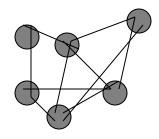
Lecture 14 – Population dynamics and associative memory; stable learning

- -Introduction
- -Associative Memory
- -Dense networks (mean-field)
- -Population dynamics and Associative Memory
- -Discussion

Systems for computing and information processing

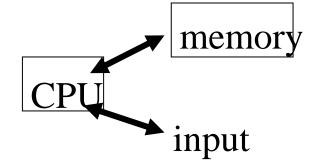
Brain



Distributed architecture

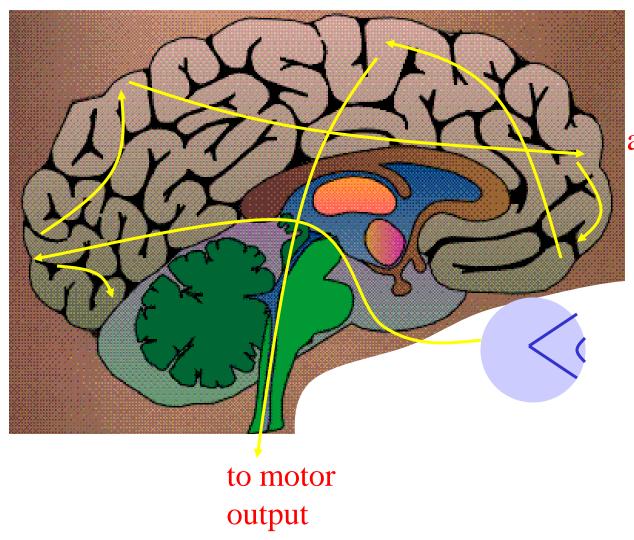
(10 proc. Elements/neurons)

No separation of processing and memory



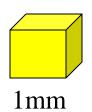
Von Neumann architecture
1 CPU
(10¹⁰ transistors)

motor cortex



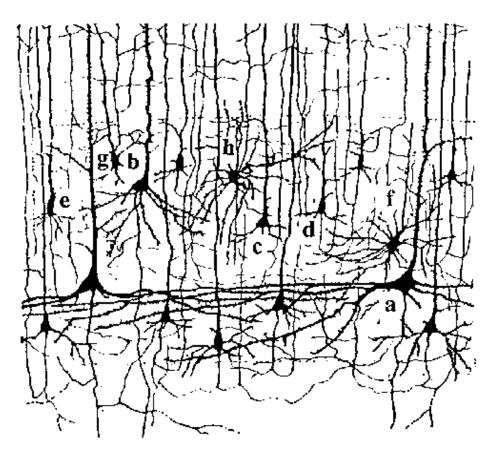
association cortex

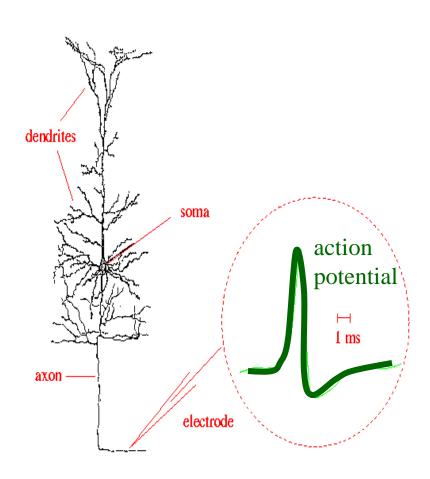
visual cortex



10 000 neurons 3 km wires

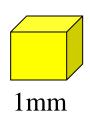
Signal: action potential (spike)



