CHAOS, CRITICALITY, AND COMPUTATION IN RECURRENT NETWORKS

MORITZ HELIAS

2023-06-15 LAUSANNE

COMPUTATIONAL AND SYSTEMS NEUROSCIENCE (INM-6)
THEORETICAL NEUROSCIENCE (IAS-6)
FACULTY OF PHYSICS, RWTH AACHEN UNIVERSITY

INFERENCE OF COLLECTIVE NETWORK DYNAMICS FROM OBSERVED ACTIVITY

extract

implement

COLLECTIVE DYNAMICS - CORRELATIONS

(Brochier et al. 2018)

SMALL AVERAGE CORRELATIONS

(Brochier et al. 2018)

SMALL AVERAGE CORRELATIONS – BALANCED STATE

Finite size-theory of **average** fluctuations Helias et al. 2014

$$c_{\alpha\beta} = \langle c_{ij} \rangle_{i \in \alpha, j \in \beta}$$
 $\alpha, \beta \in \{E, I, X\}$

$$\begin{pmatrix} c_{EE} \\ c_{EI} \\ c_{II} \end{pmatrix} = \mathbf{c}_{\mathrm{int}}(a_E, a_I) + \mathbf{c}_{\mathrm{ext}}(a_x)$$

RWTHAACHEN LINIVERSITY

Renart et al. 2010

SMALL AVERAGE CORRELATIONS – BALANCED STATE

$$c_{
m ext} \propto N^{-1}$$
 $c_{
m int} \propto N^{-\frac{3}{2}}$

Finite size-theory of **average** fluctuations Helias et al. 2014

$$c_{\alpha\beta} = \langle c_{ij} \rangle_{i \in \alpha, j \in \beta}$$
 $\alpha, \beta \in \{E, I, X\}$

$$\begin{pmatrix} c_{EE} \\ c_{EI} \\ c_{II} \end{pmatrix} = \mathbf{c}_{\mathrm{int}}(a_E, a_I) + \mathbf{c}_{\mathrm{ext}}(a_x)$$

Renart et al. 2010

AVERAGE CORRELATIONS

- PREDOMINANTLY GENERATED INTRINSICALLY

explanation: negative feedback by inhibition

Finite size-theory of **average** fluctuations Helias et al. 2014

$$c_{\alpha\beta} = \langle c_{ij} \rangle_{i \in \alpha, j \in \beta}$$
 $\alpha, \beta \in \{E, I, X\}$

$$\left(\begin{array}{c} c_{EE} \\ c_{EI} \\ c_{II} \end{array} \right)$$
 intrinsic externally-driven $= \mathbf{c}_{\mathrm{int}}(a_E, a_I) + \mathbf{c}_{\mathrm{ext}}(a_x)$

RWTHAACHEN UNIVERSITY

Renart et al. 2010

WIDE DISTRIBUTION

SIGNATURES OF CRITICAL STATES IN MOTOR CORTEX

DAVID DAHMEN

LINEAR NETWORK MODEL (LINEAR RESPONSE THEORY)

• Linear response theory captures fluctuations in asynchronous irregular brain states (Lindner et al. 2006, Pernice et al. 2011, Trousdale et al. 2012, Grytskyy et al. 2014)

$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

FIELD THEORETIC FORMULATION

$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

FIELD THEORETIC FORMULATION

$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

$$\tau \frac{dx_i(t)}{dt} = -x_i(t) + \sum_{j=1}^N W_{ij}x_j(t) + \xi_i(t)$$

FIELD THEORETIC FORMULATION

$$C = [1 - W]^{-1}D[1 - W]^{-T}$$

$$\tau \frac{dx_i(t)}{dt} = -x_i(t) + \sum_{j=1}^N W_{ij}x_j(t) + \xi_i(t)$$

$$p[x(t)] = \int D\tilde{x} \, e^{S(\tilde{x}, x|W)}$$

Martin Siggia Rose formalism Martin et al. 1973, DeDominicis 1975, Janssen 1976

ENSEMBLES OF NETWORKS

$$S_0(\widetilde{X}, X) = \widetilde{X}^{\mathrm{T}}(1 - \mu\{1\})X + \frac{D}{2}\widetilde{X}^{\mathrm{T}}\widetilde{X}$$

$$S_{\text{int}}(\widetilde{X}, X) = \frac{\sigma^2}{2N} \widetilde{X}^{\text{T}} \widetilde{X} X^{\text{T}} X$$

