetilde{\boldsymbol{X}}, \boldsymbol{X}) = \widetilde{\boldsymbol{X}}^{\mathrm{T}}(1 - \mu\{\mathbf{1}\})\boldsymbol{X} + \frac{D}{2}\widetilde{\boldsymbol{X}}^{\mathrm{T}}\widetilde{\boldsymbol{X}}$$

$$S_{\text{int}}(\widetilde{X}, X) = \frac{\sigma^2}{2N} \widetilde{X}^T \widetilde{X} X^T X$$
mean + fluctuation corrections

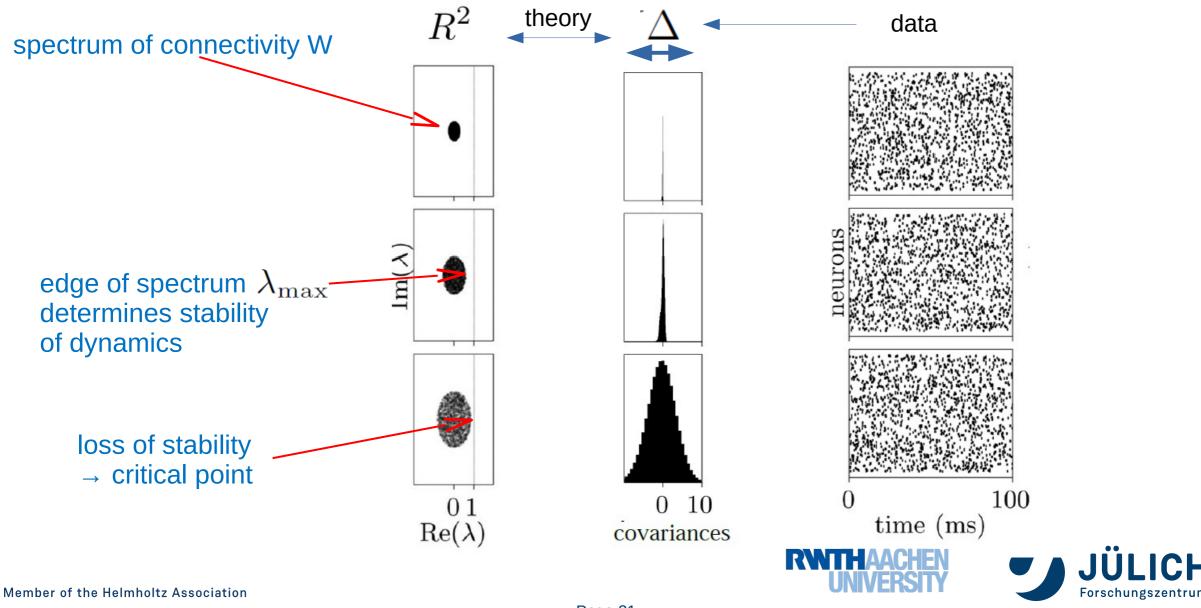
Result:

variance of entries of W spectral radius of connectivity W

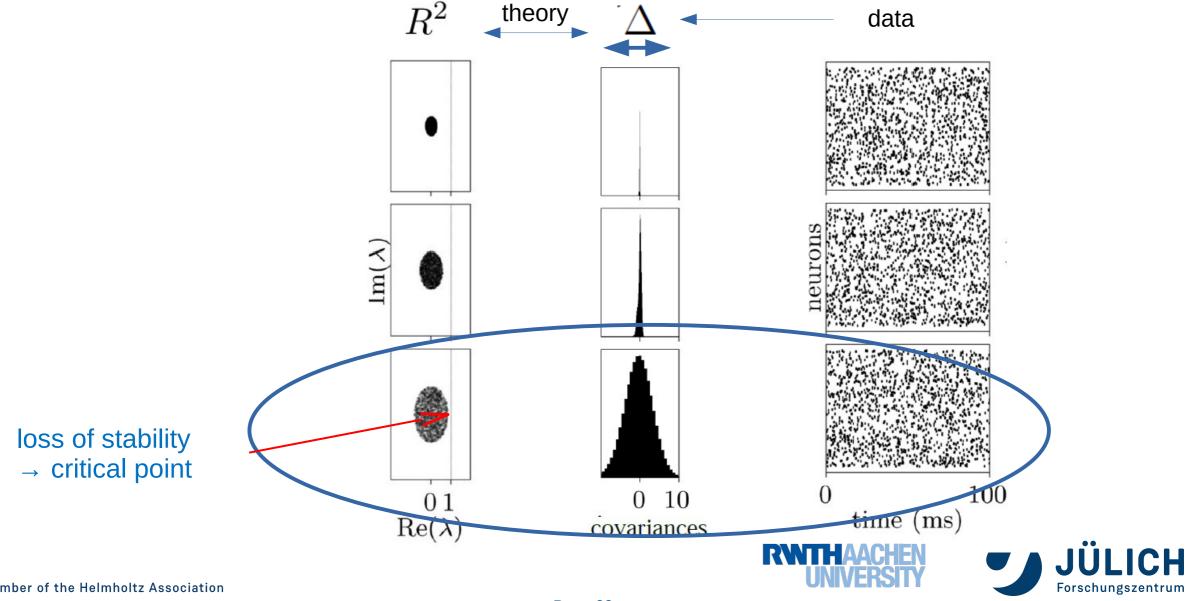
$$R^2 = 1 - \sqrt{\frac{1}{1 + N \, \Delta}}$$
 number of neurons

