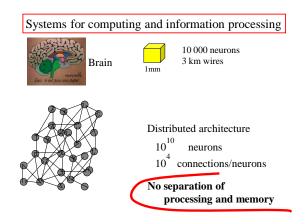
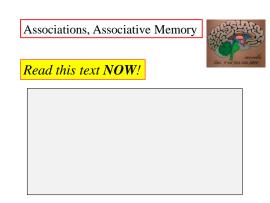
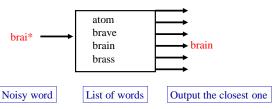
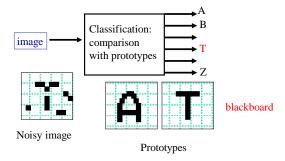

Neural Networks and Biological Modeling


Lecture 5 – Networks of Neurons and **Associative Memory**


- -Introduction
- -Associative memory and Classification by similarity
- -Detour: magnetic materials
- -Associative Memory
- -Hopfield Model
- -Memory Capacity

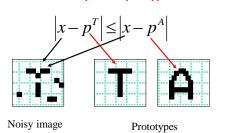
Wulfram Gerstner, EPFL


Brain Computer Distributed architecture (10 10 proc. Elements/neurons) No separation of processing and memory CPU input Von Neumann architecture (10 10 transistors)

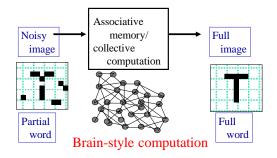


$pattern\ completion/word\ recognition$

Your brain fills in missing information: 'associative memory'


- Classification by similarity: **pattern recognition**

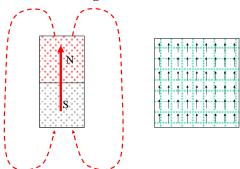
- recognize/understand images:


pattern recognition Blackboard:

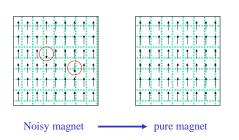
Classification by closest prototype

Aim: Understand Associative Memory

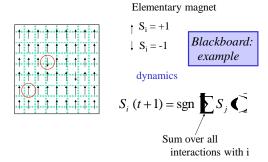
Pattern recognition/Pattern completion



Lecture 5 – Network of neurons and associative memory

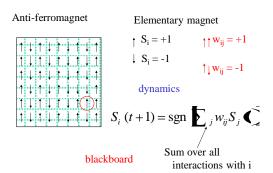


- -Introduction
- Associative Memory and Classification
- -Detour: magnetic materials
- -Associative Memory
- -Hopfield Model
- -Dense networks (mean-field)

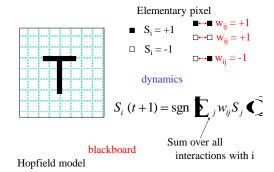

Detour: magnetism

Detour: magnetism

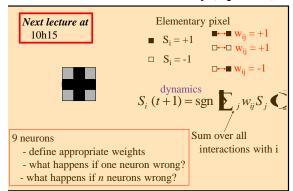
Detour: magnetism



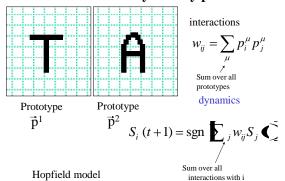
Lecture 5 – Network of neurons and associative memory



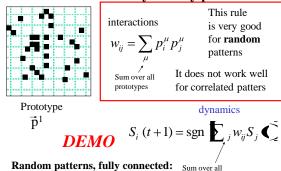
- -Introduction
- -Associative Memory and Classification by similarity
- -Detour: magnetic materials
- -Associative Memory
- -Hopfield Model
- -Dense networks (mean-field)


Detour: magnetism

Associative memory

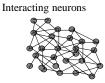


Exercise 1: Associative memory (1 pattern)