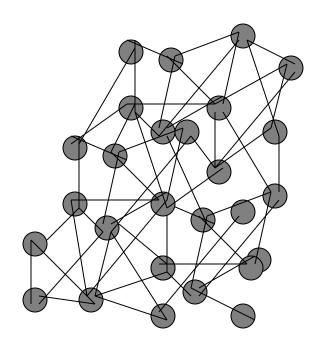


Systems for computing and information processing

Brain



10 000 neurons 3 km wires



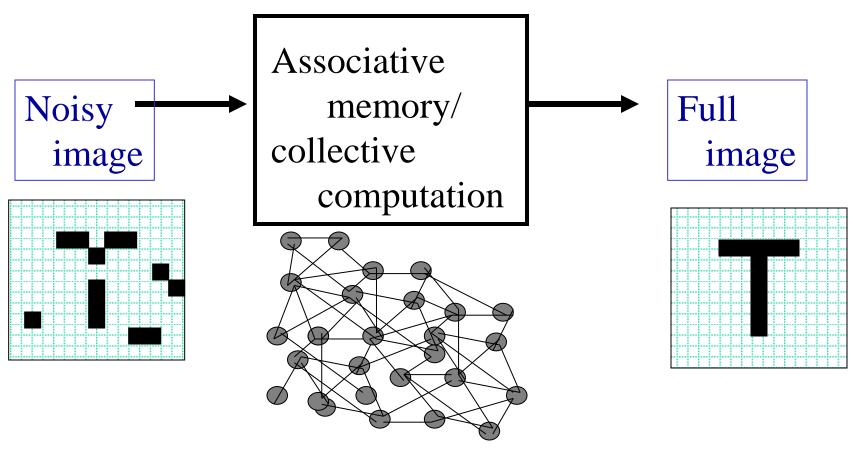
Distributed architecture

10¹⁰ neurons
10⁴ connections/neurons

No separation of processing and memory

- recognize/understand images:

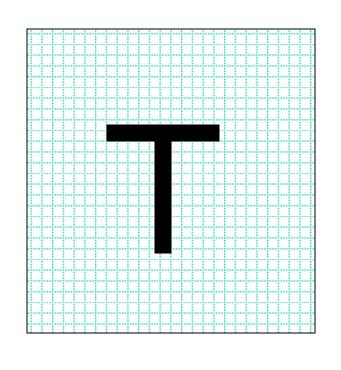
pattern recognition



Brain-style computation

Lecture 14 – Population dynamics and associative memory; stable learning

- -Introduction
- -Associative Memory
 - -Dense networks (mean-field)
 - -Population dynamics and Associative Memory
 - -Final discussion



Elementary pixel

$$S_i = +1$$

$$\Box$$
 $S_i = -1$

$$\mathbf{W}_{ij} = +1$$

$$\mathbf{w}_{ij} = +1$$
 $\mathbf{w}_{ij} = +1$

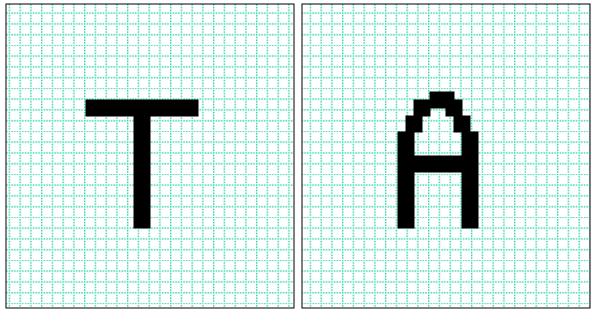
$$\longrightarrow$$
 $\mathbf{w}_{ij} = -1$