BEYOND MEAN-FIELD THEORY

$$S_0(\widetilde{\boldsymbol{X}}, \boldsymbol{X}) = \widetilde{\boldsymbol{X}}^{\mathrm{T}}(1 - \mu\{\mathbf{1}\})\boldsymbol{X} + \frac{D}{2}\widetilde{\boldsymbol{X}}^{\mathrm{T}}\widetilde{\boldsymbol{X}}$$

$$S_{\text{int}}(\widetilde{X}, X) = \frac{\sigma^2}{2N} \widetilde{X}^T \widetilde{X} X^T X$$
mean + fluctuation corrections

Result:

variance of entries of W spectral radius of connectivity W

$$R^2 = 1 - \sqrt{\frac{1}{1 + N \, \Delta}}$$
 number of neurons

width of distribution of correlations

LARGE WIDTH IMPLIES CRITICALITY

LARGE WIDTH IMPLIES CRITICALITY

MOTOR CORTEX NEARLY UNSTABLE

Motor cortex is operating close to critical point of linear instability R=1!

DYNAMICAL AND FUNCTIONAL CONSEQUENCES

- RICH REPERTOIRE OF DYNAMICAL MODES

Dahmen et al., Second type of criticality in the brain uncovers rich multiple-neuron dynamics, PNAS, 2019

DYNAMICAL AND FUNCTIONAL CONSEQUENCES

- RICH REPERTOIRE OF DYNAMICAL MODES

$$v_{\alpha}(t) \sim e^{-t/\frac{\tau}{1-\lambda_{\alpha}}}$$

Dahmen et al., Second type of criticality in the brain uncovers rich multiple-neuron dynamics, PNAS, 2019

DYNAMICAL AND FUNCTIONAL CONSEQUENCES

-LONG-RANGE INTERACTIONS DESPITE SHORT-RANGE CONNECTIONS

Dahmen et al., Long-range coordination patterns in cortex change with behavioral context, elife, 2022

TRANSIENT CHAOTIC DIMENSIONALITY EXPANSION

CHRISTIAN KEUP, TOBIAS KÜHN, DAVID DAHMEN

DRIVEN RANDOM RATE NETWORKS

- OPTIMAL MEMORY CLOSE TO CRITICALITY

coupling input

nonlinear network:

$$\tau \frac{dx_i(t)}{dt} = -x_i(t) + \sum_{j=1}^N J_{ij}\phi(x_j(t)) + \xi_i(t)$$

$$g^2\langle\phi^2\rangle > \langle x^2\rangle$$

dynamical state between loss of linear stability and onset of chaos has optimal memory

linear instability
$$R^2 = g^2 \langle \phi'^2 \rangle > 1$$

Schuecker et al., Optimal Sequence Memory in Driven Random Networks, PRX, 2018

SPIKING INTERACTION: ABSTRACTION AS BINARY

Taking into account discrete coupling

DISCRETE COUPLING: BINARY NEURON

DISCRETE COUPLING: BINARY NEURON

$$\rho[\boldsymbol{h}|\boldsymbol{x}](J) = \delta[\boldsymbol{h} - \boldsymbol{J}\boldsymbol{x}]$$

$$\rho[\boldsymbol{h}|\boldsymbol{x}](J) = \delta[\boldsymbol{h} - \boldsymbol{J}\boldsymbol{x}]$$

$$= \int \mathcal{D}\hat{\boldsymbol{h}} \exp(\hat{\boldsymbol{h}}^{T}\boldsymbol{h}) \exp(-\hat{\boldsymbol{h}}^{T}\boldsymbol{J}\boldsymbol{x}).$$

linear J in exponent

$$\rho[\boldsymbol{h}|\boldsymbol{x}](J) = \delta[\boldsymbol{h} - \boldsymbol{J}\boldsymbol{x}]$$

$$= \int \mathcal{D}\hat{\boldsymbol{h}} \exp(\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{h}) \exp(-\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{J}\boldsymbol{x}).$$

linear J in exponent

$$\rho[\boldsymbol{h}|\boldsymbol{x}](J) = \delta[\boldsymbol{h} - \boldsymbol{J}\boldsymbol{x}]$$

$$= \int \mathcal{D}\hat{\boldsymbol{h}} \exp(\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{h}) \exp(-\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{J}\boldsymbol{x}).$$