width of distribution of correlations

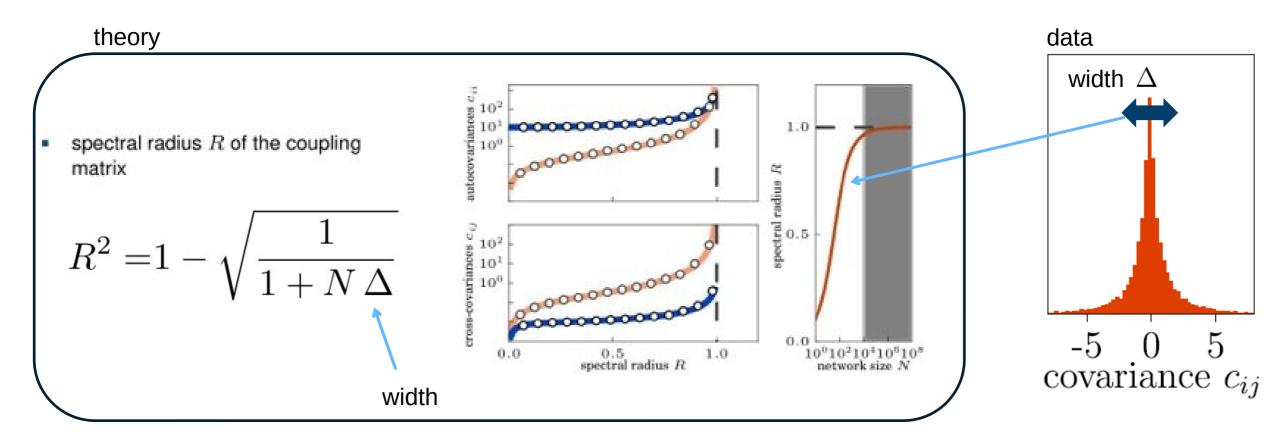
LARGE WIDTH IMPLIES CRITICALITY



LARGE WIDTH IMPLIES CRITICALITY



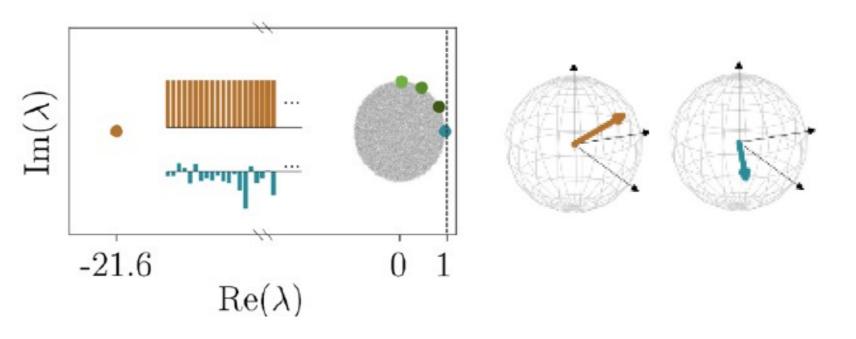
MOTOR CORTEX NEARLY UNSTABLE



Motor cortex is operating close to critical point of linear instability R=1!

DYNAMICAL AND FUNCTIONAL CONSEQUENCES

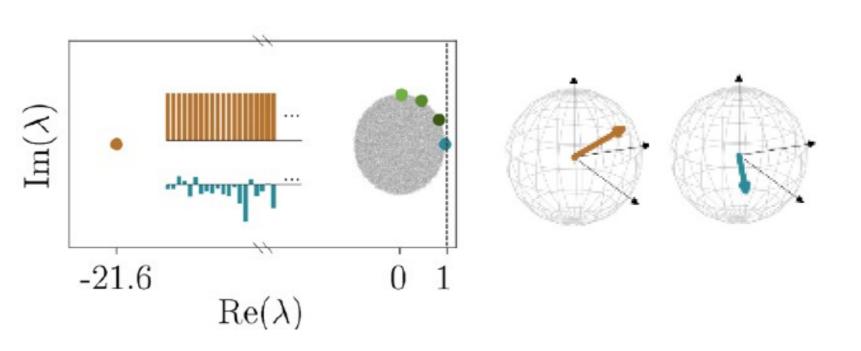
- RICH REPERTOIRE OF DYNAMICAL MODES



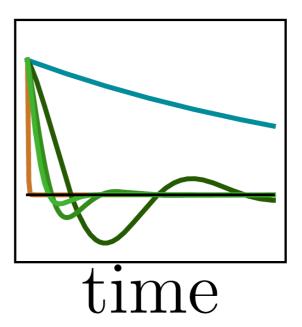
Dahmen et al., Second type of criticality in the brain uncovers rich multiple-neuron dynamics, PNAS, 2019