dynamics

$$S_i(t+1) = \operatorname{sgn} \sum_j w_{ij} S_j$$

Sum over all interactions with i

Hopfield model



interactions

$$w_{ij} = \sum_{\mu} p_i^{\mu} p_j^{\mu}$$
Sum over all

Sum over all prototypes

dynamics

Prototype \vec{p}^1

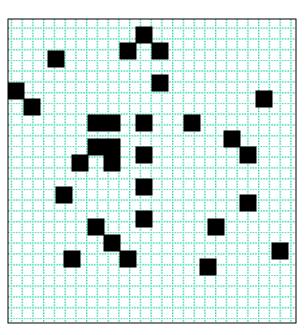
Prototype

$$\vec{p}^2$$

$$S_i(t+1) = \operatorname{sgn} \sum_j w_{ij} S_j$$

Hopfield model

Sum over all interactions with i



interactions

$$w_{ij} = \sum_{\mu} p_i^{\mu} p_j^{\mu}$$

Sum over all prototypes

This rule is very good for **random** patterns

It does not work well for correlated patters

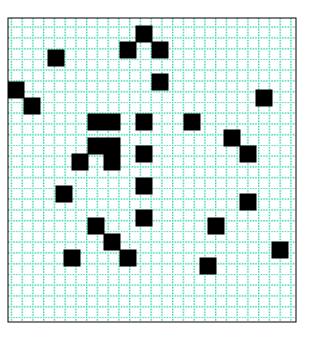
Prototype $\vec{\mathbf{p}}^1$

dynamics

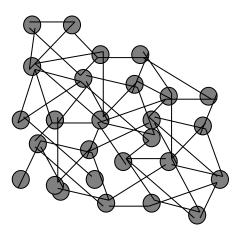
$$S_i(t+1) = \operatorname{sgn} \sum_{j} w_{ij} S_j$$

Hopfield model

Sum over all interactions with i



Interacting neurons



Prototype

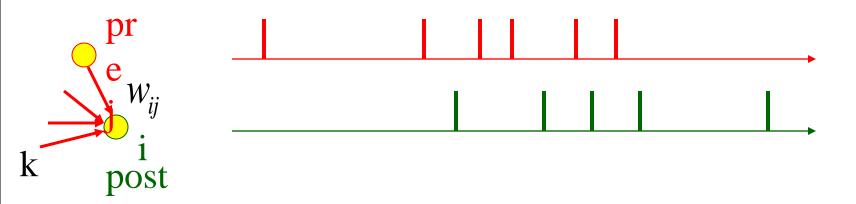
 \vec{p}^1

Finds the closest prototype i.e. maximal overlap (similarity) m^{μ}

Hopfield model

Computation

- without CPU,
- without explicit memory unit

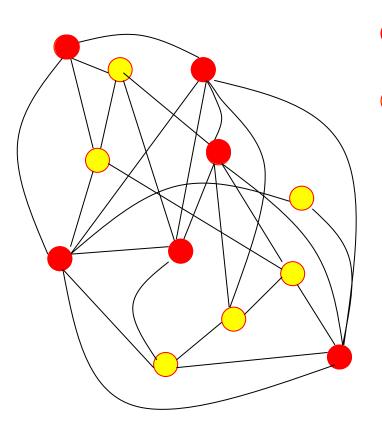


When an axon of cell **j** repeatedly or persistently takes part in firing cell **i**, then j's efficiency as one of the cells firing i is increased

Hebb, 1949

- local rule
- simultaneously active (correlations)

Elementary pixel

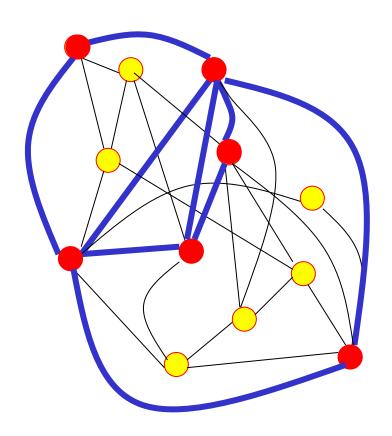


•
$$S_i = +1$$
• $S_i = -1$

$$S_i = -1$$

$$\longrightarrow$$
 $\mathbf{w}_{ij} = +1$

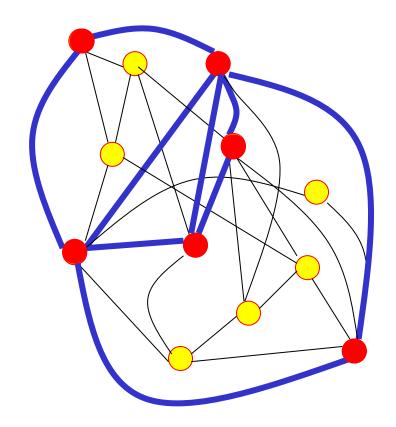
$$\longrightarrow$$
 $\mathbf{w_{ij}} = -1$



item memorized

Recall:

Partial info



item recalled

Lecture 14 – Population dynamics and associative memory; stable learning

-Introduction-Associative Memory

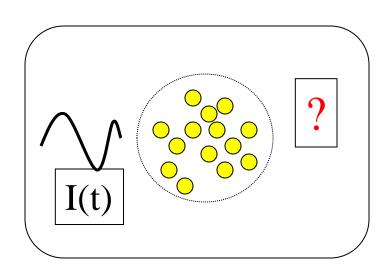
So far: neuron=spin=pixel=binary=on/off BUT:

what about more realistic spiking neurons?