MODEL-INDEPENDENT FIELD THEORY

linear J in exponent

instantaneous synaptic coupling

$$\rho[\boldsymbol{h}|\boldsymbol{x}](J) = \delta[\boldsymbol{h} - \boldsymbol{J}\boldsymbol{x}]$$

$$= \int \mathcal{D}\hat{\boldsymbol{h}} \exp(\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{h}) \exp(-\hat{\boldsymbol{h}}^{\mathrm{T}}\boldsymbol{J}\boldsymbol{x}).$$

only term affected: interaction

$$= \langle \exp(-\hat{h}^{T} J x) \rangle_{J_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\frac{\bar{g}}{N}, \frac{g^{2}}{N})}$$

$$= \exp\left(-\frac{\bar{g}}{N} \hat{h}^{T} \mathcal{R} + \frac{g^{2}}{2N} \hat{h}^{T} \mathcal{Q} \hat{h}\right)$$

auxiliary fields

$$\mathcal{R}(t) = \frac{\bar{g}}{N} \sum_{j=1}^{N} x_j(t)$$

$$\mathcal{Q}(t,s) = \frac{g^2}{N} \sum_{j=1}^{N} x_j(t) x_j(s)$$

Macroscopic field theory

• auxiliary fields and conjugate fields $(\mathcal{R}, \mathcal{Q}, \hat{\mathcal{R}}, \hat{\mathcal{Q}}) \sim e^{NS[\mathcal{R}, \mathcal{Q}, \hat{\mathcal{R}}, \hat{\mathcal{Q}}]}$

• saddle point approximation $\delta S/\delta R \stackrel{!}{=} 0, \ldots \rightarrow$

 $R(t) = \bar{g} \langle x(t) \rangle_{S(R,Q)}$ $Q(t,s) = g^2 \langle x(t)x(s) \rangle_{S(R,Q)}$

mean input to a neuron variance of input

Continuous and discrete coupling: same DMFT

same dynamical e.o.m.

$$\tau^{2}\ddot{Q}\left(\Delta t\right) = -V'_{Q(0)}\left(Q\left(\Delta t\right)\right).$$

same activity statistics (mean and fluctuations)

CLASSIFICATION OF INPUT PATTERNS

Reservoir computing setup

CLASSIFICATION OF INPUT PATTERNS

Reservoir computing setup

CHAOS AS CORRELATION TRANSMISSION

CHAOS AS CORRELATION TRANSMISSION

• correlation between replicas $Q^{(12)} = \frac{g^2}{N} \langle x^{(1)T} x^{(2)} \rangle$

$$\tau \frac{d}{dt} Q^{(12)} (t) = - \underbrace{Q^{(12)} (t)}_{\text{correlation between outputs of replicas}} + \underbrace{g^2 \left(1 - \left\langle \left| \phi \left(h^{(1)} \right) - \phi \left(h^{(2)} \right) \right| \right) \right)}_{\text{correlation between inputs}}$$

(van Vreeswijk & Sompolinsky 1996, 1998)

NETWORK-SIZE DEPENDENT TRANSITION

N → infinity: always chaotic Van Vreeswijk & Sompolinsky 1996

TRANSITION TO CHAOS IN BINARY NETWORKS

Replica decorrelation

condition for finite-size transition to chaos

CHAOS IN BINARY NETWORKS

Differences to continuous rate networks

- 1. Mutually exclusive regimes.
- 2. Limited chaotic attractor.

3. No critical slowing down.

DECORRELATION CURVE

Inter-class distance increases compared to intra-class distance

TRANSIENT CHAOTIC DIMENSIONALITY EXPANSION

Classification in chaotic binary networks

• Input data: 50 Gaussian classes in 8 dim. (not linearly separable) optimal signal after $2 \ln(2) \sim 1.5$ • Linear readout accuracy peaks during expansion phase activations per neuron

 $2 \ln(2)$

coupling g

10

time $[\tau]$

TRANSIENT CHAOTIC DIMENSIONALITY EXPANSION

Classification in chaotic binary networks

• Input data: 50 Gaussian classes in 8 dim. (not linearly separable)

optimal signal after 2 ln(2) ~ 1.5 activations per neuron

Acknowledgments

Federal Ministry of Education and Research

SUMMARY

novel type of critical state
 implied by wide distribution of correlations
 dynamics close to linear instability and chaos
 caused by disorder of connectivity

chaotic dynamics enhances separability
 discrete coupling: stereotypical and fast
 quick separation of signals by recurrent networks

Dahmen, Gruen, Diesmann, Helias (2019) PNAS

Keup, Kuehn, Dahmen, Helias (2021) Phys Rev X