DYNAMICAL AND FUNCTIONAL CONSEQUENCES

- RICH REPERTOIRE OF DYNAMICAL MODES



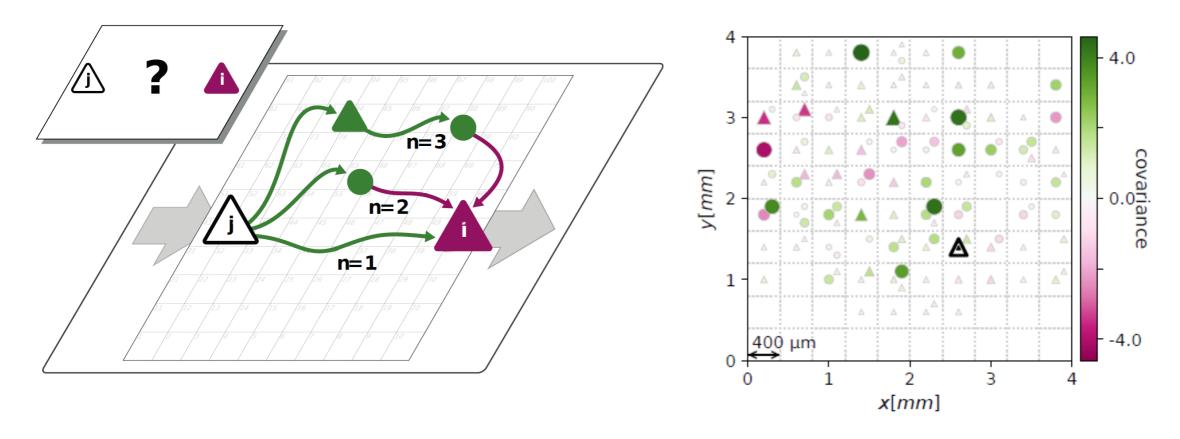
$$v_{\alpha}(t) \sim e^{-t/\frac{\tau}{1-\lambda_{\alpha}}}$$



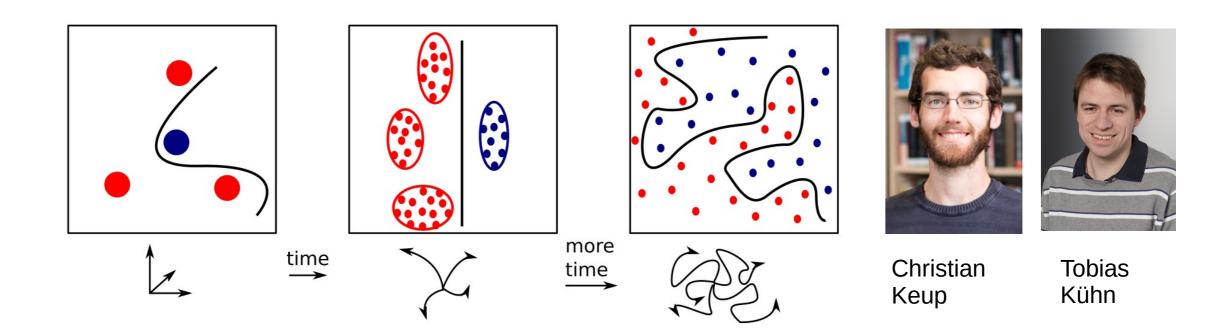
Dahmen et al., Second type of criticality in the brain uncovers rich multiple-neuron dynamics, PNAS, 2019

DYNAMICAL AND FUNCTIONAL CONSEQUENCES

-LONG-RANGE INTERACTIONS DESPITE SHORT-RANGE CONNECTIONS



Dahmen et al., Long-range coordination patterns in cortex change with behavioral context, elife, 2022



TRANSIENT CHAOTIC DIMENSIONALITY EXPANSION

CHRISTIAN KEUP, TOBIAS KÜHN, DAVID DAHMEN

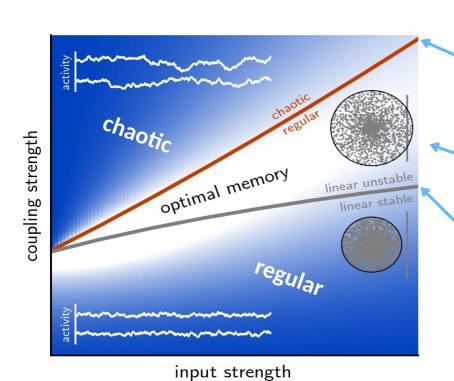
DRIVEN RANDOM RATE NETWORKS

- OPTIMAL MEMORY CLOSE TO CRITICALITY

coupling input

nonlinear network:

$$\tau \frac{dx_i(t)}{dt} = -x_i(t) + \sum_{j=1}^N J_{ij}\phi(x_j(t)) + \xi_i(t)$$



$$g^2\langle\phi^2\rangle > \langle x^2\rangle$$

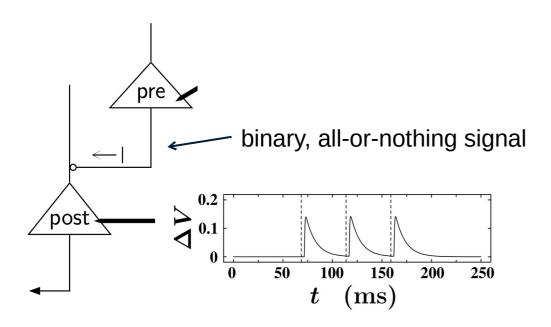
dynamical state between loss of linear stability and onset of chaos has optimal memory