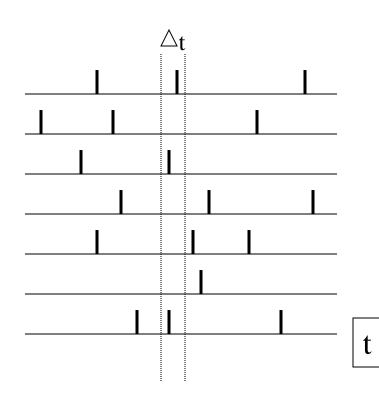
Lecture 14 – Population dynamics and associative memory; stable learning

- -Introduction
- -Associative Memory
- -Dense networks (mean-field)
 - -Population dynamics and Associative Memory
 - -Stable learning

Populations of spiking neurons

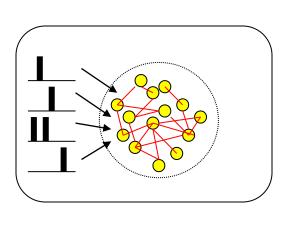


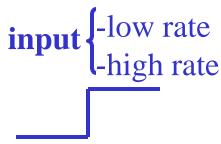
population dynamics?



$$A(t) = \frac{n(t; t + \Delta t)}{N\Delta t}$$

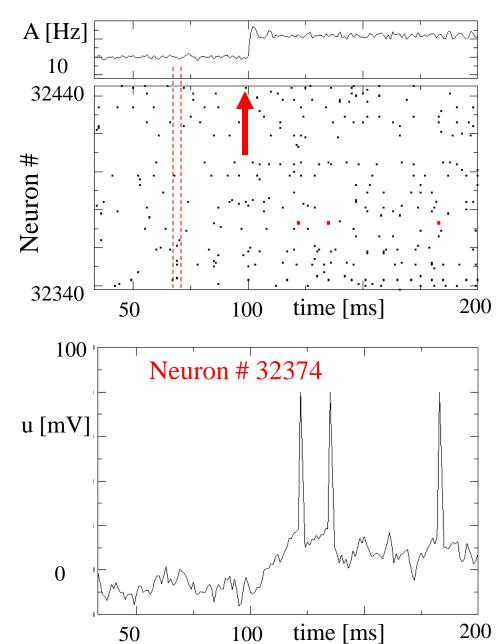
Activity in a populations of neurons



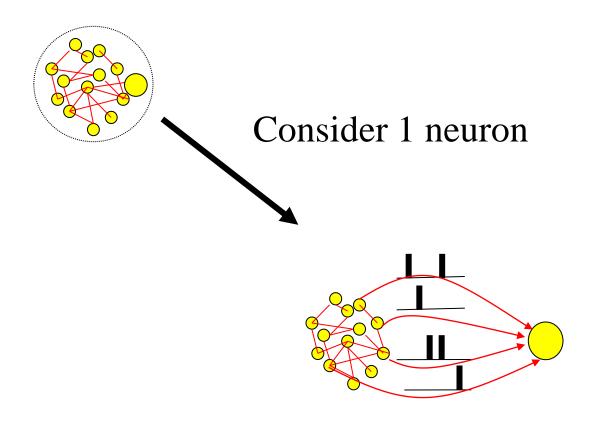


Population

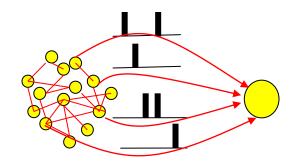
- 50 000 neurons
- 20 percent inhibitory
- randomly connected



Homogeneous network (I&F)



Homogeneous network (I&F)



Assumption of Stochastic spike arrival:

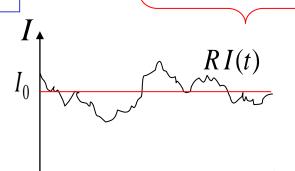
network of exc. neurons, total spike arrival rate A(t)

