10 ONE Introduction

the known types of networks would actually generalize to the full XOR. Nevertheless
neural networks commonly make very useful generalizations that would be judged
sensible in human terms.

Programming

Like most of the work done in neural networks, much of this book is concerned with
the problem of programming or learning: how do we choose the connection weights
so the network can do a specific task?

We will encounter some examples where we can choose the weights a priori if we
are a little clever. This embeds some information into the network by design. But
such problems are the exception rather than the rule. In other cases we can often
“teach” the network to perform the desired computation by iterative adjustments
of the w;; strengths. This may be done in two main ways:

® Supervised learning. Here the learning is done on the basis of direct com-
parison of the output of the network with known correct answers. This is
sometimes called learning with a teacher. It includes the special case of
reinforcement learning, where the only feedback is whether each output is
correct or incorrect, not what the correct answer is.

» Unsupervised learning. Sometimes the learning goal is not defined at all
in terms of specific correct examples. The only available information is in the
correlations of the input data or signals. The network is expected to create
categories from these correlations, and to produce output signals correspond-
ing to the input category.

There are many exciting implications of the possibility of training a network
to do a computation. Instead of having to specify every detail of a calculation, we
simply have to compile a training set of representative examples. This means that
we can hope to treat problems where appropriate rules are very hard to know in
advance, as in expert systems and robotics. It may also spare us a lot of tedious
(and expensive) software design and programming even when we do have explicit
rules. John Denker has remarked that “neural networks are the second best way
of doing just about anything.” The best way is to find and use the right rules or
the optimum algorithm for each particular problem, but this can be inordinately
expensive and time consuming. There is plenty of scope for a second best approach
based on learning by example.

TWO

- The Hopfield Model

2.1 The Associative Memory Problem

Associative memory is the “fruit fly” or “Bohr atom” problem of this field. It illus-
trates in about the simplest possible manner the way that collective computation
can work. The basic problem is this:

Store a set of p patterns & in such a way that when presented with a new
pattern (;, the network responds by producing whichever one of the stored
patterns most closely resembles ;.

The patterns are labelled by ¢ = 1, 2, ..., p, while the units in the network are
labelled by i = 1, 2, ..., N. Both the stored patterns £/ and the test patterns ¢;
can be taken to be either 0 or 1 on each site i, though we will adopt a different
convention shortly.

We could of course do this serially in a conventional computer simply by storing
alist of the patterns ¢/, writing a program which computed the Hamming distance!

A=)+ (1 - €] (2.1)

t

between the test pattern ¢; and each of the stored patterns, finding which of them
was smallest, and printing the corresponding stored pattern out.

Here we want to see how to get a McCulloch-Pitts network to do it. That is, if
we start in the configuration n; = (;, we want to know what (if any) set of w;;’s

1The Hamming distance between two binary numbers means the number of bits that are different
in the two numbers.

12 TWO The Hopfield Model

FIGURE 2.1 Example of how an
assoclative memory can recon-
struct images. These are binary
images with 130 x 180 pixels. The
images on the right were recalled
by the memory after presentation
of the corrupted images shown
on the left. The middle column
shows some intermediate states.
A sparsely connected Hopfield
network with seven stored images
was used.

will make the network go to the state with n; = £/°, where it is pattern number
po that is the smallest distance (2.1) from ¢;. Thus we want the memory to be
content-addressable and insensitive to small errors in the input pattern.

A content-addressable memory can be quite powerful. Suppose, for example,
we store coded information about many famous scientists in a network. Then the
starting pattern “evolution” should be sufficient to recall everything about Darwin,
and “F = me® should recall Einstein, despite the error in the input pattern.
Note that some pattern will always be retrieved for any clue (unless we invent
a “don’t know” pattern); the network will never retrieve a linear combination of,
say, Darwin and Wallace in response to “evolution” but will pick the best match
according to what has been stored. This depends on the nonlinearity of the network,
and obviously has advantages for many practical applications.

Other common examples of applications for an associative memory are recog-
nition and reconstruction of images (see Fig. 2. 1) and ;etrleval of blbllographlc

mformatlon fr_o_rpﬁgartlal references (such as from an 1ncomplete title of a paper).

