Neural Networks and Biological Modeling

Professor Wulfram Gerstner Laboratory of Computational Neuroscience

QUESTION SET 13

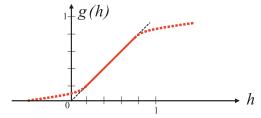
Exercise 1: Nullclines

Consider the following system:

$$\frac{d}{dt}h_{1}(t) = -h_{1}(t) + h^{ext} + (w_{ee} - \alpha)g\left(h_{1}(t)\right) - \alpha g\left(h_{2}(t)\right)$$

$$\frac{d}{dt}h_{2}(t)=-h_{2}(t)+h^{ext}+\left(w_{ee}-\alpha\right)g\left(h_{2}(t)\right)-\alpha g\left(h_{1}(t)\right)$$

where $\alpha = 1$, $w_{ee} = 1.5$ and $h^{ext} = 0.8$. The function g(h) is a continuous monotonically increasing nonlinear function (schematically shown in Figure 1):



$$g(h) = h \text{ for } 0.2 < h < 0.8$$

 $g(0) = 0.1$

$$g(1) = 0.9$$

1.1 Draw the two nullclines $(\frac{dh_1}{dt} = 0 \text{ and } \frac{dh_2}{dt} = 0)$ in the phase plane $(h_2 \text{ vs } h_1 \text{ plot})$. To help you doing this you should start by filling in numerical values in these tables:

h_1	$g(h_2)$	h_2
1		
0.8		
0.2		
0		

$$\begin{array}{c|c|c} h_2 & g(h_1) & h_1 \\ \hline 1 & & & \\ 0.8 & & & \\ 0.2 & & & \\ 0 & & & & \\ \end{array}$$

1.2 Add arrows on the nullclines.

Exercise 2: Stability of the homogenous solution

Assume $h^{ext} = b$

- **2.1** Consider only the fixed middle fixed point that remain symmetric in the state variables $(h_1 = h_2 = h^*)$. Find an expression for $h^*(b)$ for the set of parameters in Ex. 1, under the assumption that the fixed point is in the region where g(h) = h. Analyze the stability of this fixed point.
- **2.2** For arbitrary parameters w_{ee} and h and arbitrary sufficiently smooth function g(h); give a formula for the symmetric fixed point.
- **2.3** Assume again that $w_{ee} = 3/2$ and $\alpha = 3/4$. Calculations will be simplified by introducing a

parameter $\beta = \frac{3}{4}g'(h^*).$ Calculate the two eigenvalues for arbitrary beta.

- **2.4** Consider the case g'(h) = 1 and g'(h) = 0. Show that the fixed point is stable for $g'(h^*) = 0$ and unstable for $g'(h^*) = 1$. At which value of beta does the fixed point change stability?
- **2.5** Describe in words how the symmetric fixed point gains stability as we increase b from 0.8. To which of the monkey's experiment does this correspond?