Synaptic current pulses of shape α

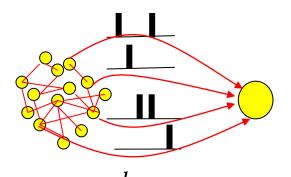
$$I(t) = \sum_{k} \frac{J_0}{N} \sum_{f} \alpha(t - t_k^f)$$

All synapses have identical weight

EPSC



Homogeneous network (I&F)



Assumption of Stochastic spike arrival:

network of exc. neurons, total spike arrival rate A(t)

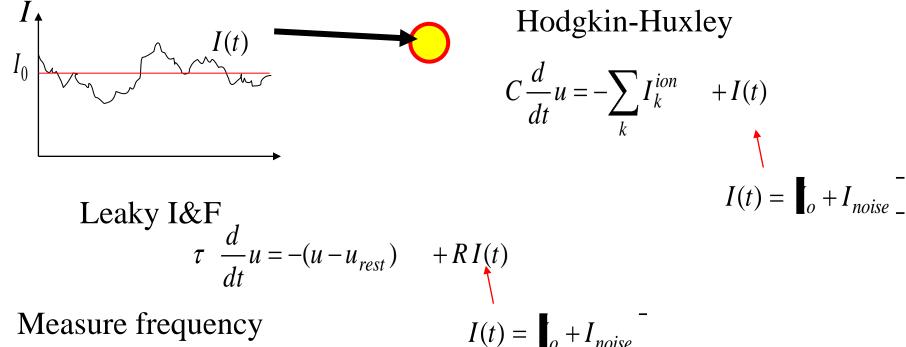
$$I(t) = \begin{bmatrix} -1 \\ 0 \end{bmatrix} + I_{noise}$$