Figure 2.2 shows schematlcally the function of the dynamic associative (or
content-addressable) memories that we construct in this chapter. The space of all
possible states of the network—the configuration space—is represented by the

reglon drawn. Wlthm that space the stored patterns &l are attractors The dy-

~ .1 ~ 1

2.2 The Model 13

FIGURE 2.2 Schematic configuration space of a model with three attractors.

basins of attraction of the different attractors. This picture is very idealized, and
in particular the space should really be a discrete set of points (on a hypercube),
not a continuous region. But it is nevertheless a very useful image to keep in mind.

In the next section we treat the basic Hopfield [1982] model of associative mem-
ory. In Section 2.3 we turn to statistical mechanics, studying some magnetic sys-
tems that are analogous to our networks. Then in Section 2.4 we define a stochastic
version of the original model, and analyze it using statistical mechanics methods.
Finally, Section 2.5 presents a heuristic derivation of the famous 0.138N capacity of
the Hopfield model. Various embellishments and generalizations of the basic model
are discussed in the next chapter.

2.2 The Model

For mathematical convenience we now transform to a formulation where the acti-
vation values of the units are +1 (firing) and —1 (not firing) instead of 1 and 0.
We denote? them by S; rather than n;. Conversion to and from the n; = 0 or 1
notation is easy via S; = 2n; — 1. The dynamics of the network corresponding to
(1.1) or (1.3) now reads

S,' = sgn (Z w;ij - 9,’) (2.2)
i
where we take the sign function sgn(z) (illustrated in Fig. 2.3) to be

1 ifz>0;
sgn(z) = { 1 ifz<o. (2.3)

14 TWQ The Hopfield Model

sgn(x)
A
1
0 X
2 -1 0 1 2
FIGURE 2.3 The function
g sgn(z).

and the threshold 6; is related to the g in (1.1) by 8; = 2; — 3~ wyj. In the rest
of this chapter we drop these threshold terms, taking @; = 0, because they are not
useful with the random patterns that we will consider. Thus we use

S,' = sgn(Z w,-ij) 5 (2.4)

There are at least two ways in which we might carry out the updating specified
by (2.4). We could do it synchronously, updating all units simultaneously at each
time step. Or we could do it asynchronously, updating them one at a time. Both
kinds of models are interesting, but the asynchronous choice is more natural for
both brains and artificial networks. The synchronous choice requires a central clock
or pacemaker, and is potentially sensitive to timing errors. In the asynchronous
case, which we adopt henceforth, we can proceed in either of two ways:

w At each time step, select at random a unit 7 to be updated, and apply the
rule (2.4).

s Let each unit independently choose to update itself according to (2.4), with
some constant probability per unit time.

These choices are equivalent (except for the distribution of update intervals)
because the second gives a random sequence; there is vanishingly small probability
of two units choosing to update at exactly the same moment. The first choice is
appropriate for simulation, with central control, while the second is appropriate for
autonomous hardware units.

We also have to specify for how long (for how many updatings) we will allow
the network to evolve before demanding that its units’ values give the desired stored
pattern. One possibility in the case of synchronous updating is to require that the
network go to the correct memorized pattern right away on the first iteration. In
the present discussion (using asynchronous updating) we demand only that the
network settle eventually into a stable configuration—one for which no S; changes
any more.

Rather than study a specific problem such as memorizing a particular set of
ninbnros we avamina the mnare seneric problem of a random set of patterns drawn

2.2 The Model 15

up of independent bits & which can each take on the values +1 and —1 with equal
probability. More general situations are discussed in Section 3.2.

Our procedure for testing whether a proposed form of w;; is acceptable is first
to see whether the patterns to be memorized are themselves stable, and then to
check whether small deviations from these patterns are corrected as the network
evolves.

One Pattern

To motivate our choice for the connection weights, we consider first the simple case
where there is just one pattern &; that we want to memorize. The condition for this
pattern to be stable is just

sgn (Z wig) =& (for alli) (2.5)

because then the rule (2.4) produces no changes. It is easy to see that this is true
if we take

wij o &5 (2.6)

since EJZ = 1. For later convenience we take the constant of proportionality to
be 1/N, where N is the number of units in the network, giving

Furthermore, it is also obvious that even if a number (fewer than half) of
the bits of the starting pattern S; are wrong (i.e., not equal to &;), they will be
overwhelmed in the sum for the net input

hi =Y wi;S; (2.8)
j

by the majority that are right, and sgn(h;) will still give &;. An initial configuration
near (in Hamming distance) to &; will therefore quickly relax to ¢;. This means that
the network will correct errors as desired, and we can say that the pattern &; is an
attractor.