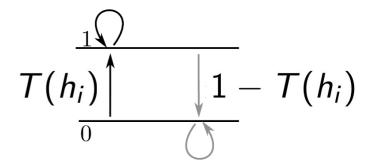
linear instability
$$R^2 = g^2 \langle \phi'^2 \rangle > 1$$

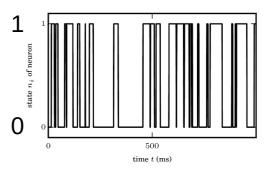
Schuecker et al., Optimal Sequence Memory in Driven Random Networks, PRX, 2018

SPIKING INTERACTION: ABSTRACTION AS BINARY

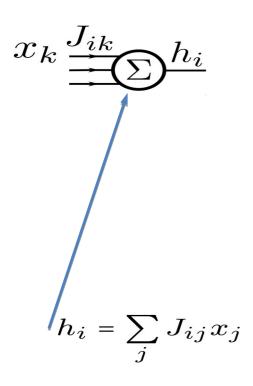
Taking into account discrete coupling



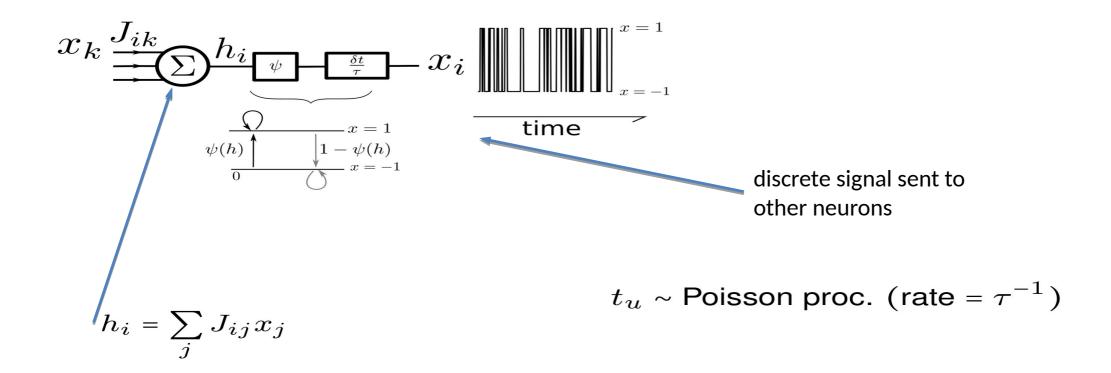


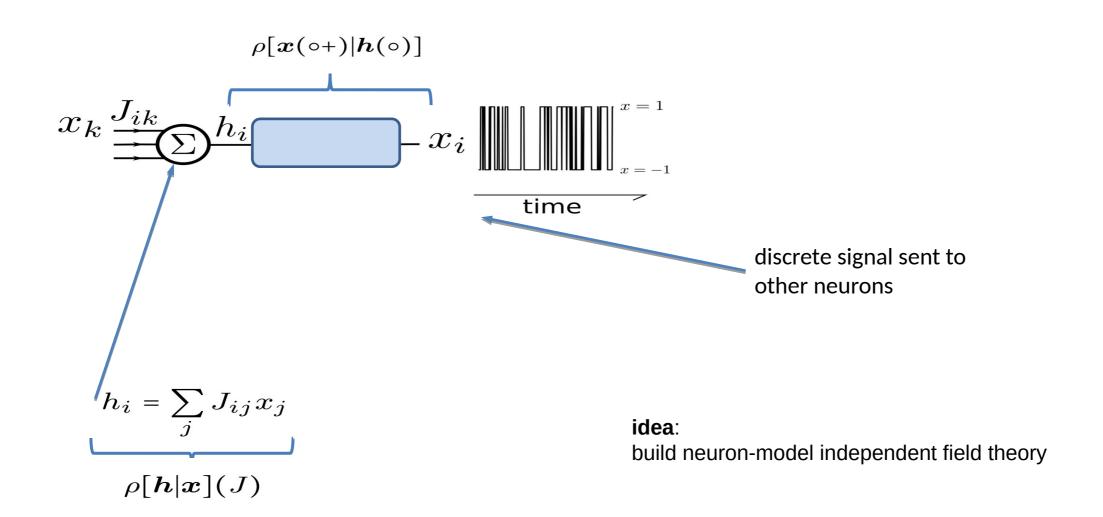


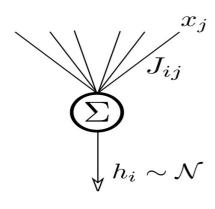
DISCRETE COUPLING: BINARY NEURON



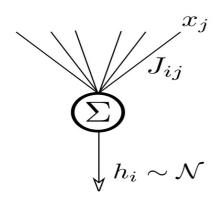
DISCRETE COUPLING: BINARY NEURON







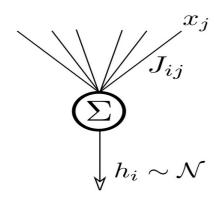
$$\rho[\boldsymbol{h}|\boldsymbol{x}](J) = \delta[\boldsymbol{h} - \boldsymbol{J}\boldsymbol{x}]$$



