Neural Networks and Biological Modeling

Professor Wulfram Gerstner Laboratory of Computational Neuroscience

QUESTION SET 1

Exercise 1: Passive Membrane

The voltage accross a passive membrane can be described by the equation

$$\tau \frac{du}{dt} = -(u - u_{\text{rest}}) + R I(t). \tag{1}$$

1.1 General solution

Assuming that before a given time t_0 the current is null and the membrane potential is at rest, derive the general solution to equation 1.

1.2 Step current

Consider a current I(t) = 0 for $t < t_0$ and $I(t) = I_0$ for $t > t_0$. Calculate the voltage u(t) for $t \ge t_0$.

1.3 Pulse current

Consider a current pulse

$$I(t) = \begin{cases} 0 & \text{for } t < t_0 \text{ and } t > t_0 + \Delta \\ q/\Delta & \text{for } t \ge t_0 \text{ and } t < t_0 + \Delta \end{cases},$$
 (2)

where Δ is a short time and q is the total electrical charge.

Consider first $\Delta = 0.1\tau$, and then $\Delta = 0.05\tau$, $\Delta = 0.025\tau$. Draw the input current pulse and the voltage response. What happens in the limit $\Delta \to 0$?

1.4 Delta function

The delta-function can be defined by the limit of a short pulse:

$$\delta(t - t_0) = \lim_{\Delta \to 0} f_{\Delta}(t) \quad \text{where} \quad f_{\Delta}(t) = \begin{cases} 1/\Delta & \text{for } t_0 \le t < t_0 + \Delta \\ 0 & \text{otherwise} . \end{cases}$$
 (3)

Convince yourself that the integral $\int_{t_1}^{t_2} \delta(t-t_0) dt$ is equal to one if $t_1 \leq t_0 < t_2$ and vanishes otherwise.

Write equation (1) using the δ -function for the case that an extremely short current pulse arrives at time t^f . Pay attention to the units!

Exercise 2: Integrate-and-fire model

Consider the model of Eq.(1) with a threshold at $u = \vartheta$. If the membrane potential reaches the threshold, the neuron is said to fire and the membrane potential is reset to u_{rest} . The current injected is a step of magnitude I_0 :

$$I(t) = \left\{ \begin{array}{ll} 0 & t \le t_0 \\ I_0 & t > t_0 \end{array} \right.$$

- **2.1** What is the minimal current to reach the threshold?
- 2.2 At what time will the voltage first reach the threshold.
- **2.3** Calculate the firing frequency f as a function of I_0 .

The function $g(I_0)$ which gives the firing frequency as a function of the constant applied current is called gain function.

Exercise 3: Integrate-and-fire models

The general form of an integrate-and-fire model is

$$\frac{du}{dt} = F(u) + RI\tag{4}$$

where F(u) is an appropriate function and I is the injected current. Three popular choices for the function F are the following (see Fig.1);

Leaky integrate-and-fire $F(u) = -\frac{u - u_{\text{rest}}}{\tau}$

Quadratic integrate-and-fire $F(u) = \frac{(u - u_{rest})(u - u_{th})}{\tau}$

Exponential integrate-and-fire $F(u) = \frac{-(u-u_{\rm rest}) + \Delta e^{\frac{u-u_{\rm th}}{\Delta}}}{\tau}$.

- **3.1** Label the points u_{rest} and u_{th} in Fig.1.
- **3.2** Consider three different values u_1 , u_2 and u_3 if the voltage, such that (i) u_1 is below u_{rest} (the resting potential), (ii) u_2 is between u_{rest} and u_{th} (the spike threshold), and (iii) u_3 is above u_{th} (see Fig.1). For the three models described above, determine qualitatively the evolution of u(t) when started at u_1 , u_2 , and u_3 , assuming that the external input $I \equiv 0$.

Figure 1: Sketch of the function F(u) for three popular integrate-and-fire models.

- For $u = u_1$, the voltage increases/decreases slowly/rapidly.
- For $u = u_2, \ldots$
- For $u = u_3, \ldots$

3.3 Why is u_rest called the resting potential? What is the role of u_th ?
3.4 Consider the two voltage traces shown Fig.2(b) (top) in response to a step current (bottom). Using the graphs in Fig.2(a), determine which of the two models was used to generate each trace.
(a) (b)
Figure 2
The top trace was generated by