Actually there are two attractors in this simple case; the other one is at —¢;.
This is called a reversed state. All starting configurations with more than half
the bits different from the original pattern will end up in the reversed state. The

configuration space is symmetrically divided into two basins of attraction, as shown
in Fig. 2.4.

16 TWO The Hopfield Model

VARV,
/NN

Many Patterns

FIGURE 2.4 Schematic con-
figuration space for the one
pattern case, including the re-
versed state.

This is fine for one pattern, but how do we get the system to recall the most similar
of many patterns? The simplest answer is just to make w;; a superposition of terms
like (2.7), one for each pattern:

P
wij = % > kel (2.9)
p=1

Here p is the total number of stored patterns labelled by p.

This is usually called the “Hebb rule” or the “generalized Hebb rule” because
of the similarity between (2.9) and a hypothesis made by Hebb [1949] about the
way in which synaptic strengths in the brain change in response to experience:
Hebb suggested changes proportional to the correlation between the firing of the
pre- and post-synaptic neurons. If we apply our set of patterns & to the network
during a training phase, and adjust the w; strengths according to such pre/post
correlations, we arrive directly at (2.9). Technically, however, (2.9) goes beyond
Hebb’s original hypothesis because it changes the weights positively when neither
of the units is firing (¢ = f;‘ = —1). This is probably not physiologically reasonable.
Equation (2.9) can even cause a particular connection to change from excitatory
to inhibitory or vice versa as more patterns are added, which is never believed to
occur at real synapses. It is possible to modify the equation in various ways to
remedy these defects [Toulouse et al., 1986}, but here we use the simple form (2.9)
unchanged.

An associative memory model using the Hebb rule (2.9) for all possible pairs 7,
with binary units and asynchronous updating, is usually called a Hopfield model.
The term is also applied to various generalizations discussed in the next chapter.
Although most of the ingredients of the model were known earlier, Hopfield’s influ-
ential paper [Hopfield, 1982] brought them together, introduced an energy function,
and emphasized the idea of stored memories as dynamical attractors. Earlier related
models, often also using the Hebb rule, are reviewed by Cowan and Sharp [1988a,
b]. Particularly important is the Little model [Little, 1974; Little and Shaw, 1975,

10701 wwlhisbh tn hacad hamrara » An eunrhranaue nndsatine

2.2 The Model 17

Let us examine the stability of a particular pattern £/. The stability condition
(2.5) generalizes to

sgn(h!) = &7 (for all 7) (2.10)

where the net input hY to unit 7 in pattern » is

| Z— v 1
b=) waEl = 53) EEE (2.11)
J F

We now separate the sum on g into the special term g = v and all the rest:

W =g S ek (2.12)

J p#v

If the second term were zero, we could immediately conclude that pattern number v
was stable according to (2.10). This is still true if the second term is small enough:
if its magnitude is smaller than 1 it cannot change the sign of hY, and (2.10) will
still be satisfied.

It turns out that the second term, which we call the crosstalk term, is less
than 1 in many cases of interest if p (the number of patterns) is small enough. We
will discuss the details shortly; let us assume for now that the crosstalk term is
small enough for all i and v. Then the stored patterns are all stable—if we start
the system from one of them it will stay there. Furthermore, a small fraction of bits
different from a stored pattern will be corrected in the same way as in the single-
pattern case; they are overwhelmed in the sum Ej w;;.S; by the vast majority of
correct bits. A configuration near (in Hamming distance) to £/ thus relaxes to £7.
This shows that the chosen patterns are truly attractors of the system, as alread‘y

anticipated in Fig. 2.2. The system works as expected as a content-addressable
memory.