$$\rho[\boldsymbol{h}|\boldsymbol{x}](J) = \delta[\boldsymbol{h} - \boldsymbol{J}\boldsymbol{x}]$$

$$= \int \mathcal{D}\hat{\boldsymbol{h}} \exp(\hat{\boldsymbol{h}}^{T}\boldsymbol{h}) \exp(-\hat{\boldsymbol{h}}^{T}\boldsymbol{J}\boldsymbol{x}).$$

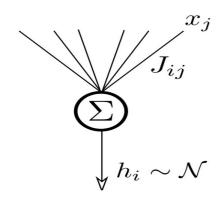
linear J in exponent

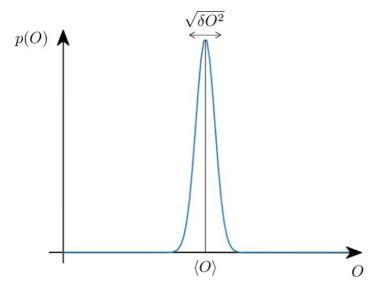


$$\rho[\boldsymbol{h}|\boldsymbol{x}](J) = \delta[\boldsymbol{h} - \boldsymbol{J}\boldsymbol{x}]$$

$$= \int \mathcal{D}\hat{\boldsymbol{h}} \exp(\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{h}) \exp(-\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{J}\boldsymbol{x}).$$

linear J in exponent



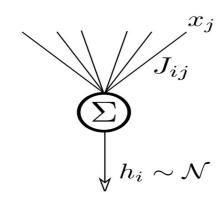


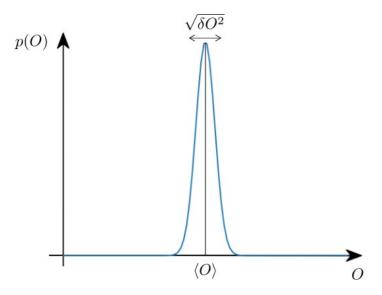
$$\rho[\boldsymbol{h}|\boldsymbol{x}](J) = \delta[\boldsymbol{h} - \boldsymbol{J}\boldsymbol{x}]$$

$$= \int \mathcal{D}\hat{\boldsymbol{h}} \exp(\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{h}) \exp(-\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{J}\boldsymbol{x}).$$

MODEL-INDEPENDENT FIELD THEORY

linear J in exponent





instantaneous synaptic coupling

$$\rho[\boldsymbol{h}|\boldsymbol{x}](J) = \delta[\boldsymbol{h} - \boldsymbol{J}\boldsymbol{x}]$$

$$= \int \mathcal{D}\hat{\boldsymbol{h}} \exp(\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{h}) \exp(-\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{J}\boldsymbol{x}).$$

only term affected: interaction

$$= \langle \exp(-\hat{h}^{T} J x) \rangle_{J_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\frac{\bar{g}}{N}, \frac{g^{2}}{N})}$$

$$= \exp\left(-\frac{\bar{g}}{N} \hat{h}^{T} \mathcal{R} + \frac{g^{2}}{2N} \hat{h}^{T} \mathcal{Q} \hat{h}\right)$$

auxiliary fields

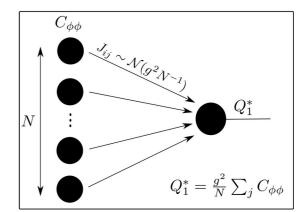
$$\mathcal{R}(t) = \frac{\bar{g}}{N} \sum_{j=1}^{N} x_j(t)$$

$$\mathcal{Q}(t,s) = \frac{g^2}{N} \sum_{j=1}^{N} x_j(t) x_j(s)$$

Macroscopic field theory

• auxiliary fields and conjugate fields $(\mathcal{R}, \mathcal{Q}, \hat{\mathcal{R}}, \hat{\mathcal{Q}}) \sim e^{NS[\mathcal{R}, \mathcal{Q}, \hat{\mathcal{R}}, \hat{\mathcal{Q}}]}$

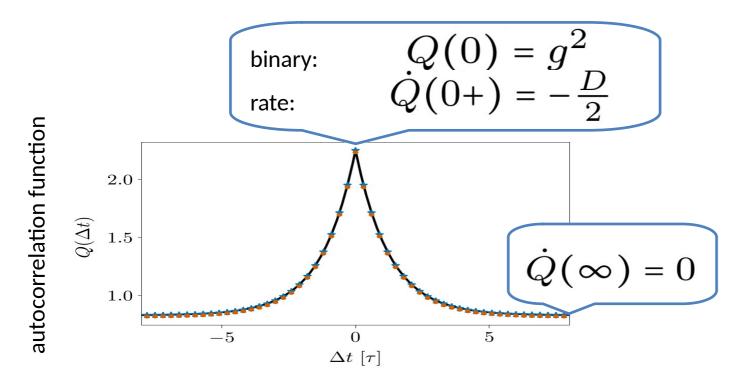
• saddle point approximation $\delta S/\delta R \stackrel{!}{=} 0, \ldots \rightarrow$