$$I_0 = \gamma A_0$$

Population activity

Analysis of Homogeneous Population

Step 1: Single neuron property: Inject noise current

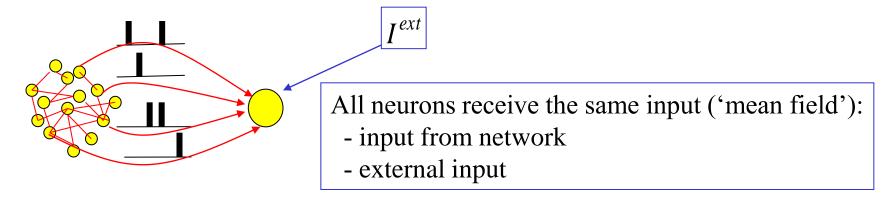


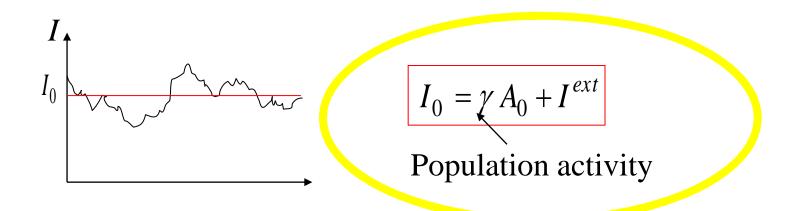
Measure frequency

with noise
$$f = g(I_0)$$

Analysis of Homogeneous Population

Step 2: consider 1 neuron in the network





Mean input from network prop. to population activity

Step 3: assume Stationary State/Asynchronous State

$$A_0 = f$$

All neurons are the same

A(t)=const

Step 4: close equation – calculate A_0

$$A_0 = f = g(I_0) = g(\gamma A_0 + I^{ext})$$

$$I_0 = \gamma A_0 + I^{ext}$$

$$A_0 = \frac{1}{\gamma} \left[0 - I^{ext} \right]$$

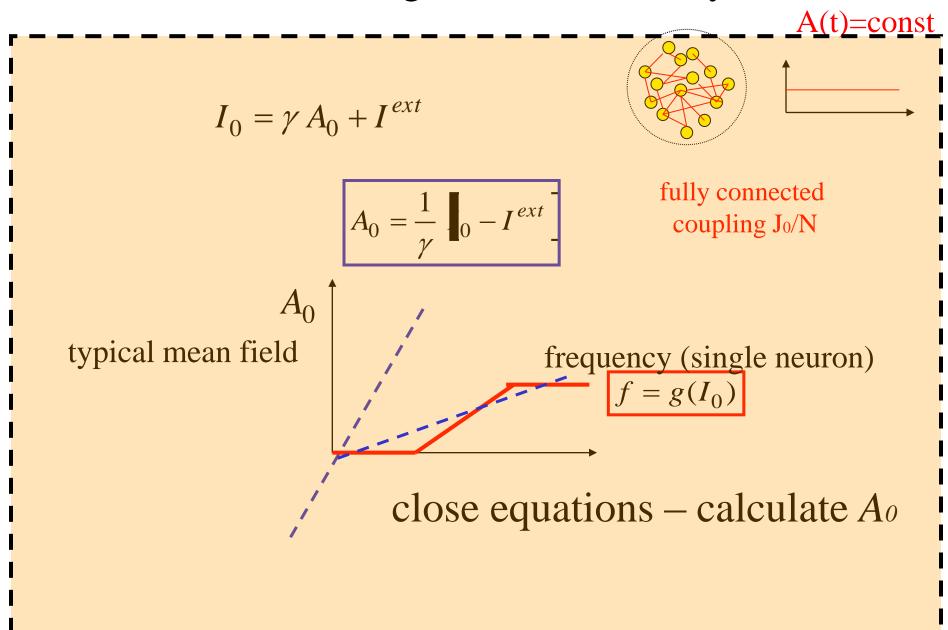
typical mean field (Curie Weiss)

frequency (single neuron)

 $=g(I_0)$

Blackboard

Exercise (some time ago): find stationary state



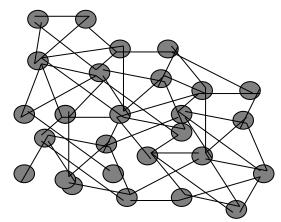
Lecture 14 – Population dynamics and associative memory; stable learning

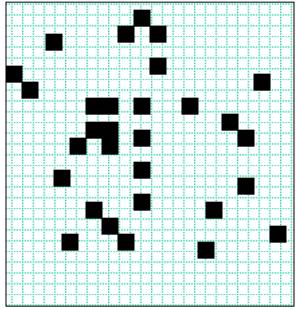
- -Introduction
- -Associative Memory
- -Dense networks (mean-field)
- -Population dynamics and Associative Memory

Back to Associative memory

Interacting neurons

- -Possible with spiking neurons
- -Calculation: mean-field
- -Prototypes = random patterns





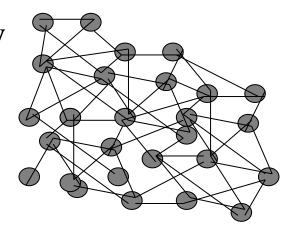
Computation

- without CPU,
- without explicit memory unit

Associative memory - simple model

Interacting neurons

- -Rate model/population activity
- -Calculation: mean-field
- -Prototypes = random patterns



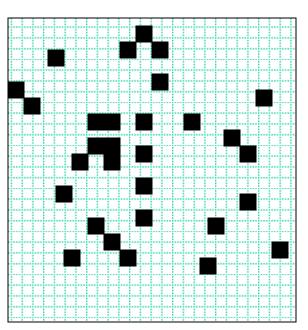
rate model

Single-neuron firing rate

population rate
$$f = g(I_0)$$

$$A_i = g(\sum_j w_{ij} A_j)$$

$$w_{ij} = \frac{2}{N f^{\text{max}}} \sum_{\mu} p_i^{\mu} p_j^{\mu}$$



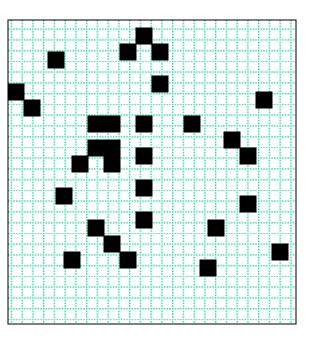
For comparison with Spin $S_j = +/-1$

$$m^{\mu} = \frac{1}{N} \sum_{j} p_{j}^{\mu} S_{j}$$

Prototype Task: Find the prototype \overrightarrow{p}^1 with maximal overlap

$$m^{\mu} = \frac{1}{N} \sum_{j} p_{j}^{\mu} (2 \frac{f_{j}}{f^{\text{max}}} - 1)$$
+/-1