Associative memory – many patterns Hopfield Model

Associative memory – many patterns



Associative memory – many patterns

Associative memory – many patterns

Prototype

 \vec{p}^1

Finds the closest prototype i.e. maximal overlap (similarity) m^{μ}

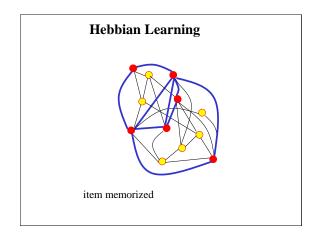
Hopfield model

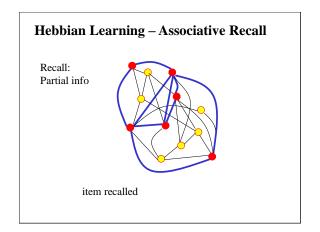
Computation

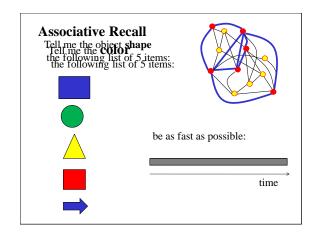
- without CPU,
- without explicit memory unit

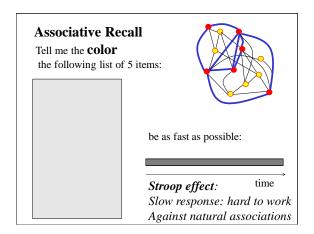
Where do the connections come from?

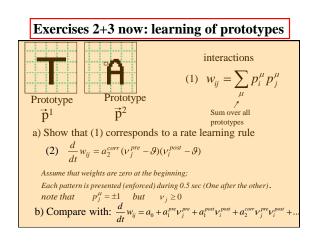
Hopfield model

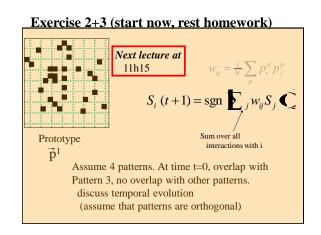

When an axon of cell **j** repeatedly or persistently takes part in firing cell **i**, then j's efficiency as one of the cells firing **i** is increased

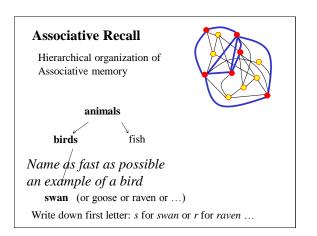

Hebb, 1949


interactions with i


- local rule
- simultaneously active (correlations)


Hebbian Learning



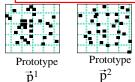


Associative Recall

Nommez au plus vite possible un exemple d'un /d'une

name as fast as possible an example of a

outil tool
couleur color
fruit fruit
instrument music

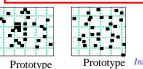

de musique

olor ruit nusic instrument Lecture 5 – Network of neurons and associative memory

- 1/1
- -Introduction
- -Classification by similarity
- -Detour: magnetic materials
- -Associative Memory
- -Hopfield model
- -How many patterns?

Memory Capacity

learning of prototypes


interactions

(1) $w_{ij} = \frac{1}{N} \sum_{\mu} p_i^{\mu} p_j^{\mu}$ Sum over all

Q; How many prototypes can be stored?

dynamics $S_i(t+1) = \operatorname{sgn} \sum_{j} w_{ij} S_j$ Sum over all interactions with i

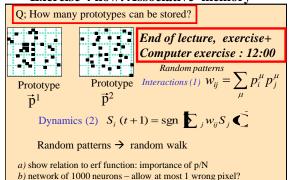
Q; How many prototypes can be stored?

 \vec{p}^1

Random patterns

blackboard

Prototype Interactions (1) $w_{ij} = \sum_{\mu} p_i^{\mu} p_j^{\mu}$


Dynamics (2) $S_i(t+1) = \operatorname{sgn} \sum_j w_{ij} S_j$

Minimal condition: pattern is fixed point of dynamics

-Assume we start directly in one pattern -Pattern stays

Attention: Retrieval requires more (pattern completion)

Exercise 4 now: Associative memory

c) network of N neurons - at most 1 promille wrong pixels?

The end