 $R(t) = \bar{g} \langle x(t) \rangle_{S(R,Q)}$ $Q(t,s) = g^2 \langle x(t)x(s) \rangle_{S(R,Q)}$

mean input to a neuron variance of input

Continuous and discrete coupling: same DMFT



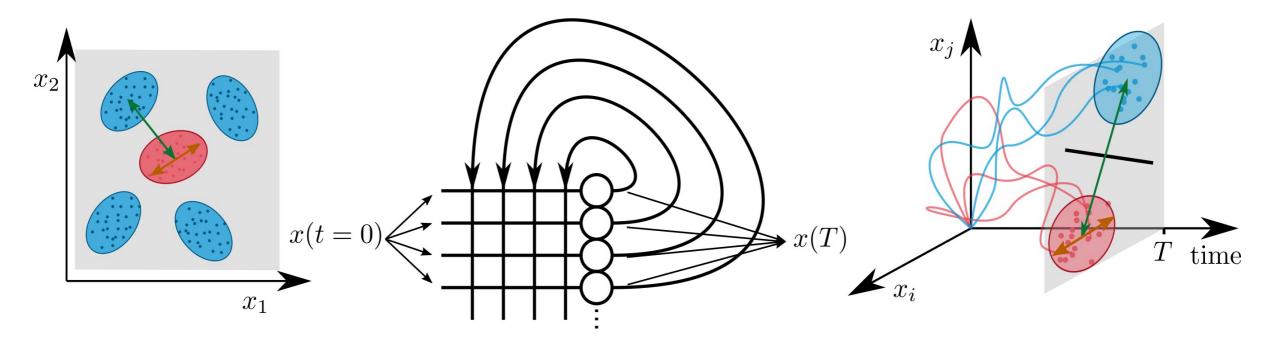
same dynamical e.o.m.

$$\tau^{2}\ddot{Q}\left(\Delta t\right) = -V'_{Q(0)}\left(Q\left(\Delta t\right)\right).$$

same activity statistics (mean and fluctuations)