Storage Capacity

Consider the quantity
vV — 14 1 14
Y=g YD ke (2.13)

J p#v

This is just —£} times the crosstalk term in (2.12). If C? is negative the crosstalk
term has the same sign as the desired £/ term, and thus does no harm. But if C¥
is positive and larger than 1, it changes the sign of hY and makes bit (or unit) i <;f
pattern v unstable; if we start the system in the desired memory state £, it will
not stay there.

The C?’s just depend on the patterns f;‘ that we attempt to store. For now
we consider purely random patterns, with equal probability for ff = +1 and for

18 TWO The Hopfield Model

P(CY)

o = Vp/N

FIGURE 2.5 The distri-
bution of values for the
crosstalk C} given by
(2.13). For p random pat-
terns and N units this is

a Gaussian with variance
C{ 02 = p/N. The shaded area
t is Perror, the probability of
-1 0 1 error per bit.

PGITOf

5}‘ = —1, independently for each j and p. Then we can estimate the probability
Peorror that any chosen bit is unstable:

Perror = PI‘Ob(C:' > 1) . (214)

Clearly Perror increases as we increase the number p of patterns that we try to store.
Choosing a criterion for acceptable performance (e.g, Perror < 0.01) lets us find the
storage capacity pmax of the network: the maximum number of patterns that can
be stored without unacceptable errors. As we will see, there are actually several
different expressions for pmax, depending on the type of criterion we use for Perror-

Let us first calculate Porror. It depends on the number of units N and the
number of patterns p. We assume that both N and p are large compared to 1,
because this is typically the case and because it makes the mathematics easier.
Now C! is 1/N times the sum of about Np independent random numbers,® each
of which is +1 or —1. From the theory of random coin tosses [Feller, 1968] it has
therefore a binomial distribution with mean zero and variance o = p/N. But

since Np is assumed large this can be approximated by a Gaussian distribution with

the same mean and variance, as shown in Fig. 2.5. .
The probability Perror that C} exceeds 1 is just the shaded area in Fig. 2.5.
Thus

1 o _32/202
Perror = o € dz
1

= %[l—erf(l/m)] = %[l—-erf(\/N/Qp)} (2.15)

2.2 The Model 19

TABLE 2.1 Capacities
Perror pmax/N

0.001 0.105
0.0036 0.138
0.01 0.185
0.05 0.37
0.1 0.61

where the error function erf(z) is defined by

2 r
erf(z) = —= exp(—u?) du. 2.1
(=) 77), p(—u”) (2.16)
Table 2.1 shows the values of p/N required to obtain various values of Perror. Thus
if we choose the criterion P.ror < 0.01 for example, we arrive at pmax = 0.15N.
This calculation only tells us about the initial stability of the patterns. If we
choose p < 0.185N for example, it tells us that no more than 1% of the pattern bits
will be unstable initially. But if we start the system in a particular pattern £ and
about 1% of the bits flip, what happens next? It may be that the first few flips will
cause more bits to flip. In the worst case there could be an avalanche phenomenon
in which more and more bits flip until the final state bears little or no resemblance
to the original pattern. So our estimates for pmax are upper bounds; smaller values
may be required to keep the final attractors close to the desired patterns. The more
sophisticated calculation given in Section 2.5 deals with this problem, and shows
that an avalanche occurs if p > 0.138N, making the whole memory useless. Thus
Pmax = 0.138 N if we are willing to accept the errors that occur up to that point.
At p = 0.138 N table 2.1 shows that only 0.37% of the bits will be unstable initially,
though it turns out that about 1.6% of them flip before a stable attractor is reached.
An alternative definition of the capacity insists that most of the memories be
recalled perfectly. Since each pattern contains N bits, we need Perror < 0.01/N to
get all N bits right with 99% probability.* This clearly implies p/N — 0 as N — oo,
8o we can use the asymptotic expansion of the error function

1—erf(z) — e /az (as & — o) (2.17)

to obtain
log(Perror) & — log2 — N/2p — L logm — 4 log(N/2p) . (2.18)
This turns the condition Peyor < 0.01/N into

—log2— N/2p— Llogm — 1log(N/2p) < log0.01 — log N (2.19)

L STON 0% TR T SO TN I RN P D AN N 060 howa ks B s OO IN e & annd

20 TWO The Hopfield Model

or, taking only the leading terms for large N,
N/2p > log N (2.20)

giving the capacity pmax = N/2log N for this case.