Blackboard



$$f = g(I_0)$$

 $f = g(h_0)$

Input current

Input potential

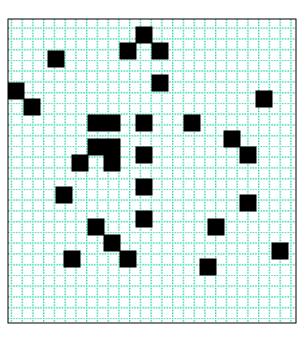
Prototype
$$\vec{p}^1$$

$$m^{\mu} = \frac{1}{N} \sum_{j} p_{j}^{\mu} (2 \frac{f_{j}}{f^{\text{max}}} - 1)$$

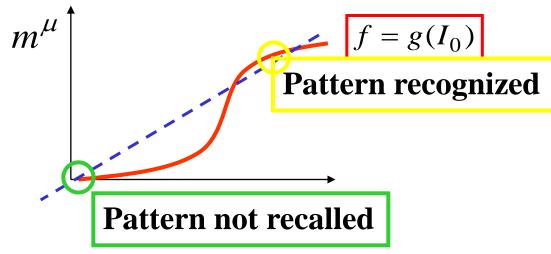
overlap

$$m^{\mu} = \frac{2}{\sqrt{N f^{\text{max}}}} \sum_{j} p_{j}^{\mu} f_{j} - \frac{1}{N} \sum_{j} p_{j}^{\mu}$$
+/-1 with prob. 0.5 +/-1

Associative memory – main idea



frequency (single neuron)



Prototype \vec{p}^1

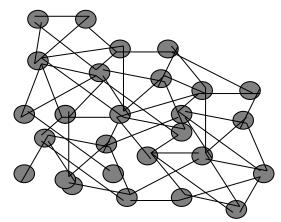
Task: Find the prototype with maximal overlap

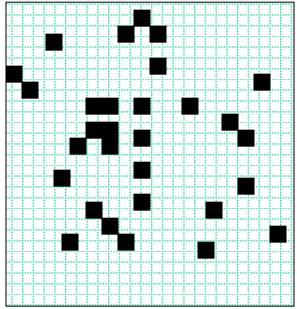
$$m^{\mu} = \frac{1}{N} \sum_{j} p_{j}^{\mu} (2 \frac{f_{j}}{f^{\text{max}}} - 1)$$
+/-1

Conclusion - Associative memory

Interacting neurons

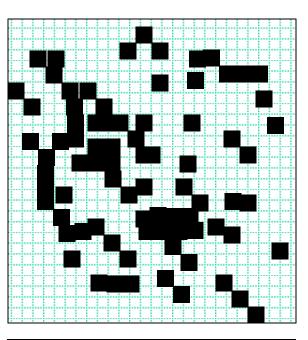
- -Possible with spiking neurons
- -Calculation: mean-field
- -Prototypes = random patterns





Computation

- without CPU,
- without explicit memory unit



interactions

Sum over all

prototypes

$$w_{ij} = \sum_{\mu} p_i^{\mu} p_j^{\mu}$$

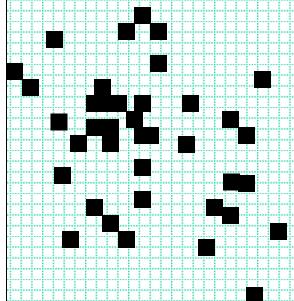
It does not work well for correlated patters

This rule

is very good

for random

Patterns (a=0.5)