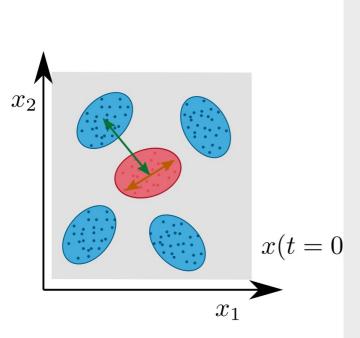
CLASSIFICATION OF INPUT PATTERNS

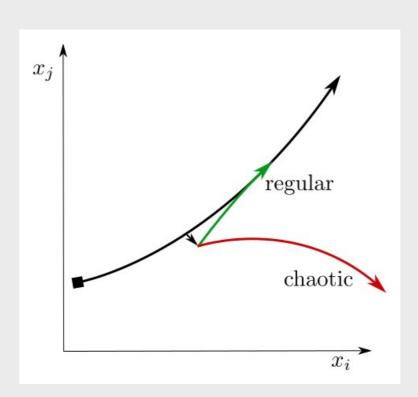
Reservoir computing setup

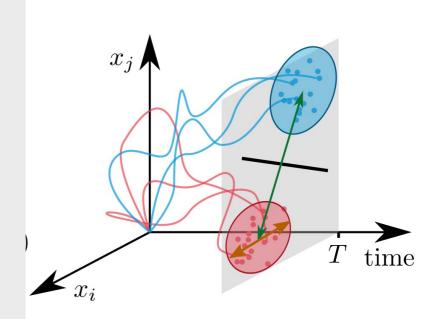


CLASSIFICATION OF INPUT PATTERNS

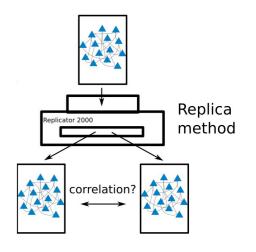
Reservoir computing setup



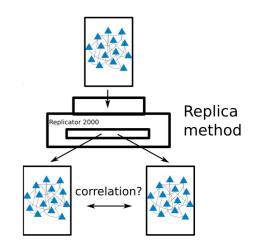




CHAOS AS CORRELATION TRANSMISSION

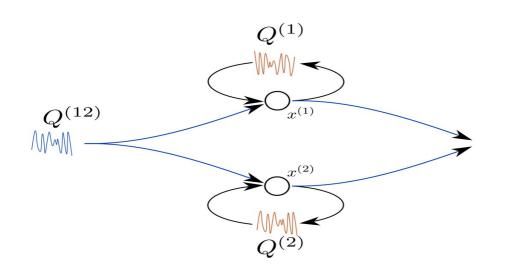


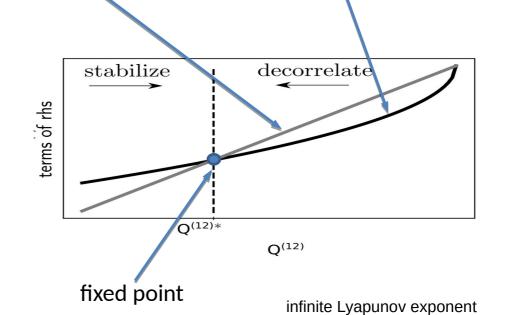
CHAOS AS CORRELATION TRANSMISSION



• correlation between replicas $Q^{(12)} = \frac{g^2}{N} \langle x^{(1)T} x^{(2)} \rangle$

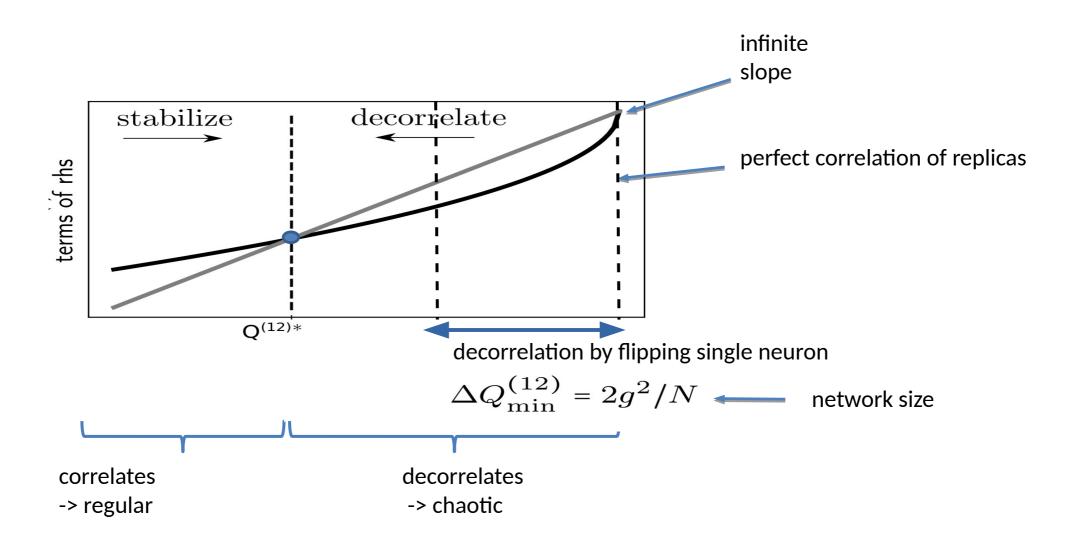
$$\tau \frac{d}{dt} Q^{(12)} (t) = - \underbrace{Q^{(12)} (t)}_{\text{correlation between outputs of replicas}} + \underbrace{g^2 \left(1 - \left\langle \left| \phi \left(h^{(1)} \right) - \phi \left(h^{(2)} \right) \right| \right) \right)}_{\text{correlation between inputs}}$$





(van Vreeswijk & Sompolinsky 1996, 1998)

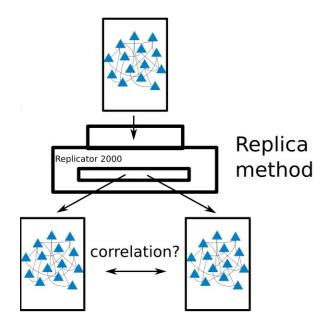
NETWORK-SIZE DEPENDENT TRANSITION



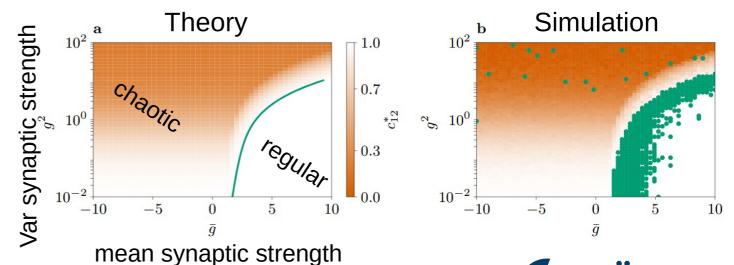
N → infinity: always chaotic Van Vreeswijk & Sompolinsky 1996

TRANSITION TO CHAOS IN BINARY NETWORKS

Replica decorrelation



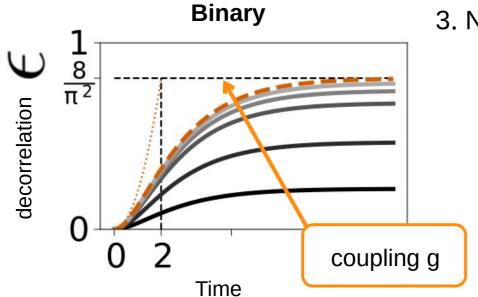
condition for finite-size transition to chaos



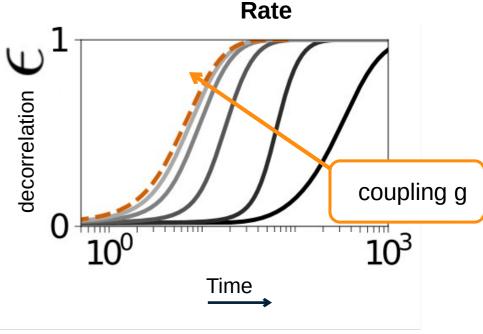
CHAOS IN BINARY NETWORKS

Differences to continuous rate networks

- 1. Mutually exclusive regimes.
- 2. Limited chaotic attractor.