Even more stringently, we could ask that all the patterns be recalled perfectly.
This requires us to get Np bits right with, say, 99% probability, and so needs
Pavor < 0.01/pN. Tt is easy to see that this changes (2.20) to

N/2p > log(Np) (2.21)

which gives pmax = N/4log N because log(Np) ~ log N?% =2log N in leading order.

Note that we have assumed in the perfect recall cases that the C}’s are indepen-
dent of one another. Closer examination shows that this is justified. More detailed
derivations of the N/log N results are available in Weisbuch and Fogelman-Soulié
[1985] and McEliece et al. [1987].

In summary, the capacity pmax is proportional to N (but never higher than
0.138N) if we are willing to accept a small percentage of errors in each pattern,
but is proportional to N/log N if we insist that most or all patterns be recalled
perfectly.

Realistic patterns will not in general be random, though some precoding can
make them more so. The Hopfield model is usually studied with random patterns
for mathematical convenience, though the effect of correlated patterns has also
been examined (see Section 3.2). At the other extreme, if the different patterns are
strictly orthogonal, i.e.,

Seter=0 forallpgv (2.22)

J

then there is no crosstalk at all; C¥ = 0 for all ¢ and v.

In this orthogonal case the memory capacity pmax 18 apparently N patterns,
because at most N mutually orthogonal bit strings of length N can be constructed.
But the useful capacity is somewhat smaller. Trying to embed Northogonal patterns
with the Hebb rule actually makes all states stable; the system stays wherever it
starts, and is useless as a memory. This occurs because the orthogonality conditions
(2.22) lead necessarily to®

1 ifi=j;
1 = J 2.2
wis 0 otherwise. g

so each unit is connected only to itself. To define a useful measure of capacity for
such a case it is clearly necessary to insist on a finite basin of attraction around
each desired pattern. This leads to a useful capacity slightly less than N.

5Consider the matrix X with components X, = £ Equation (2.22) implies XXT = N1, where 1 is

2.2 The Model 21

FIGURE 2.6 Tt is often useful
(but sometimes dangerous) to
think of the energy as some-
thing like this landscape. The
z-axis 1s the energy and the
2N corners of the hypercube
(the possible states of the sys-
tem) are formally represented
by the z—y plane.

The Energy Function

One of the most important contributions of the Hopfield [1982] paper was to intro-
duce the idea of an energy function into neural network theory. For the networks
we are considering, the energy function H is

1
H=- § E ngS;Sj . (2.24)
13

The double sum is over all 7 and all 5. The ¢ = j terms are of no consequence
because S? = 1; they just contribute a constant to H, and in any case we could
choose w;; = 0. The energy function is a function of the configuration {S;} of the
system, where {S;} means the set of all the S;’s. We can thus imagine an energy
landscape “above” the configuration space of Fig. 2.2. Typically this surface is
quite hilly. Figure 2.6 illustrates the idea.

The central property of an energy function is that it always decreases (or re-
mains constant) as the system evolves according to its dynamical rule. We will show
this in a moment for (2.24). Thus the attractors (memorized patterns) in Fig. 2.2
are at local minima of the energy surface. The dynamics can be thought of as sim-
ilar to the motion of a particle on the energy surface under the influence of gravity
(pulling it down) and friction (so that it does not overshoot). From any starting
point the particle (representing the whole state {S;} of the system) slides downhill
until it comes to rest at one of these local minima—at one of the attractors. The
basins of attraction correspond to the valleys or catchment areas around each min-
imum. Starting the system in a particular valley leads to the lowest point of that
valley.

The term energy function comes from a physical analogy to magnetic sys-
tems that we will discuss in the next section. But the concept is of much wider
a‘pplicability; in many fields there is a state function that always decreases during

22 TWO The Hopfield Model

In some fields the convention is reversed; the function increases or must be maxi-
mized. The most general name, from the theory of dynamical systems, is Lyapunov
function [Cohen and Grossberg, 1983}. Other terms are Hamiltonian in statisti-
cal mechanics, cost function or objective function in optimization theory, and
fitness function in evolutionary biology.