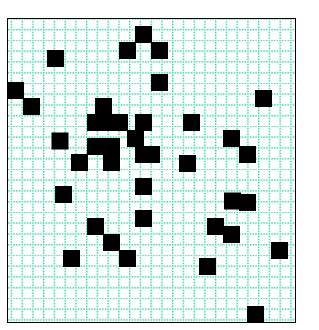
for low activity **random** Patterns (e.g., a=0.1)

$$w_{ij} = \sum (p_i^{\mu} - c)(p_j^{\mu} - a)$$

e.g., in each pattern exactly 10 percent of neurons are active

$$w_{ij} = \frac{1}{N} K(\vec{p}_i, \vec{p}_j)$$
Locally stored information

Blackboard



for low activity **random** Patterns (e.g., a=0.1)

$$w_{ij} = \sum (p_i^{\mu} - c)(p_j^{\mu} - a)$$

e.g., in each pattern exactly 10 percent of neurons are active

$$w_{ij} = \frac{1}{N} K(\vec{p}_i, \vec{p}_j)$$

Locally stored information

$$w_{ij} = \sum_{\mu} (p_i^{\mu} - c)(p_j^{\mu} - a)$$

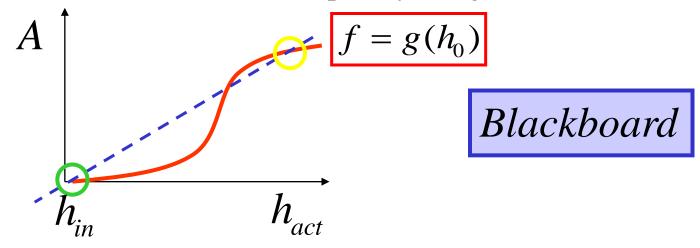
e.g., a=0.1 means in each pattern exactly 10 percent of neurons are active

$$h(\vec{z}) = \sum_{\vec{z}'} \frac{|L(\vec{z})|}{N} K(\vec{z}, \vec{z}') \int \varepsilon(s) A(\vec{z}', t - s) ds$$

$$A(\vec{z}') = g(h(\vec{z}'))$$

Associative memory – For a given pattern only 2 populations!

frequency (single neuron)



$$h(\vec{z}) = \sum_{\vec{z}'} \frac{|L(\vec{z})|}{N} K(\vec{z}, \vec{z}') \int \varepsilon(s) A(\vec{z}', t - s) ds$$

$$w_{ij} = \frac{1}{N} K(\vec{p}_i, \vec{p}_j) = \frac{1}{N} \sum_{\mu} (p_i^{\mu} - c)(p_j^{\mu} - a)$$

$$A(\vec{z}') = g(h(\vec{z}'))$$

Lecture 14 – Population dynamics and associative memory; stable learning

- -Introduction
- -Associative Memory
- -Dense networks (mean-field)
- -Population dynamics and Associative Memory
- -Final discussion

Nearly the end: what can I improve for the students next year?

- Integrated exercises?
- Miniproject?
- Overall workload ?(4 credit course = 6hrs per week)
- Background/Prerequisites?
 - -Physics students
 - -SV students
 - -Math students

Exam:

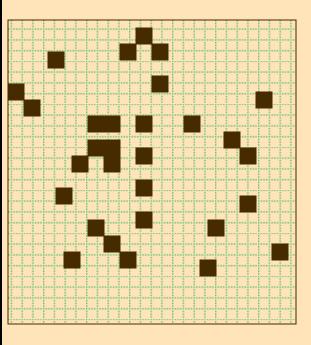
- -written exam, 23.6 from 8:15-11:15
- miniprojects counts 1/3 towards final grade

For written exam:

-bring 1 page A5 of own handwritten notes

The end

Exercise now: Associative memory



$$f = g(I_0)$$

$$f_i = g(\sum_j w_{ij} f_j)$$

$$w_{ij} = \frac{2}{N f^{\text{max}}} \sum_{\mu} p_i^{\mu} p_j^{\mu}$$

$$f_i = g(\sum_{\mu} p_i^{\mu} m^{\mu})$$

Prototype $\vec{\mathbf{p}}^1$

$$m^{\mu} = \frac{1}{N} \sum_{j} p_{j}^{\mu} (2 \frac{f_{j}}{f^{\max}} - 1)$$

Assume 4 patterns. At time t=0, overlap with Pattern 3, no overlap with other patterns. discuss temporal evolution (assume that patterns are orthogonal)