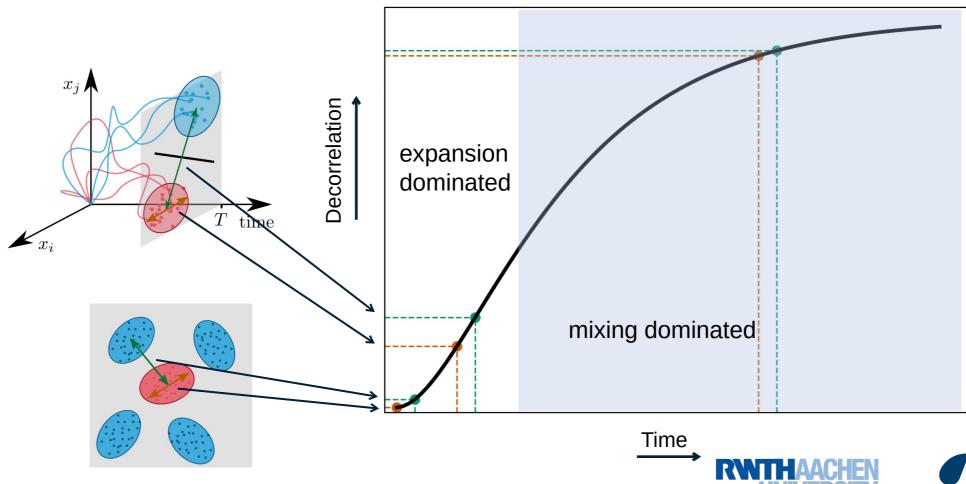


3. No critical slowing down.



DECORRELATION CURVE

Inter-class distance increases compared to intra-class distance



TRANSIENT CHAOTIC DIMENSIONALITY EXPANSION

Classification in chaotic binary networks

• Input data: 50 Gaussian classes in 8 dim. (not linearly separable) optimal signal after $2 \ln(2) \sim 1.5$ • Linear readout accuracy peaks during expansion phase activations per neuron

 $2 \ln(2)$

coupling g

10

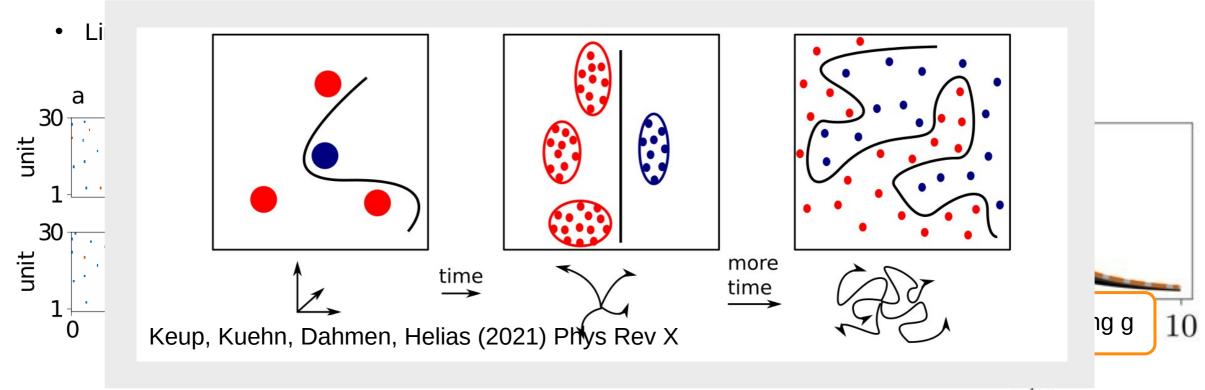
time $[\tau]$

TRANSIENT CHAOTIC DIMENSIONALITY EXPANSION

Classification in chaotic binary networks

• Input data: 50 Gaussian classes in 8 dim. (not linearly separable)

optimal signal after 2 ln(2) ~ 1.5 activations per neuron



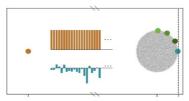
Acknowledgments

Federal Ministry of Education and Research

SUMMARY

novel type of critical state
 implied by wide distribution of correlations
 dynamics close to linear instability and chaos
 caused by disorder of connectivity

chaotic dynamics enhances separability
 discrete coupling: stereotypical and fast
 quick separation of signals by recurrent networks



Dahmen, Gruen, Diesmann, Helias (2019) PNAS



Keup, Kuehn, Dahmen, Helias (2021) Phys Rev X