For neural networks in general an energy function exists if the connection
strengths are symmetric, i.e., Wi; = Wji. In real networks of neurons this is an
unreasonable assumption, but it is useful to study the symmetric case because of
the extra insight that the existence of an energy function affords us. The Hebb
prescription (2.9) which we are now studying automatically yields symmetric w;; ’s.
Gérard Toulouse has called Hopfield’s use of symmetric connections a “clever step
backwards from biological realism.” The cleverness arises from the existence of an
energy function.

For symmetric connections we can write (2.24) in the alternative form

H=C-)Y w;SiS; (2.25)
(i5)

where (i) means all the distinct pairs ij, counting for example 12 as the same pair
as 21. We exclude the i terms from (ij); they give the constant C.

It now is easy to show that the dynamical rule (2.4) can only decrease the
energy. Let S! be the new value of S; given by (2.4) for some particular unit ¢:

S,{ = sgn(z w,'ij) . (2.26)
j

Obviously if S/ = S; the energy is unchanged. In the other case S! = —S; so, picking
out the terms that involve Sy,

H -H = —Zw,‘js,{Sj'f"EwijSiSj

i i
= 25,‘ Z Wy Sj
i
= 25) wiS; — 2w . (2.27)

1

Now the first term is negative from (2.26), and the second term is negative because
the Hebb rule (2.9) gives wi; = p/N for all 7. Thus the energy decreases every time
an S; changes, as claimed.

The self-coupling terms w;; may actually be omitted altogether, both from
the Hebb rule (where we can simply define w;; = 0) and from the energy function. It
is straightforward to check that they make no appreciable difference to the stability

1 At 2 i iliaee da affant tha duvmamire and the

2.2 The Model 23

Sompolinsky, 1987]. We can see why simply by separating the self-coupling term
out of the dynamical rule (2.4):

S; = sgn (w;,-S,- + Z ngSj) . (2.28)
J#i
If wy; were larger than Zj#i w;; S; in some state, then S; = 41 and S; = —1

could both be stable.® This can produce additional stable spurious states in the
neighborhood of a desired attractor, reducing the size of the basin of attraction. If
w;; = 0, then this problem does not arise; for a given configuration of the other

' spins S; will always pick one of its states over the other.

Starting from an Energy Function

The idea of the energy function as something to be minimized in the stable states

gives us an alternate way to derive the Hebb prescription (2.9). Let us start again

with the single-pattern case. We want the energy to be minimized when the overlap
between the network configuration and the stored pattern ¢; is largest. So we choose

H=- -2-1]\—, (Z Si&:) ’ (2.29)

- where the factor 1/2N is the product of inspired hindsight. For the many-pattern

case, we can try to make each of the &/ into local minima of H just by summing
(2.29) over all the patterns:

H=- 51]\7 Zi:l » Siet') ’ (2.30)

Multiplying this out gives

P
e BT (S50) - AT e
p= H j i p=1

which is exactly the same as our original energy function (2.24) if w;; is given by
the Hebb rule (2.9).

This approach to finding appropriate w;;’s is generally useful. If we can write
down an energy function whose minimum satisfies a problem of interest, then we
can multiply it out and identify the appropriate connection strength w;; from the
coefficient of S;S;. We will encounter several applications in Chapter 4. Of course
we may find other terms, not of the S;S; form. Constants are no problem, and
terms linear in a single S; can be represented by thresholds or by a connection to
a clamped S; unit. But terms like S;S; S take us outside the present framework of
pairwise connections.

24 TWO The Hopfield Model

Spurious States

We have shown that the Hebb prescription (2.9) gives us (for small enough p) a
dynamical system that has attractors—local minima of the energy function—at the
desired points &!'. These are sometimes called the retrieval states. But we have
not shown that these are the only attractors. And indeed there are others.

First of all, the reversed states —&!' are minima and have the same energy as
the original patterns. The dynamics and the energy function both have a perfect
symmetry, S; « —S; for all . This is not too troublesome for the retrieved patterns;
we could agree to reverse all the remaining bits when a particular “sign bit” is —1
for example.

Second, there are stable mixture states f}“i", which are not equal to any
single pattern, but instead correspond to linear combinations of an odd number of
patterns [Amit et al., 1985a]. The simplest of these are symmetric combinations of
three stored patterns:

miX = ggn(4 €4 £ €T £ E0). (2.32)

All eight sign combinations are possible, but we consider for definiteness the case
where all the signs are chosen as +’s. The other cases are similar. Observe that on
average £™X has the same sign as £/ three times out of four; only if €7 and €
both have the opposite sign can the overall sign be reversed. So ™~ is Hamming
distance N/4 from £/, and of course from £ and ¢/ too; the mixture states lie at
points equidistant from their components. This also implies that Yo e mix — N/2

on average. Now to check the stability of (2.32), still with all + signs, we can repeat
the calculation of (2.11) and (2.12), but this time pick out the three special u’s:

; 1 ; 1 1 1
R = i Z{f{f{;‘“x = 55‘4‘1 + —2-5‘4‘3 + —2-5‘4‘3 + cross-terms. (2.33)
ju

Thus the stability condition (2.10) is indeed satisfied for the mixture state (2.32).
Similarly 5, 7, ... patterns may be combined. The system does not choose an even
number of patterns because they can add up to zero on some sites, whereas the
units have to be 1.

Third, for large p there are local minima that are not correlated with any
finite number of the original patterns &' [Amit et al., 1985b]. These are sometimes
called spin glass states because of a close correspondence to spin glass models in
statistical mechanics. We will meet them again in Section 2.5.

So the memory does not work perfectly; there are all these additional minima
in addition to the ones we want. The second and third classes are generally called
spurious minima. Of course we only fall into one of them if we start close to it,
and they tend to have rather small basins of attraction compared to the retrieval
states. There are also various tricks that we will consider later, including finite

2.3 Statistical Mechanics of Magnetic Systems 25

FIGURE 2.7 A very simplified picture
of a magnetic material described by an
Ising model.

o co— o) &0
co— 0> 0> 0>
-8 ¢o— co— —o>
o> —0> o ¢
o> co— —0> o>

2.3 Statistical Mechanics of Magnetic Systems

There is a close analogy between Hopfield networks and some simple models of
magnetic materials in statistical physics. The analogy becomes particularly use-
ful when we generalize the networks to use stochastic units, which brings the idea
of temperature into network theory. We will explore this development in the next
section, after providing here the necessary background in the statistical mechanics
of magnetic systems. The Appendix goes further into statistical mechanics.

A simple description of a magnetic material consists of a set of atomic magnets
arranged on a regular lattice that represents the crystal structure of the material
(metals are crystals in this sense). We will use the term spins for these atomic
magnets. The name comes from the quantum mechanical origin of the magnetic
moments. The spins can each point in various directions, the number of possibilities
depending on the type of atom considered. Particularly simple is the case of “spin
1/2” atoms, in which only two distinct directions are possible. This is represented
in an Ising model by a variable S; for each lattice site ¢, with allowed values +1.
The spin is oriented “up” if S; = +1 and “down” if S; = —1. Figure 2.7 illustrates
a possible configuration with spins shown by arrows pointing up or down.

The analogy of the Ising model spins to the activation of units in a neural
network is obvious, and indeed we have used the same symbol S; for both. An
active unit (firing cell) in the network corresponds to “spin up” in the magnet and
an inactive one to “spin down”. Ising models are in fact used widely le.g., Ma, 1985;
Huang, 1987], not only for spin 1/2 magnetic materials, but also for many physical
systems which can be described by binary (i.e., two-valued) variables. In many
cases the description is very idealized. One might for instance simplify a continuous
variable to an Ising one (as we are doing with our McCulloch-Pitts assumption),
or one might describe a gas by specifying an lsing variable (for filled or empty) in
each of a fine grid of cells covering the system. There is a great deal of accumulated
knowledge about Ising models, some of which can be applied to neural networks.

An Ising model is not fully specified until the interactions and dynamics of
the spins are given. In a magnetic material each of the spins is influenced by the
magnetic field h at its location. This magnetic field consists of any external
field he*t applied by the experimenter, plus an internal field produced by the
ather anins The contribution of each atom to the internal field at a given location

	1.PDF
	2.PDF
	3.PDF
	4.PDF
	5.PDF
	6.PDF
	7.PDF
	8.PDF

